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TRANSESTERIFIKASI MINYAK JATROPHA MENTAH 

MELALUI KAEDAH ULTRABUNYI DENGAN KEHADIRAN 

MANGKIN ASID HETEROPOLI 

 

ABSTRAK 

Kajian ini memberi lebih tempuan terhadap penghasilan FAME daripada 

minyak Jatropha yang mengandungi kandungan air dan FFA yang tinggi melalui 

proses ultrasonifikasi. Proses ultrasonifikasi dilakukan bagi mengubahsuai 

penghalang dalaman pemindahan jisim antara minyak dan metanol bagi 

mengurangkan masa tindakbalas dan suhu yang diperlukan. Mangkin berasid baru 

yang berasaskan asid heteropoli (TPA) telah dihasilkan, dicirikan dan digunakan di 

dalam proses transesterifikasi. TPA telah disekatgerak ke atas karbon teraktif dan 

alumina atau ditukarkan kepada garam cesium bagi memperbaiki kualiti untuk 

menghalang kebolehlarutan di dalam media berkutub. Kesan TPA yang berbeza ke 

atas penyokong dan nisbah molar sebanyak 1.5 telah dikaji dan dicirikan. TPA20-

AC, TPA25-Al dan  garam cesium dengan nisbah molar sebanyak 1.5 telah 

digunakan di dalam pengoptimuman process dengan kaedah rekabentuk eksperimen 

(DOE). Empat pengubahsuai tindakbalas termasuk masa tindakbalas (10-50 min), 

nisbah molar bahan tindakbalas (5:1-25:1), amplitud ultrasonik (30-90%), dan 

jumlah kandungan mangkin (2.5-4.5 b/b minyak) telah dipilih and dioptimumkan 

bagi menghasilkan kefahaman menyeluruh berkenaan kelakuan sistem di bawah 

pengaruh ultrasonik. Mangkin tersebut juga dinilai dari segi kebolehgunaan dan 

fenomena pegurasan di bawah pengaruh ultrasonik. Tindakbalas keseluruhannya 

adalah heterogen dan mangkin TPA yang disokong dengan  Al dan garam Cs 

menunjukkan pengurangan yang minimum di dalam aktiviti selepas tiga kali 
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tindakbalas di bawah keadaan yang optimum. Mangkin Cs menunjukkan  aktiviti ~ 

90% dan menunjukkan potensi yang terbaik bagi penggunaan semula pada suhu 65 

O
C selama 34 minit. Mangkin tersebut telah digunakan dalam proses transesterifikasi 

bagi minyak tidak boleh makan yang berbeza dan telah diuji dalam beberapa sistem 

dengan kandungan FFA dan air yang tinggi dan menunjukkan keputusan yang 

memberangsangkan. Ujian tindakbalas kinetik telah dijalankan dan pengesanan FFA 

dan kandungan air semasa tindakbalas membuktikan mangkin tersebut mampu untuk 

mempercepatkan kedua-dua proses esterifikasi FFA dan transesterifikasi trigliserida 

secara serentak.  
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TRANSESTERIFICATION OF CRUDE JATROPHA OIL BY 

ULTRASOUND-ASSISTED PROCESS IN THE PRESENCE OF 

HETEROPOLYACID BASED CATALYSTS. 

 

ABSTRACT 

The current research work research work focused on the investigation of 

FAME production from high FFA and water content crude Jatropha oil through an 

ultrasound-assisted process. The ultrasonic energy was invested to overcome the 

barrier of poor contact between the oil and methanol due to the immiscible nature of 

them reducing the required reaction time and temperature. New heterogeneous acid 

catalysts based on heteropoly acid were synthesized, characterized and used in the 

transesterification reaction. Tungstophosphoric acid (TPA) was immobilized on 

activated carbon (AC) and gamma alumina (Al) or converted to its cesium (Cs) salt 

to improve its resistance against the solubility in the polar reaction media. Different 

TPA loadings on the supports and various molar ratios of cesium to TPA were 

studied and characterized. TPA20-AC, TPA25-Al and Cs salt with molar ratio of 1.5 

were used in the investigation of the optimum reaction conditions with the aid of 

design of experiments software (DOE). Four reaction variables including reaction 

time (10-50 min), reactants molar ratio (5:1-25:1), ultrasonic amplitude (30-90 %) 

and catalyst amount (2.5-4.5 w/w oil) were chosen and optimized to generate 

thorough understanding on the behavior of the system under ultrasonic conditions. 

The catalysts were also investigated for possible reusability and leaching 

phenomenon under ultrasonic conditions. The reactions were mostly heterogeneous 

in nature and the TPA supported on Al and Cs salt catalysts showed minimal 

reduction in the activity after three successive reaction runs under the optimum 
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reaction conditions. The catalyst of Cs showed the activity of ~ 90% of FAME yield 

and the greatest potential of reusability within a reaction temperature of 65 
O
C in just 

34 min. The catalysts were further investigated for transesterification of different 

non-edible oils and tested in high FFA and water content systems and they generally 

showed promising results. The reaction kinetics was investigated and the tracing of 

FFA and water contents during the reaction course proved that the catalysts were 

able to accelerate both esterification of FFA and transesterification of triglycerides 

simultaneously.  
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CHAPTER ONE 

INTRODUCTION 

 

   1.1    Oleochemical Industry 

The depletion of fossil resources and environmental pollution are among the most 

critical problems that threaten humanity. The attention is currently turned towards 

the use of biomass or biomass-derived materials as replacements to petroleum fuel. 

Chemical industries often rely on renewable resources such as carbohydrate, starch, 

cellulose, sucrose, proteins, natural oils and fats as the key feed stocks (Salimon et 

al., 2012). Oleo chemical industry is a field of bioresource industry that involves the 

use of vegetable oil or animal fats as the feed stocks for the chemical reaction. 

Unlike petrochemicals that are derived from a non-renewable source, oleochemicals 

represent the chemicals that are derived from bio-based and renewable resources.  

 

Great enhancement to the industrial sector on both economical and 

environmental perspective aspects can be provided by oleochemical industry 

(Murphy, 1992). In the environmental aspect, the emission of COx and NOx that are 

usually associated with the petroleum based industries causes severe air pollution and 

greenhouse effects to be avoided. The world wide concerns have been dedicated 

recently to investigate appropriate solutions to these serious issues and oleochemicals 

provide promising alternatives (Kim et al., 2004).  

 

Switching from petrochemicals to oleochemicals has been the ultimate goal 

during the earlier decades due to the steady increase in the price of the crude oil and 

its downstream products (Abdullah et al., 2009b). Meanwhile, the world’s energy 
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demands still depend extensively on finite fossil resources such as petroleum, coal 

and natural gases. The accelerated rate of exhaustion of these resources is one of the 

serious problems facing the mankind (Abdullah et al., 2009a, Meher et al., 2006). As 

oleochemicals are identified as plausible alternatives to fossil fuels, rapid 

development in this area has been seen in the last few decades. For the conversions 

to value-added products, the development of innovative and effective catalysts and 

techniques are deemed indispensable. However, oleochemical reaction towards 

renewable biodiesel production through transesterification of vegetable oils is 

considered as one of the important roles of oleochemistry in the area of alternative 

energy (Leung et al., 2010).  

 

   1.2    Biodiesel 

Biodiesel, an alternative fuel that meets the greenhouse phenomena standards, 

is a mixture of mono alkyl esters (usually fatty acid methyl esters known as FAME ) 

with long-chain fatty acids derived from animal fats or vegetable oils (Lou et al., 

2008). It has many good properties in comparison to diesel fuel. It is eco friendly, 

biodegradable, non toxic, and mainly free of sulfur-containing components and 

aromatics (Li et al., 2012). Biodiesel can mix at any proportion with petroleum oil or 

itself can be used as a standalone fuel successfully (Vyas et al., 2010).  

 

Environmental aspects related to the production and use of biodiesel as an 

alternative and promising fuel can be explained in terms of reduction in the green 

house effects. Biodiesel cause less emission of CO2 than fossil fuel as the CO2 

generated by the combustion of it and released to the atmosphere can be balanced by 

the rate of absorbed CO2 by photosynthesis of the growing plant used as resources 
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for biodiesel itself (Santori et al., 2012). Since it contains 10-15% oxygen by weight, 

biodiesel can be considered as an oxygenated fuel leading to complete combustion 

with  less exhaust emissions than diesel fuel (Basha and Raja Gopal, 2012). There 

are four different methods to produce biofuel from bioresources i.e. direct use and 

blending of raw oils (Adams et al., 1983, Engler et al., 1983, Peterson et al., 1983, 

Strayer et al., 1983),  micro-emulsions (Ziejewski et al., 1984), thermal cracking 

(Luo et al., 2010, Seames et al., 2010) and finally, transesterification which is the 

most popular way to transfer vegetable oils or animal fats to biodiesel (Leung et al., 

2010).  

 

1.3    Esterification and Transesterification 

Esterification is a slow and reversible reaction at room temperature in which 

the reactants i.e. alcohol and fatty acids, will react in the presence of a suitable acid 

catalyst to produce ester and water as the products (Oliveira et al., 2010). Usually, 

esterification process is carried out in batch mode using homogenous acid catalysts 

and excess amount of alcohol is used to shift the equilibrium towards forward 

reaction forming the desired product. Traditionally, strong Brönsted acids in liquid 

phase such as sulfuric acid and hydrochloric acid are used to catalyze the reaction 

(Caetano et al., 2008). The general representation of an esterification reaction is 

shown in Scheme 1.1. In this reaction, stronger acid catalysts will lead to higher 

reaction rate and no issue with respect to product selectivity is generally encountered 

as a single product is produced.  
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Scheme 1.1 Esterification of fatty acid with alcohol (Leong et al., 2010). 

 

Converting fatty acids to a mixture of fatty acid alkyl esters is one of the 

basic reactions involved in biodiesel production (Borges and Díaz, 2012). 

Developing alternative energy resources based on vegetable oils through 

esterification is an important research field to overcome the problem of fossil fuel 

depletion and for better protection of environment towards polluting emissions 

associated with fossil fuels (Leung et al., 2010, Sharma et al., 2008).  

 

Transesterification is an organic reaction involving the exchange of the 

organic group R
1
 of an ester with the organic group R

2
 of an alcohol. Generally, short 

chain alcohols (i.e. methanol, ethanol or propanol) are used in the tranesterification 

reaction. Usually, methanol is the most commonly used alcohol for producing 

biodiesel as it is relatively cheaper and has smaller carbon chain (Talebian-

Kiakalaieh et al., 2013a). When the original ester is reacted with an alcohol, the 

transesterification reaction is generally called alcoholysis and in particular 

methanolysis if methanol is used. Scheme 1.2 illustrates the general representation of 

a transesterification reaction (Marchetti et al., 2007). Transesterification is a 

reversible reaction and the tendency to attain equilibrium depends on the operating 

variables. 

 

 

Scheme 1.2 Transesterification of triglycerides with alcohol (Leong et al., 2010). 

http://en.wikipedia.org/wiki/Ester
http://en.wikipedia.org/wiki/Alcohol
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The presence of excess alcohol in the reaction mixture and a catalyst (acid or 

base) could accelerate and control the equilibrium to achieve a high yield of the ester 

(Yin et al., 2012). According to the reaction stoichiometry, one mol of esters reacts 

with three mol of alcohol to produce three mol of the desired product, methyl esters, 

and one mol of glycerol as the co-product. This reaction can be catalyzed by basic or 

acidic catalysts. However, basic catalysts can result in higher reaction rate but the 

free fatty acids (FFA) content in the oil should be low while acid catalysts are more 

preferred in the case of significant FFA present in the reactants (Leung et al., 2010).  

 

1.4    Catalysts for Transesterification Reaction 

The production of biodiesel using homogenous catalyst has been investigated 

by many researchers using conventional batch process. Catalysts such as potassium 

hydroxide (Kulkarni and Dalai, 2006), sodium hydroxide (NaOH) (Georgogianni et 

al., 2008) and other types of homogenous catalysts (Miao et al., 2009) have been 

studied. Comparing with other types of catalysts, homogenous catalysts attract 

researchers and used widely in industries since they provide high conversion in a 

relatively short reaction time and low reaction temperature (Leung et al., 2010). 

Also, homogenous catalysts are more preferred due to their availability and 

cheapness (Lotero et al., 2005). 

 

 Unfortunately, there are some problems that can limit the success in the use 

of this type of catalyst. The significant disadvantage is that the catalysts cannot be 

reutilized because they are consumed in the reaction media and the separation 

process of this type of catalyst needs complicated equipment. This factor can affect 

the process economy and overall energy consumption (Zabeti et al., 2009). So, 
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research efforts have been shifting towards investigating heterogeneous catalysts that 

can catalyze the reaction with the same efficiency without this kind of drawbacks.  

 

Alkaline earth metal oxides especially CaO and SrO have achieved much 

interest due to their relatively high basic strength, low solubility in reaction media, 

and the possibility to be manufactured from cheap materials (Liu et al., 2007, 

Vicente et al., 2007). Other type of alkali catalyst that has been investigated is 

potassium catalyst supported on SBA-15 (Abdullah et al., 2009a). In recent years, 

researchers’ efforts have been shifted towards developing sustainable solid acid 

catalysts for transesterification reaction that have no sensitivity towards FFA in the 

feedstock and subsequently easy to be separated from the reaction products. Solid 

acid catalysts such as ZrO2 (Jitputti et al., 2006), sulfonic ion-exchange resin (Melero 

et al., 2010), sulfonic modified silica (Melero et al., 2010, Alba-Rubio et al., 2010), 

sulfonic functionalized SBA-15 (Zuo et al., 2013), carbon-based solid acid catalyst 

(Shu et al., 2010) and heteropolyacids (Morin et al., 2007) have been successfully 

used in transesterification reaction of different triglyceride sources. 

 

1.5    Ultrasonic Energy 

Ultrasonic technology in biodiesel production process is new, attractive and 

effective procedure to solve problems that are related with conventional methods of 

production. The use of ultrasonic irradiation can enhance mass transfer rate between 

the reactants which are immiscible fluids. It has been functionalized in wide range of 

chemical processes causing reduction in reaction time and improvement in 

production yield (Ji et al., 2006). 
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Ultrasound (US) is simply sound pitched above human hearing ability, 

usually above 20 kHz. It has plenty of applications in our daily life (Singh et al., 

2007). The use of ultrasound as a source of energy is common these days and 

recently it is used to provide large assistance to great number of industries. Figure 

1.1 shows the general divisions of sound frequencies. Frequencies beyond 20 kHz till 

100 kHz are widely used in industries but the range of industrial frequencies can be 

extended to 2 MHz according to the required power. 

 

 

Figure 1.1 The general divisions of ultrasonic energy (De Castro and Capote, 2007). 

 

1.6    Crude Jatropha Oil 

Non-edible vegetables oils such as Madhuca indica, crude Jatropha and 

Pongamia pinnata oils have been found to be suitable for biodiesel production. These 

oils are not suitable for human consumption due to the presence of some toxic 

components. Among various non-edible oils, Jatropha oil is considered as a suitable 

source of triglycerides and possesses good potential for biodiesel production.  

 

Crude Jatropha oil has no conflict with the food resources and it possesses 

high oil content (Koh and Mohd. Ghazi, 2011). Jatropha oil also has relatively high 

oil fraction in the range of 50-60% in comparison to other oils as well as high 
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productivity per hectare of 2-3 tones/ ha/year. The high yield per hectare and high oil 

content are important parameters in selecting the potential renewable source of fuel 

(Juan et al., 2011). 

 

1.7    Problem Statement 

In many oleochemical reactions such as transesterification of triglycerides 

with alcohols, serious problems and limitations can be noticed and identified. First of 

all, it is due to the immiscible nature of the involved reactants coupled with 

variations in viscosity and density. This is the main reason for the low contact 

between the reactants results in poor mass transfer rate, reduction in reaction rate and 

increasing in reaction time (Santos et al., 2010). The reaction between two 

immiscible fluids makes it look like heterogeneous transport phenomenon (heat, 

mass and fluid) that is caused by the lag in the film between them. The use of 

ultrasound in reactions involving two immiscible reactants will be the basic 

technique to solve this problem. Ultrasonic energy will neglect the needs for 

vigourous mechanical mixing by improving the emulsification of the reactants and 

enhancing the mass transfer  (Ramachandran et al., 2013).  

 

Due to better contact with the reactants, homogenous catalysts are generally 

more active than the heterogeneous ones. The disadvantage of homogenous catalyst 

is that the catalyst cannot be reutilized as it is consumed in the reaction media. The 

separation process of this type of catalyst is very complicated and requires further 

equipment (Zabeti et al., 2009). On the other hand, the drawback with respect to the 

use of base catalyzed systems is the limitation towards the use of many oil feed 

stocks because of their sensitivity to the presence of free fatty acids (FFA). Amounts 
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of FFA larger than 1% wt can react with the base catalyst and lead to the formation 

of soap (Leung et al., 2010) according to the reaction in Scheme 1.3. Even with low 

FFA under the level of soap formation, base homogenous catalysts itself are hard to 

be removed from the product and requires two or three times of washing with hot 

water (Janaun and Ellis, 2010). This process will generate large amount of 

wastewater that deserves further treatment before discharge. 

 

 

Scheme 1.3. General equation for soap formation (Leung et al., 2010). 

 

Investigations of homogenous acid catalysts lead to the conclusion that they 

have no sensitivity towards FFA content in the feedstock but the reaction must be 

maintained at high temperature and the yield of the methyl esters could still be low 

(Zabeti et al., 2009). Conventional process including mechanical stirring requires 

long reaction time for heterogeneous and homogenous acid catalysts. The reaction 

temperature and molar ratio between the reactants are usually higher than those used 

in the case of basic catalysts (Mootabadi et al., 2010). This could affect the product 

quality and overall process economy because the feed stock can undergo serious 

degradations at high temperature especially when long reaction time is needed. 

Operating a system at high temperature also do requires huge amount of energy input 

(Yee et al., 2009). The search for active solid acid catalysts that can posses the 

activity similar to that of basic catalysts and the tolerance of acidic catalysts towards 

FFA will be thoroughly investigated in the current research work. Yet, the use of 
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heteropolyacid catalysts as heterogeneous acid catalysts in transesterification is 

governed by the soluble nature of the catalyst in polar reaction mixture. 

 

Non-edible vegetable oils attract great attention in biodiesel production as 

these kinds of feedstock do not oppose the objections against the use of edible 

sources as feed stocks in fuel industry (Leong et.al.,2010). Crude vegetable oils and 

waste cooking oils are promising feedstock yet they posses high FFA and water 

content which forbidding the possibility of base catalysts usage. Waste cooking oil is 

considered hazardous materials that affect the environment. Serious water 

contamination may occur if no proper disposal method is implemented. Such 

scenario does not only contribute to pollution problems but is also harmful to human 

beings (Stavarache et al., 2005). Combining with the need for cheap feedstock, the 

research work will focus on the use of non edible oils as well as used cooking oil. 

The use of heterogeneous acid catalysts in conjunction with ultrasound-assisted 

process will enable the feasible use of feedstocks containing high FFA and moisture 

content to produce fatty acid esters. 

 

1.8    Objectives 

The following objectives are planned to be addressed in the current research 

project: 

 To synthesize various heteropolyacid based catalysts for ultrasound-assisted 

transesterification reaction between non-edible vegetable oil and methanol, 

and subsequently characterize using different characterization methods to 

study their physical and chemical properties.  
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 To elucidate the interplay between reaction variables and the limiting reactant 

conversion and yield of fatty acid methyl esters by studying various process 

parameters in the ultrasound-assisted transesterification process. 

 To investigate the possible reusability potential of the prepared catalysts 

showing the desired effects in the ultrasound-assisted batch reaction as well as 

the nature of the reaction media on the catalysts stability. 

 To investigate the catalytic performance towards various contents of FFA and 

water in the feedstock and for different types of non-edible oils.  

 To study the reaction kinetics under ultrasound-assisted process to elucidate 

the influence of ultrasonic energy on the course of the reaction.  

 

1.9    Scope of Study 

The present study addresses the investigation on the use of an ultrasound-

assisted transesterification process of a non-edible vegetable oil with methanol in the 

presence of heteropolyacid based catalysts. The catalysts have been developed by 

immobilizing the heteropolyacid active component on different supports or the use of 

a combination of co-precipitated heteropolyacid salt with cesium. The synthesized 

catalysts were characterized using different characterization techniques involving 

qualitative and quantitative processes to highlight their physical and chemical 

properties. 

 

The production of FAME (fatty acid methyl ester) from crude Jatropha oil 

has been conducted using the synthesized catalysts and the yield of methyl ester was 

considered as the target in the establishment of the historical design describing the 

system. A preliminary study involving the determination of the effective catalyst 
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composition on the reaction yield has been conducted. Four reaction variables 

including reaction time (10-50 min), reactants molar ratio (5:1-25:1), ultrasonic 

amplitude (30-90 %) of the maximum sonifier power and catalyst amount (2.5-4.5 

w/w oil) have been chosen and optimized to generate thorough understanding on the 

behavior of the system. Mathematical representation for the FAME production 

process has also been established. The significance of the model and the interaction 

between the reaction variables are meant to be validated statistically. The optimum 

reaction conditions have been subsequently used to investigate the catalysts in terms 

of reusability and leaching of active component to validate the stability of the 

developed catalysts in the polar reaction mixture under ultrasonic mixing effects. In 

addition, a mathematical model has been generated to represent the 

transesterification reaction and several significant kinetics parameters such as 

reaction order, reaction rate constant and activation energy will be determined. 

 

The effects of the feedstock types and properties have been studied under the 

optimum reaction conditions for each catalyst. The quality of the crude Jatropha oil 

has purposely varied by increasing the water content and FFA content to test the 

tolerance of the different developed catalysts towards the changing oil quality. The 

catalysts have also been used in the transesterification of different types of non-

edible oils such as crude palm oil, originally high FFA crude Jtropha oil as well as 

used palm oil.  The data obtained from this study are expected to reveal the role of 

the prepared acid catalysts coupled with the effects of ultrasonic energy in 

conducting both esterification and transesterification simultaneously in a short 

reaction time. This will significantly highlight and justify the significance of the 
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current study in the future use of low grade, cheap price and non-edible vegetable 

oils in biodiesel production.  

 

 1.10    Impact Towards Society 

This research has the potential impact to orient and promote further 

investigations in the direction of developing other heterogeneous catalysts that will 

promote a more sustainable biodiesel industry in Malaysia. Studying the application 

of ultrasonic energy in biodiesel production will generate further information about 

phenomena and changes that occur on reaction parameters. This will help to 

understand the role of ultrasonication in enhancing these parameters towards future 

scale up of the process into industrial scale.   

 

The production of a biofuel from non-edible oil with low cost will encourage 

the biodiesel industry as an environmental friendly fuel. This will lead Malaysia to 

employ its natural resources in this direction. The use of cheap and reusable 

materials as catalysts and cheap feed stocks will cut down the production costs of 

biodiesel and avoid the dependence on expensive resources.  

 

In addition, it is expected that the research will contribute towards future 

employment opportunities, thereby providing livelihood support (economic 

empowerment). It is also expected that more plantation of oil yielding plants such as 

Jatropha tree and palm tree (cash crop) and others for biodiesel production will help 

to create eco-restoration, environment sanity vis-a-vis environment security and 

reduce drought.   Also, it is hoped that the sustainable application biodiesel 

technologies in the automobiles and industrial sectors will contribute to the 
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worldwide direction to minimize greenhouse effects. Finally, this research intends to 

promote and provide technical information required by the producers of biodiesel as 

well as researchers to push forward the growth of the process in a more sustainable 

manner.  

 

 1.11    Organization of the Thesis 

This thesis has been organized to consist of five chapters. In Chapter One, the 

outlines for the whole thesis are given covering the definitions of the oleochemicals 

reaction, biodiesel, and ultrasonic energy. A brief discussion on the various catalysts 

used in transesterification reaction including the main advantages and disadvantages 

are also presented in this chapter. The problems that need to be addressed in the 

current research work and the objectives of the study are detailed out in the problem 

statement while the scopes of the current research are presented in the scope of the 

study section.  

 

Chapter Two of this thesis presents the literature reviews related to the 

research scopes including oleochemical applications and biodiesel feed stock. The 

historical investments of the ultrasonic energy as well as the effects of ultrasonic 

waves on the transesterification reaction are thoroughly discussed. Different catalytic 

systems under ultrasonication are analyzed and discussed to highlight the 

advantageous role of the ultrasound-assisted process in enhancing the reaction 

parameters. The definition and application of heteropolyacids in the 

transesterification reaction are thoroughly reviewed presenting the earlier reported 

researches in the field. On the other hand, reaction mechanism and statistical 

approach are also defined and discussed in this chapter. 
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   In Chapter Three, the experimental methodology and instrumental analysis 

are presented. The descriptions of the materials used in the current research work are 

listed in details. The methods conducted to synthesize the catalysts as well as the 

methods of characterization of the feedstock, the product and the catalysts were 

explained. The experimental set-up for the reactions, the statistical approach and the 

product analysis are elaborated in detail.  

 

The results and their discussion for the characteristics of the catalysts and 

their catalytic reactions are presented in Chapters Four. The results of the preliminary 

study for the catalysts followed by the design of experiments (DOE) to identify the 

optimum conditions are thoroughly explained. This chapter also includes discussions 

on the catalysts stability, reusability and leaching effects for the synthesized catalysts 

as well as the results of the reaction kinetics and modeling. The effects of feedstock 

properties and the investment of different feedstock types in the presence of the 

prepared catalysts under the ultrasonic conditions are explained. This is conducted to 

investigate the validity of the heterogeneous catalysts in conducting the 

transesterification reaction for a wide range of non-edible triglycerides resources.  

Mathematical approach to represent the process is also accomplished and the study 

of the reaction kinetics is explained in Chapter Four. The conclusions of the results 

obtained in this study are listed in Chapter Five. The overall recommendations for 

the future work are also listed in this chapter.        
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CHAPTER TWO 

LITRATURE REVIEW 

 

2.1    Introduction 

In this chapter, the overview and background of the topics and fields that 

related to the current study are presented. The nature and benefit of the oleochemical 

reactions and the role of heteropolyacids in catalyze the transesterification reaction 

will be detailed out. The role of ultrasonic irradiation in enhancing the biodiesel 

production process for both homogenous and heterogeneous systems will be 

reviewed. The statistics for developing mathematical approach for describing the 

system and kinetics of the reaction will be addressed.   

 

2.2    Vegetable Oil for Biodiesel Production 

One of the common feedstock for oleochemical industry is the vegetable oils. 

The nature of the vegetable oils differs from one source to another. However, they 

share the same general individual components of free fatty acids and generally 

contain water in various proportions, depending on the oil source (Koh and Mohd. 

Ghazi, 2011). Oils and fats can be converted to other oleochemicals such as fatty 

acids and glycerol that, in turn, can be further converted to value-added substances 

through suitable reactions with other biomaterials. Table 2.1 shows the common 

distribution of the fatty acids for a range of vegetable oils.  
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Table 2.1 The chemical structure of the common fatty acids (w%) (Lam et al., 

2010). 
Name Structure Formula Common oil source 

   Palm Soy 

bean 

Cotton 

seed 

Coconut Rape 

seed 

Jatropha 

Lauric 12:0 C12H24O2 0.1 0.1 0.1 46.5 - 0.14 

Myristic 14:0 C14H28O2 1.0 0.1 0.7 19.2 - 0.17 

palmitic 16:0 C16H32O2 42.8 0.2 20.1 9.8 3.5 14.8 

Stearic 18:0 C18H36O2 4.5 3.7 2.6 3.0 0.9 7.2 

Oleic 18:1 C18H34O2 40.5 22.8 19.2 6.9 64.1 42.5 

Linoleic 18:2 C18H32O2 10.1 53.7 55.2 2.2 22.3 32.7 

Linolenic 18:3 C18H30O2 0.2 8.6 0.6 - 8.2 0.17 

 

 

Free fatty acids that exist in the vegetable oil can be classified into two type’s 

i.e. saturated and unsaturated fatty acids as shown in Scheme 2.1 Saturated free fatty 

acids consist of straight organic chains that do not contain any double bonds or other 

functional groups in the chain. Usually, these fatty acids have higher melting and 

boiling points and predominantly found in animal fats rather than vegetable oils.  

 

 

Scheme 2.1. Typical examples of saturated and unsaturated fatty acids. 
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Meanwhile, unsaturated fatty acids possess one or more C=C double bands 

that exist in the hydrocarbon chain (Hou, 2000).  

 

Oleochemical reaction towards the production of renewable fuel through 

different processes is considered as one of the important sectors of oleochemistry in 

the area of alternative energy (Leung et al., 2010). There are four different processes 

that can be conducted to produce biofuel from vegetable oil i.e. dilution, 

microemulsion, pyrolysis and transesterification. 

 

2.2.1    Dilution (blending) 

Direct use and blending of raw oils is the technique where vegetable oils are 

diluted with petroleum diesel to run the engine (Adams et al., 1983, Engler et al., 

1983, Peterson et al., 1983, Strayer et al., 1983). In early 1980s, experiments were 

conducted to use a blend of 10% of vegetable oil without significant adjustments on 

the combustion engine.  The results showed that the same engine efficiency was 

achieved and the same total gain power was maintained (Strayer et al., 1983). Short-

term experiments using blend of up to 50:50 oil to diesel mixtures had been tested 

and good results were achieved. However, increasing the proportion of vegetable oil 

in the fuel mixture will lead to an increase in the viscosity. This causes a drawback 

since high viscosity fuel is undesirable in injection engines (Abbaszaadeh et al., 

2012). 

 

2.2.2    Pyrolysis 

Pyrolysis or thermal cracking is the conversion of triglyceride to biodiesel 

with or without the presence of catalyst by using heat in the absence of air or oxygen 
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(Luo et al., 2010, Seames et al., 2010).  This method is simple, pollution-free and 

effective in comparison to other thermal cracking processes yielding FAME (Singh 

and Singh, 2010). 

 

2.2.3    Microemulsion 

Microemulsion is defined as colloidal equilibrium dispersion of optically 

isotropic fluid microstructures with dimensions generally in the range of 1-150 nm 

formed spontaneously from two normally immiscible liquids (Ziejewski et al., 1984). 

Microemulsions with solvents such as methanol and ethanol have been studied to 

overcome the problem of vegetable oils high viscosity. They can improve spray 

characteristics by explosive vaporization of the low boiling constituents in the 

micelles (Sharma et al., 2008). 

 

2.2.4    Transesterification 

Transesterification is the most popular way to transfer vegetable oils or 

animal fats to biofuel (Leung et al., 2010). The long and branched chain triglyceride 

molecules are transformed into monoesters and glycerin. Sometimes, this reaction is 

known as "ester interchange”. The main product is a mixture of fatty acid methyl 

esters (FAME) better known as biodiesel. The composition of FAME is influenced 

by the type of oil or fat used as the feedstock.  

 

As a rough estimation, the molecular weight of a typical ester molecule is one 

third that of typical oil molecule and therefore has a very low viscosity as compared 

to oil. Theoretically, 3:1 molar ratio of alcohol to triglyceride is needed to complete a 
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transesterification process, while practically, high molar ratio of alcohol to oil is 

required to obtain high FAME yield (Lam et al., 2010). 

 

2.3    Biodiesel Feed Stock and Economics 

A wide range of studies have been dedicated to the production process of 

biodiesel using various methods and some of them could achieve good yields and 

look promising for large scale production. Some researchers’ focus their study on the 

economic aspects of the process with respect to the types of feed stock, their 

availability and price that could influence the economy of the process (Abdullah et 

al., 2009b). Figure 2.1 shows the distribution of biodiesel production cost. The main 

contributor to the overall cost of the process is the feed stock cost (the vegetable oil 

or animal fats) while the second one is the chemicals that are used in the reaction 

such as the catalyst and alcohol. 

 

Investments of cheap recourses of triglyceride and efforts to reduce the 

amounts of the chemicals used should be considered. These days, some researchers 

are actively investigating the enhancements on the process to eliminate or reduce 

these problems or drawbacks. The aim is always to produce the desired product at an 

optimum rate that possesses high quality while at the same time demonstrates good 

process economy (Abdullah et al., 2007). 
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Figure 2.1.  Costs of biodiesel production (Math et al., 2010). 

 

Three types of feedstocks have been used as potential sources for biodiesel 

industry i.e. animal lipids, waste cooking oils and vegetable oils. The production of 

biodiesel from renewable lipid sources has gained international attention, and the use 

of animal fats as raw material has been considered as a viable alternative (Teixeira et 

al., 2009). Biodiesel that is produced from animal fats generally has particular 

drawbacks with respect to low pour point and poor resistance against oxidation 

(Encinar et al., 2011). Waste cooking oils that are generated from deep frying 

processes have been used as a potential feed stock for biodiesel production (Chen et 

al., 2012). Subjecting the vegetable oil to high temperature for long time during the 

cooking process can lead to significant changes in its chemical and physical 

properties. Waste cooking oils usually contain high amount of polar compound, 

especially free fatty acid (FFA) that must be taken into consideration as it will 

greatly affect the transesterification reaction. Usually the amount of FFA in the waste 
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cooking oils varies within the range of 0.5-15 wt % which does not justify the use of 

these feed stocks in base catalyzed reactions (Lam et al., 2010).  

 

Due to renewability in nature and environmentally friendly, various vegetable 

oils have been considered as promising potential feed stocks for biodiesel 

production.  Major sources of oil for biodiesel production comes from edible oils 

such as sunflower oil, palm oil, rapeseed oil and soybean oil (Helwani et al., 2009). 

However, wide rejections against the use of food source in fuel industry have been 

raised all over the world. The competition between the human use of the edible oil 

and the needs of biodiesel production may lead to significant increment in the feed 

stock price (Jain and Sharma, 2010).  

 

2.4    Transesterification of Crude Jatropha Oil 

 

Two-step process consisted of pre-esterification and transesterification was 

developed to produce biodiesel from crude Jatropha curcas L. oil by Lu et al. (2009). 

By using sulfuric acid or solid acid, the FFAs were esterified with alcohol first to 

esters in order to reduce the acid value of the feed stock to the limit of base catalyst 

usage. The second step involved transesterification using KOH achieving higher than 

98 % of biodiesel yield. It was recorded that for the esterification step, 2 h was 

required for the reaction while the reaction time for the transesterification was only 

20 min. Endalew et al. (2011a) prepared and tested solid base and acid catalysts for 

the transesterification of Jatropha curcas oil in a batch reactor under mild reaction 

conditions. Two catalysts of CaO and Fe2(SO4)3 were used together for one step 

reaction to achieve the esterification and transesterification simultaneously.  This 
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mixture of acid-base catalysts showed complete conversion to biodiesel which was 

better in comparison to that of base catalyst alone. Sulfated zirconia alumina (SZA) 

catalyst was prepared and tested by Yee et al. (2011) who studied the effects of the 

catalyst preparation parameters on the transesterification reaction. At optimum 

reaction condition; calcination temperature and calcination duration at 490 
O
C and 4 

h, respectively, achieved an optimum FAME yield of 78.2 % by converting Jatropha 

oil with 11.41% w/w FFA content. 

 

2.5    Transesterification Mechanism 

The acid catalyzed transesterification mechanism consists of three steps as 

shown in Scheme 2.2 for the process catalyzed by Brönsted acid catalysts such as 

sulfuric or sulfonic acids. The scheme explains the mechanism of single step 

monoglyceride formation and can be further extended to conclude diglyceride and 

triglyceride as well. In the first step, carbocation II will be generated as a result of the 

attack of the proton from the catalyst to the carbonyl group of the monoglyceride. 

This carbocation II will react with alcohol forming tetrahydral intermediate III in 

step 2 of the reaction. The final step involved the extraction of H
+ 

and glycerol from 

the skeleton of the tetrahydral leaving the molecule of alkyl ester. Large amount of 

alcohol is usually required to shift the equilibrium point of the reaction to the 

formation of more alkyl esters as all these steps are reversible.  
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Scheme 2.2. The mechanism of acid catalyzed transesterification (Meher et al., 

2006). 

 

The mechanism of base catalyzed transesterification is shown in Scheme 2.3. 

It consists of a pre-step where the base catalyst reacts with alcohol to form an 

alkoxide followed by three reaction steps. The first step involves the formation of 

tetrahedral intermediate due to the reaction of the alkoxide group with the carbonyl 

group of the triglyceride. In the second step, the tetrahedral intermediate will 

dissolute to produce alkyl ester and the diglyceride corresponding anion. Finally, the 

deprotonation of the base catalyst will be done donating the proton to the 

corresponding anion leading to the regeneration of the catalyst and the formation of 

glycerol molecule. The same mechanism can be applied for diglyceride and 

monoglyceride to produce a mixture of alkyl esters (Meher et al., 2006, Demirbas, 

2008). 

 

+ 
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