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ABSTRAK. 

 

CIRI RHEOLOGI PENGIKAT ASFALT, PRESTASI CAMPURAN DAN 

KELESTARIAN ASFALT SUAM YANG MENGANDUNGI SASOBIT® 

 

Pembinaan turapan memerlukan sejumlah besar bahan sumber asli yang tidak 

boleh diperbaharui. Bahan sumber asli ini memerlukan kos yang tinggi dan semakin 

berkurangan dengan cepat terutamanya bitumen. Oleh itu, teknologi baru dengan kos 

yang lebih efektif diperlukan dalam pembinaan turapan untuk mengurangkan 

pengunaan sumber asli, seperti bahan dan tenaga yang tidak boleh diperbaharui. 

Salah satu teknologi baru ini adalahcampuran asfalt suam (WMA).Salah satu bahan 

tambah yang digunakan untuk menghasilkan WMA adalah sejenis lilin sintetik yang 

dinamakan Sasobit®. Keputusan keseluruhan ujian rheologi pengikat menunjukkan 

bahawa kandungan Sasobit® dan jenis pengikat asfalt mempunyai kesan yang ketara 

keatas parameter reologi pengikat asfalt dari segi kelikatan, G*/sin δ, G*sin δ, aliran 

asfalt, Jnr, peratus pemulihan. Keputusan Tugas 1 juga menunjukkan bahawa indeks 

kelikatan tidak berdimensi ( Sη∇ ), faktor pengeluman tidak berdimensi Superpave™  

(NSRP) dan ambang aliran bukan Newtonian (TNF) adalah parameter yang berguna 

untuk menerangkan perubahan sifat-sifat reologi pengikat asfalt terubahsuai Sasobit® 

yang dipengaruhi oleh keadaan yang berbeza seperti pengusiaan, suhu ujian dan 

kadar ricih. Sebagai contoh, analisis menunjukkan kelikatan relatif sampel pengikat 

berkurang sebanyak 7% bagi setiap 1% penambahan kandungan Sasobit®. Hasil 

keputusan daripada prestasi campuran menunjukkan bahawa prestasi sampel 

Sasobit®-WMA dari segi kekuatan tegangan tidak langsung, modulus kebingkasan, 

kekukuhan rayapan dan terikan micro tengam ketara kepada kandungan Sasobit®, 
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suhu ujian dan suhu penurapan. Sebagai contoh bagi analisis keperluan bahan api, 

untuk menaikkan suhu daripada suhu ambien ke suhu pencampuran, berdasarkan 

pada nilai C, agregat granit dari suatu sumber memerlukan 87% lebih tenaga haba 

atau bahan api yang lebih daripada sumber agregat granit yang lain. Walaupun jenis 

agregat yang sama dibekalkan dari sumber yang berbeza dan mempunyai sifat-sifat 

serupa seperti graviti tentu, namun, pekali muatan haba tentu (C) boleh menjadi 

sangat berbeza. Analisis keputusan menunjukkan bahawa dengan peningkatan nilai 

muatan haba tentu dalam kajian mikro agregat, keperluan bahan api dan pelepasan 

gas rumah hijau (GHG) HMA dan Sasobit®-WMA campuran meningkat dengan 

ketara Walaupun ia adalah daripada jenis agregat yang sama. Oleh itu, satu ukuran 

dicadangkan iaitu sebahagian kecil daripada agregat dengan nilai muatan haba tentu 

yang tinggi digantikan dengan agregat jenis yang sama tetapi dengan nilai muatan 

haba tentu yang rendah. Keputusan analisis jelas menunjukkan bahawa keperluan 

bahan api dan pelepasan GHG campuran agregat baru berkurangan secara mendadak 

dengan penambahan jumlah agregat muatan haba tentu rendah bagi setiap jenis 

pengikat, jenis pencampuran dan suhu pencampuran. Ia boleh menjadi satu justifikasi 

yang baik untuk mengubah suai kaedah pemilihan juzuk asfalt campuran untuk 

mengambil kira nilai muatan haba tentu sebagai penunjuk untuk mengukur potensi 

pencemaran alam sekitar (EPP) bagi bahan untuk pembinaan turapan asfalt. Dalam 

hal ini, pengambil kiraan nilai muatan haba tentu agregat boleh dicadangkan untuk 

ditambah ke dalam kaedah rekabentuk campuran Superpave™. Pengubahsuaian ini 

akan membawa kepada penghasilan HMA dan WMA yang mesra alam dan 

memenuhi kehendak yang ditetapkan oleh jurutera turapan, pihak berkuasa dalam 

sektor tenaga dan pembuat dasar alam sekitar. 
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ABSTRACT. 

 

RHEOLOGICAL PROPERTIES OF ASPHALT BINDERS, PERFORMANCE 

AND SUSTAINABILITY OF WARM MIXTURES ASPHALT INCORPORATING 

SASOBIT® 

 

Pavement construction consumes a significant amount of depleting non-renewable 

natural resources, including asphalt binder and aggregate and energy. Therefore, new and 

cost-effective technologies in the pavement construction are required to be fewer dependants 

on the non-renewable natural sources, such as energy and materials. One of such 

technologies is warm mixture asphalt (WMA). One of additives used to produce WMA is a 

type of synthetic wax called Sasobit®. In this thesis, overall results of rheological binder tests 

indicated that Sasobit® content and asphalt binder type had significant effects on rheological 

parameters of asphalt binders in terms of viscosity, G*/sin δ, G*sin δ, asphalt flow, Jnr, 

percent recovery. The results also indicated that non-dimensional viscosity index ( Sη∇ ), 

non-dimensional Superpave™ rutting factor (NSRP) and threshold of non-Newtonian flow 

(TNF) were useful parameters to explain the changes of rheological properties of Sasobit®-

modified asphalt binders influenced by different conditions such as aging, test temperature 

and shear rate. For example, analysis of Sη∇  indicated the relative viscosity of the binder 

sample reduces by 7% for every 1% Sasobit® content added. At higher temperatures ranging 

from 150°C to 160°C, the value of ∇ηS reduces to 4.1%. The general outputs of mixture 

performance tests showed that performance of Sasobit®-WMA samples in terms of indirect 

tensile strength, resilient modulus, creep stiffness and cumulative micro-strains depended on 

Sasobit® content, construction and testing temperatures. Although aggregate supplied from 

different sources can be the same type with similiar properties such as specific gravity, their 

specific heat capacity coefficient (C) can be very different. The analyses showed that fuel 

requirement and greenhouse gas emission (GHG) of HMA and Sasobit®-WMA increased 
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significantly as the specific heat capacity of aggregate increased. However, they were the 

same type. For instance, the analysis of fuel requirements, to raise the temperature from 

ambient to mixing temperature, based on C indicated that granite aggregate from a source 

needs 87% more heat energy or more fuel than the other source of granite aggregate. 

Therefore, it was suggested that a fraction of aggregate with high specific heat capacityvalue 

was replaced with the same type aggregate but with lower specific heat capacity value. The 

results of analyses clearly showed that fuel requirements and GHG emissions of WMA and 

HMA prepared using these new aggregate blends decreased dramatically as amount of low 

specific heat capacity aggregate increased for each binder type, mix type and mixing 

temperature. It can be a good justification to modify the methods of asphalt mixture 

constituent selection to incorporate specific heat capacity cofficient as an indicator to 

measure environmental polluting potentials (EPP) of materials to construct asphalt 

pavements. In this regard, a part that considers the specific heat capacity cofficient of 

aggregate was proposed to add in Superpave™ mixture design method. This modification 

would lead to produce the most environmental friendly HMA and WMA meeting the 

requirements prescribed by pavement engineers, authorities in energy sectors and 

environmental policy makers. 
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CHAPTER 1  
 

INTRODUCTION 

 

 

1.1 Preamble 

 

Asphalt mixture production depends on energy resources in two ways, 

namely energy required to produce asphalt binders in oil refineries; and carbon-based 

energy carriers that are used as industrial fuels in asphalt mixing plants. In addition, 

asphalt production was the second most energy-intensive manufacturing industry in 

the United States (Zapata and Gambatese, 2005).  

From the commercial viewpoint, oil refineries prefer to produce higher-value-

added products rather than asphalt binder, which was once regarded as a waste 

material from “the bottom of the barrel”. Furthermore, the price of crude oil, which is 

the major source of asphalt binder and industrial fuels, has significantly increased in 

recent years. This has led to an increase in the total price of asphalt mixtures, which 

are among the materials most consumed in transportation infrastructure construction 

and maintenance. For example, the price of asphalt mixture increased from $68  per 

ton in 2004 to $104 per ton in 2007, an increase of 53% over a 3-year span (Hassan, 

2009). In addition, to combat global warming and promoting sustainable practices, 

the industries in the world, including asphalt pavement manufacturers, have made 

persistent efforts to reduce greenhouse gas (GHG) emissions and fossil fuel 

consumption. The asphalt industry meets these challenges by promoting the 

following three strategies: development of inexhaustible and non-polluting new 
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energy sources, use of renewable natural resources and synthetic adhesive binders as 

replacements for asphalt binders and development of new technologies to produce 

asphalt mixtures suitable for use at lower construction temperatures without 

sacrificing mixture properties. 

The first and second strategies require a new infrastructure for the production 

and distribution of new energy sources and synthetic binders and reduction of 

mixture production costs. In addition, the benefits of developing new, non-polluting 

energy sources and synthetic binders on a large industrial scale will not be realized 

until a much later date. The third alternative strategy, development of new 

technologies to produce asphalt mixtures suitable for use at lower construction 

temperatures, may impact the industry within a short period of time. One such 

technology is warm-mixture asphalt (WMA), whose permits the reduction of 

emissions and energy consumption by decreasing the production temperatures by 

30°C to 50°C in comparison with the traditional hot-mixture asphalt (HMA) 

(Peinado et al., 2011). The sustainability of WMA technology is highlighted by the 

fact that each 10°C reduction in the mixture production temperature decreases fuel 

oil consumption by 1 liter and CO2 emission by 1 kg per ton, according to estimation 

of World Bank (Hanz and Bahia, 2011). Ideally, the performance of WMA should be 

the same as that of HMA, both structurally and functionally.  

There are many asphalt binder and mixture additives that are available to 

produce WMA. This technology reduces greenhouse gas emission and energy 

consumption by lowering the production and paving temperatures of asphalt 

mixtures(Kristjonesdottir et al., 2007).  Using WMA, suitable binder viscosities can 

be attained at lower temperatures than using conventional HMA. This results in 

reducing energy consumption, emissions, fumes and, odor at asphalt mixing plants 
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and paving sites (Hurley and Prowell, 2005). For example, Plate 1.1 and Plate 1.2 

show that the fumes reduced during mixture production and lying down, 

respectively. Plate 1.3 presents the difference in temperature contour between HMA 

and WMA mats using thermal camera. The reduced energy consumption associated 

with WMA also reduces the construction costs of asphalt pavement. 

 

 

 (a)HMA                       (b)WMA 
Plate 1.1Asphalt Mixing Plants (Shell, 2011) 

 

 

               (a)HMA   (b)WMA 
Plate 1.2A Mat of Asphalt Mixture (Kristjonesdottir, 2006) 

 

 

(a)HMA                        (b)WMA 
Plate 1.3A Thermal Picture of Mat of Asphalt Mixture (Kristjonesdottir, 2006) 
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Apart from the clear advantageous such as reduced emissions in asphalt 

mixing plants and paving sites, there are several other advantageous using WMA like 

quicker turnover to traffic, longer hauling distances and extended paving 

window(Rubio et al., 2012). There are different processes to produce WMA as 

follows (Rubio et al., 2012, Hurley and Prowell, 2005, D'Angelo et al., 2008): 

 

• Foaming processes (subdivided into water-containing and water-based 

processes) such as Aspha-Min®, Advera®, Double Barrel Green, Evotherm®, 

Ultrafoam GX, LT Asphalt, WAM Foam, Low Energy Asphalt (LEA®) and 

LEAB®. 

• Addition of organic additives, that is Fischer-Tropsch synthesis wax, 

fatty acid amides and Montan wax, such as Sasobit®, Asphaltan B, Licomont 

BS and Ecoflex.  

• Addition of chemical additives that is usually emulsification agents or 

polymers such as Cecabase®, Rediset®, Revix® and Iterlow T. 

 

Since WMA technology reduces the temperatures of mixtures construction 

depend on different mechanisms, then the amount of additive recommended by 

manufacturers for WMA production can be varied as presented in Table 1.1. 

Accordingly, the engineering properties of WMA can be different. Therefore, it is 

difficult to compare the performance of WMA based on amounts of WMA additives 

recommended by WMA producers.  
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Table  1.1:Recommended Amount of WMA Additives(Rubio et al., 2012, D'Angelo 
et al., 2008, Hurley and Prowell, 2005) 

 

Name of Additive Value (%) By Mass of 
Binder Mixture 

Asphaltan (B) 2-4   
Sasobit® 0.8-4   

Evotherm® 0.3   
Licomont® 3   

Aspha-Min® 0.3   
LEA® 0.2-0.5   

LRAB® 0.1   
Advera® 0.25   

Cecabase® 0.3-0.5   
Rediset® 2   

 

Consequently, the selection of appropriate WMA process and the content 

should  be made carefully.  Meanwhile, the findings from the rheological binder tests 

and WMA performance can provide a comprehensive database to provide useful 

guidelines to select suitable asphalt binder, aggregate types and appropriate amounts 

of different WMA additives. The database can be also helpful for asphalt pavement 

material researchers and those interested to develop new WMA additives and to 

improve the performance of existing WMA additives. 

 

1.2 Problem Statement 

Many WMA additives have been tried and are commercially available in the 

market. It is therefore necessary to formulate parameters that enable asphalt 

technologists to evaluate the performance of asphalt binders and mixtures blended 

with WMA additives. The parameters should be sensitive to variations in aging 

condition, test temperature and additive content. The parameters can be formulated 

based on unit percentage of WMA additive incorporated in asphalt binder or mixture 

under various conditions including binder type and source. The candidate parameter 

is also expected to be sensitive to sweep temperature and reflects the rheological 
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trends of modified warm binders and engineering properties of mixture. These trends 

can be used to quantify the effects of aging and WMA additive contents on the 

properties of binders and mixtures. Currently, detailed information on such 

parameters is not available in the literature. In addition, because of the complex 

behaviours of WMA, it is necessary to understand the relationship between binders 

containing various WMA additive and mixture engineering properties at different 

aging conditions and test temperatures. Meanwhile, one of the major objectives of 

WMA technology is to produce sustainable mixture. Therefore, sustainability of 

mixture constituents including aggregate particle and binder should be analyzed in 

terms of outputs that are tangible for researchers, environmental policy makers and 

paving project managers, namely fuel consumption and GHG emissions. It should be 

noted that correlations between asphalt mixture constituents and fuel consumption as 

well as GHG for WMA production still remain unclear. 

 

1.3 Objectives 

The specific objectives of this research are as follows: 

1. To estimate the correlations between different Sasobit® contents and 

binder rheological properties and to develop rheological-based parameters 

that characterizes their rheological properties at high and intermediate 

temperatures. 

2. To evaluate the effects of different Sasobit®contents on the 

engineering properties of WMA and to establish the correlations between 

the rheological characteristics of binders containing Sasobit® and 

engineering properties of Sasobit®-WMA. 
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3. To obtain the correlation between mixture constituent properties and 

Sasobit®content in terms of fuel consumption and GHG emission for 

Sasobit®-WMA production. 

 

1.4 Significance of Study 

WMA technology is relatively new and requires more researches. The 

performance of WMA can be very different because of various mechanisms of 

WMA additives in reducing asphalt mixture construction temperatures, differences in 

binder source, binder type, aggregate type, gradation, environmental factors, that is 

temperature and humidity, traffic loading, construction method, equipment and 

performance criteria of mixtures prescribed by construction standards in each 

country.  

Therefore, it is necessary to investigate the feasibility of WMA additives in 

WMA production using local materials complying with the construction standard. 

The rheological properties and mixture performance tests can provide good 

references to characterize the effects of each WMA additive for the selection of the 

best WMA additive for each pavement project. The results from this study can be 

used as a guide to select the appropriate amount of WMA additive for each binder 

type produced in Malaysia. The results of WMA performance tests can also provide 

useful information on WMA mixture design and performance at different aging 

conditions and testing temperatures.  

The correlation between rheological properties of binders and mixtures 

incorporating WMA additives may show good relationship between structural 

response of asphalt mixture and binder characteristics at each aging conditions. 

These correlations play as guides for binder researchers and engineers to design 
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WMA recipe by selecting the appropriate amount of WMA additive, binder type and 

construction temperature without any negative influence on the WMA engineering 

properties. 

The results of this research can also show the effects of aggregate source, 

aggregate type and asphalt binder type on fuel consumption and GHG emissions in 

an asphalt mixing plant. In other words, the appropriate aggregate source and binder 

type can be selected by environmental policy makers and managers in paving 

projects using an integrated system proposed to produce more sustainable HMA and 

WMA. Although the environmental policy makers have been assessing the 

environmental loads of different pavement alternatives, including cement concrete, 

asphalt concrete and concrete block pavements, in their life cycles, the effects of 

source of materials on fuel consumption and GHG emission during pavement 

construction have not been investigated in details. The proposed integrated system 

highlights the role of environmental policy makers more than before via analysis of 

GHG emissions in asphalt mixing plants. Management of fuel consumption in the 

asphalt mixing plant is another aspect that can be adopted by paving project 

managers using the proposed integrated system. It is obvious that lower fuel 

consumption leads to the reduction in total cost of a paving project as well as the 

produced emissions. Therefore, the results of this research are useful for asphalt 

binder researchers, paving engineers, environmental policy makers and paving 

projects managers. 

 

1.5 Scope and Limitation of Research 

The asphalt binders were tested based on Superpave™ specification and its 

recommended criteria at high and intermediate temperatures, while the rheological 
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properties at low temperatures was not investigated. Two binder types were used in 

this research. The effects of asphalt binder source on rheological properties of asphalt 

and performance of mixtures were neglected. The heat energy was computed based 

on a basic thermodynamic equation, while fuel consumption and GHG emissions 

were calculated using conversion factors.  

 

1.6 Organizationof Thesis 

This thesis is organized in the following manner: 

• Chapter one provides an overview of the thesis, including the preamble of 

study and its objectives. 

• Chapter Two covers literature review of previous research finding 

spertaining to WMA technology, use of Sasobit® to modify binder and 

mixtures and experiences gained from field investigations of warm 

asphalt pavements using Sasobit®.  

• Chapter Three describes the material properties of aggregates and binders. 

This chapter also explains the binder rheological tests, mixture 

performance tests and experimental plan designed for this research. 

• Chapter Four presents the results of rheological tests conducted on the 

binders modified by different Sasobit® contents and the detailed 

discussion and analysis of the data. 

• Chapter Five discusses the laboratory performance of the WMA 

incorporating the different amounts of Sasobit® in terms of indirect tensile 

strength, resilient modulus and dynamic creep at different temperatures. 

This chapter also correlates the rheological characteristics of Sasobit®-

modified binders and engineering properties of Sasobit®-WMA. 
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• Chapter Six deliberates the effects of the aggregate source and type on 

fuel requirements and GHG emissions. This chapter also proposes the 

methodology to select the aggregate materials and binder based on the 

results in chapters four and five to obtain more sustainable HMA and 

WMA. 

• Chapter Seven explans the conclusions and the recommendations for 

further research. 
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CHAPTER 2  
 

LITERATURE REVIEW 

 

 

2.1 Introduction 

This chapter presents a summary of more than 100 credible studies including 

scientific papers, technical reports and theses, that had been conducted on both warm 

asphalt binders and warm mixtures incorporating Sasobit® over the last decade and to 

draw general conclusions regarding the present state of knowledge of warm asphalt 

binder rheology and mixture performance. The chapter is presented in three 

companion sections. The section one addresses the rheological characteristics of 

binders containing Sasobit®, while the second and third section discuss the laboratory 

and field performances, respectively, of mixtures containing Sasobit®. 

Figure2.1shows the flowchart of discussion in this chapter. 

 

2.2 Background 

Wax additives for asphalt have two substantially different functions that are 

based on the physical phase of the asphalt binder. The first function of the wax can 

be observed when the asphalt binder is in the liquid phase at temperatures higher 

than 100°C. Above this temperature, the wax reduces the binder viscosity. The 

second function of the wax can be observed at intermediate and low temperature 

ranges, when the asphalt binder is in the colloid or the solid phase, which asphalt 

binder viscosity increases. Although lower and higher viscosity values at elevated 

and intermediate temperatures, respectively, are more desirable in terms of lowering 

construction temperatures and improving plastic deformation (rutting) resistance, 
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these objectives conflict with to the objective of minimizing fatigue and low-

temperature cracking. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1: The Flowchart of Discussion and Analysis in Chapter 2 

 

The effect of wax depends on the chemical compositions and the rheological 

characteristics of the asphalt binder, the composition crystallinity of the wax, the 

application temperature range and the amount of wax (Edwards and Isacsson, 

2005a). In some countries such as Germany, France and China, the amount of wax in 

Section Three: Fieldperformance of 
WMA using Sasobit® 

LCA analysis of Sasobit®-WMA 

Energy saving and GHG emissions 
reduction of WMAusing Sasobit® 

 

Section Three  

Section Two: Laboratory performance 
of WMA using Sasobit® 

Section One: Asphalt binders 
containing Sasobit® 

Mechanism of Sasobit® performance 

Background 

Introduction to Sasobit® 
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the asphalt binder is restricted, based on the assumption that melting waxes at 

elevated temperatures may decrease the mixture’s resistance to rutting and that wax 

crystallization can lead to mixture cracking at low temperatures (Lu and Redelius, 

2007). Although waxy asphalt may cause damage in asphalt pavements, the potential 

of some synthetic commercial waxes such as Sasobit® to improve mixture properties 

and achieve better performance at reduced construction temperatures offers a 

practical option to lessen energy consumption and increase sustainability in asphalt 

pavement technology.  

 

2.3 IntroductiontoSasobit® 

Sasobit® is an organic warm binder additive that is registered by the 

Chemical Abstract Service (CAS) as number 8002-74-2 and whose chemical formula 

is CnH2n+2 (Sasolwax, 2008). Sasobit® is produced by Sasol Wax in South Africa.  

It is a long chain of aliphatic hydrocarbons produced by the gasification of 

coal, a process involving the treating of white-hot hard coal or coke with a blast of 

steam via the Fischer-Tropsch method (Damm, 2003).The manufacturer’s 

description of the production process is as follows (Worrel and Choi, 2007):  

“During the Fischer-Tropsch process, carbon monoxide is converted into a 

mixture of hydrocarbons having molecular chain lengths of 1 to 100 carbon atoms 

and greater. The beginning point for the process is a synthetic gas which is a mixture 

of carbon monoxide and hydrogen, produced by gasification of coal. The gas is 

manufactured in vast quantities for commercial use”. 

In 2003, Sasol Wax invested $360 million to pipe natural gas from 

Mozambique to Sasolburg, South Africa, for the production of Sasobit®(Aurilio and 

Michael, 2008). It is essential in the preparation of hydrogen and as a fuel in the 
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making of steel and in other industrial processes. The synthetic gas is reacted in the 

presence of an iron or cobalt catalyst; heat is created and products such as methane, 

synthetic gasoline, waxes and alcohols are made (Worrel and Choi, 2007). The 

chemical reaction is presented in Equation (2.1) (Sampath, 2010). The liquid 

products are separated and the Fischer-Tropsch waxes are collected. 

 

(2n+1)H2+nCO2                   CnH2n+2+ nH2O     (2.1) 

  

Sasobit® is available in 2, 5, 20 and 600 kg bags (Hurley, 2006, Hurley and 

Prowell, 2005). It can be added into asphalt binder without using a shear mixing 

apparatus, while adding Sasobit® into asphalt mixtures requires a few modifications 

to the mixing process (Perkins, 2009, Hurley, 2006, Hurley and Prowell, 2005, 

Hurley and Prowell, 2006, Kristjonesdottir et al., 2007). In Asia, Europe and, South 

Africa, Sasobit® has been added directly to the aggregate as solid pills (small pellets) 

or as a molten liquid (produced from flakes). Sasobit® has also been blended with hot 

asphalt binder at the terminal (no high-shear mixing required) and as pills blown 

directly into the mixing chamber in asphalt mixing plants in the United States 

(Hurley, 2006). Sasobit® can also be blended with hot binder manually and or 

mechanically; this blending method has no effect on the properties of the resultant 

Sasobit®-modified asphalt binder properties (Ji and Xu, 2010). Sasol Wax 

recommends the use of from 0.8% to 4% Sasobit® by mass of binder (Hurley and 

Prowell, 2005, Hurley, 2006, Hurley and Prowell, 2006). However, the addition of 

more than 4% of Sasobit® can lead to negative effects on the low-temperature 

properties of the asphalt binder(Edwards and Isacsson, 2005b). 
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2.4 Mechanismof Sasobit®Performance 

Waxes are often classified into the following three general groups: including 

macro crystalline, microcrystalline and / or amorphous (noncrystalline) 

waxes(Edwards, 2005, Edwards and Isacsson, 2005b). In general, asphalt wax is 

microcrystalline may also be amorphous and different asphalts may contain larger or 

smaller amounts of wax (Edwards and Isacsson, 2005b). In addition, different wax 

types are produced, including artificial, partially artificial and natural waxes 

(Bueche,2011). 

 Microcrystalline wax mainly consists of naphthenes and isoparaffins. 

Sasobit® is a synthetic microcrystalline wax that differs from natural asphalt waxes 

in its longer chain length and its finer crystalline structure.The predominant chain 

length of the hydrocarbons in Sasobit® is in the range of 40 to 115 carbon atoms, 

while that of natural asphalt paraffin waxes is normally in the range 22 to 45 carbon 

atoms (Syroezhko et al., 2011 ). The wider range of chain lengths extends the plastic 

limit and increases the range of melting temperatures of asphalt binders (Wasiuddin 

et al., 2011a, Wasiuddin et al., 2011b). The longer chains also help to keep the wax 

in solution, thereby reducing the asphalt binder’s viscosity and the construction 

temperatures at which mixtures containing the Sasobit®-modified asphalt binder can 

be placed.The manufacturer states that the approximately melting point of Sasobit® is 

almost 100°C and that it is fully miscible in asphalt binder at temperatures higher 

than 116°C. Beyond Sasobit®’s melting point, the wax liquefies and significantly 

reduces asphalt binder viscosity, enablingasphalt mixture production temperatures to 

be decreased by 20°C to 30°C (D'Angelo et al., 2008, Rubio et al., 2012, Zhao and 

Guo, 2012).At temperatures below its melting point, Sasobit® forms a lattice 

structure in the asphalt binder and provides better stability according to reports on 
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field trials (Hurley, 2006, Hurley and Prowell, 2005). In other words, Sasobit®-

modified warm asphalt binder behaves as a Newtonian fluid at temperatures higher 

temperatures than Sasobit®’s melting point and as a non-Newtonian fluid at 

temperatures lower than the melting point. Sasobit®’s formation of a lattice structure 

prevents the movement of molecules in the modified binder, consequently increasing 

the viscosity at low and intermediate temperatures (Ji and Xu, 2010). Equation (2.2) 

is valid for Sasobit®’s rheological sweep temperature at a frequency of 1 Hz in 

complex shear modulus (G*) testing (Silva et al., 2010a): 

 

G∗ =

⎩
⎪
⎨

⎪
⎧ 106 Pa                            30℃ ≤ T ≤ 95℃

−38732T + 4 × 106     95℃ ≤ T ≤ 120℃  R2 = 0.86

0.50 Pa                               120℃ ≤ T ≤ 180℃

 
 

(2.2) 

T = temperature. 
 

Equation (2.2) clearly shows that G* decreases significantly in the 

temperature range of 95°C to 120°C around the melting point of 100°C, while at 

temperatures below 95°C and above 120°C, G* is relatively constant. Using the 

Fischer-Tropsch process to produce Sasobit® maintains control over the chain length, 

avoids branching and produces a wax without the contaminants (such as sulfur) that 

are frequently found in other sources of natural hydrocarbon (Seller, 2009). In 

addition, the absence of double bonds along the molecular chain’s backbone 

alleviates oxidative chain scission in Sasobit® and extends the service lives of asphalt 

mixtures containing this additive (Seller, 2009).  

Thermal degradation of Sasobit® occurs at temperatures between 350°C and 

520°C and follows a polynomial trend as indicated by Equation (2.3). The 
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corresponding temperature at which thermal degradation of neat asphalt binder 

begins is 250°C (Sasolwax, 2008). Thus, Sasobit® is more thermally stable than 

asphalt binder. 

 

 

WL = �
100%                     50℃ ≤ T ≤ 350℃

0.0009T2 − 1.34T + 472.36       350℃ ≤ T ≤ 550℃     R2 = 0.98
 

 

(2.3) 

where 

WL = weight loss 

T = temperature 
 

A laboratory test was implemented to assess the oxidation potential 

ofSasobit® and SBS (Finaprene® 502), the most widely used asphalt binder additives 

(Sasolwax, 2008). The Sasobit®and SBS samples were irradiated with intensive 

ultraviolet (UV) light for 48 hours in the laboratory. The color of the SBS changed 

from white to yellow, indicating significant aging. Sasobit® showed no aging in the 

test.  

 

2.5 Asphalt Binders Containing Sasobit® 

2.5.1 Effects of Sasobit® on Asphalt Binder Rheological Characteristics 

Sasobit® increasedthe complex shear modulus (G*)of asphalt binder at 

medium-sweep temperatures as well as the softening point and maximum force of 

ductility, while it decreased the non-recoverable compliance (Jnr), penetration 
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number and Fraass breaking point irrespective of binder source (Syroezhko et al., 

2011 , Wasiuddin et al., 2011a, Silva et al., 2010a, Xiao et al., 2011a, Xiao et al., 

2012, Ran et al., 2010, Zaumanis, 2010, Biro et al., 2009a, FHWA., 2009, Tasdemir, 

2009, Edwards et al., 2007, Edwards et al., 2006a, Silva et al., 2010b , Polacco et al., 

2012, Cao and Ji, 2011).  

The degree of change in the rheological and chemical properties of Sasobit®–

modified asphalt binder, including the decrease in viscosity at high temperatures and 

the increase in rutting resistance or fatigue potential at intermediate and low 

temperatures, as well as aging, depended on the asphalt binder source and the amount 

of natural wax in the asphalt binder, in other words, the chemical structure of the 

asphalt binder (Ji and Xu, 2010, Wasiuddin et al., 2011a, Biro et al., 2009a, 

Tasdemir, 2009, Edwards et al., 2006b, Edwards et al., 2007, Edwards et al., 2006a, 

Arega et al., 2011, Liu et al., 2011, Wasiuddin et al., 2007a, Gandhi et al., 2009, 

Gandhi and Amirkhanian, 2007, Mogawer et al., 2009, Sampath, 2010). For 

example, a Fourier transform infrared (FTIR) spectroscopy  analysis of an unaged 

asphalt binder showed that the carbonyl content decreased by 25.58% and 26.74% 

with the addition of 3% and 6% Sasobit®, respectively (Edwards et al., 2007). The 

results for the same binder type and aging state but from another source showed that 

the carbonyl content increased by 2.99% and 13.96% with the addition of 3% and 

6% Sasobit®, respectively. 

Seller,(2009) proved using epiflourescence microscopy imaging (EMI) that 

the average size and shape of crystals formed in the Sasobit®-modified asphalt binder 

depended on the Sasobit® content. For instance, crystals that appear in a modified 

binder containing 20% Sasobit® had an angular shape similar to a needle, while 

crystals in a warm binder containing 1% Sasobit® were less needle-like and rounder 
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in shape. 

 

2.5.2 Effects of Sasobit® on Rutting Performance of Asphalt Binder 

The Rutting potential in asphalt binder is evaluated by different methods. The 

Superpave™ asphalt mixture design and analysis system defines and recommends 

minimum values for the rutting factor, G*/sin δ (where δ is the phase angle) which 

represents the high-temperature viscous component of overall binder stiffness (SP-1, 

2003). G*/sin δ must be at least 1 kPa and 2.2 kPa for unaged and short-term-aged 

binders, respectively, to meet the Superpave™ binder test’s criteria (SP-1, 2003). A 

higher G*/sin δ corresponds to better asphalt binder rutting resistance. 

Another test method uses the zero shear viscosity (ZSV) concept. ZSV is 

theoretically the viscosity in shear deformation at a shear rate approaching zero (Biro 

et al., 2009b). Asphalt binder being a viscoelastic material, its behavior depends on 

time and temperature. The time includes both the time of testing and the time of 

loading. Time of testing can be simulated in the laboratory via synthetic aging, while 

the time of loading is simulated using a frequency sweep. Because G*/sin δ is 

determined at a constant frequency (1.59 Hz) in Superpave™ testing, the effects of 

loading time cannot be investigated in great detail. Furthermore, G*/sin δ does not 

reflect binder recovery, because it does not distinguish between total energy 

dissipated and energy dissipated in permanent flow (Bahia et al., 2001).  

As expected, Sasobit® increasedG*/sin δ, increased ZSV and decreased the 

creep compliance of asphalt binder for a given aging state and binder type and 

source(Wasiuddin et al., 2011a, Xiao et al., 2011a, Xiao et al., 2012, Biro et al., 

2009a, Edwards et al., 2007, Liu et al., 2011, Wasiuddin et al., 2007b, Biro et al., 

2009b, Buss, 2011, Hossain et al., 2009, Cao and Ji, 2011). Sasobit® also increased 



20 
 

G*/sin δ and failure temperature and reduced creep compliance and phase angle 

more than other warm asphalt binder additives such as Rediset® and Cecabase® at 

each aging state (unaged and short-term-aged) and for each binder source (Xiao et 

al., 2011a, Xiao et al., 2012) . 

Since ZSV is computed using different techniques, their values can be 

different. For example, the ZSV of Sasobit®-modified asphalt binder was 960 Pa.s 

based on Carreau’s model, while it is 480 Pa.s for the same source of asphalt binder 

using the Cross/Sybliskis model (Biro et al., 2009b). It was also observed that the 

shear thinning for a Sasobit®-modified asphalt binder at 60°C was a pseudoplastic 

phenomenon (Biro et al., 2009a, Biro et al., 2009b). 

 

2.5.3 Effects of Sasobit® on Stiffness of Asphalt Binder 

Since Sasobit® increased G*, G*sin δ was expected to increase with increasing 

Sasobit® content. Therefore, to avoid intermediate temperature cracking due to high 

stiffness of binder, a value of G*sin δ less than 5 MPa is desirable, according to 

Superpave™ (SP-1, 2003). The degree of Sasobit® effect on G*sin δ depended on the 

binder type, the chemical properties of the binder and the Sasobit® content (Gandhi 

et al., 2009, Arega et al., 2011, Liu et al., 2011). Although asphalt binders containing 

Sasobit® age more slowly because they can be used at lower construction 

temperatures, Sasobit® content and binder type should be selected with care because 

stiffening effects due to aging associated with a high Sasobit® content can increase 

G*sin δ beyond 5 MPa. 
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2.5.4 Effects of Sasobit® on Low-Temperature Cracking Potential of Asphalt 

Binder 

 The advantageous effects of Sasobit® at high and intermediate temperatures 

can correspond to detrimental effects at low temperatures. In this regard, the 

following two phenomena should be evaluated for Sasobit®-modified asphalt 

binders: creep stiffness and physical hardening. Creep stiffness is evaluated using a 

bending beam rheometer (BBR) in Superpave™ testing. Physical hardening is a 

reversible procedure that can lead to changes in rheological characteristics without 

changing the chemical composition of the material (Lu and Isacsson, 2000). The 

physical hardening of asphalt can be due to molecular self-assembly and molecular 

agglomerations of crystalline phases at intermediate and low temperatures, 

respectively (Edwards et al., 2005, Claudy et al., 1992). Another possible cause is 

spinodal decomposition, a process by which a homogeneous liquid separates into two 

liquid phases as the material is cooled (Hilliard, 1970). 

Sasobit® increased binder stiffness, indicating less resistance to low-

temperature cracking for a given binder source (Edwards et al., 2006b, Liu et al., 

2011, Hossain et al., 2011, Liu and Peng, 2012). The degree of increase in binder 

stiffness and decrease in physical hardening index (PHI) depended on the Sasobit® 

content and the binder source as presented in Table 2.2and Table 2.3. You et al., 

(2011) suggested that guidelines should be provided to select the maximum Sasobit® 

content in order to minimize the potential for low-temperature cracking in the asphalt 

mixture.   

Li and Peng (2012) evaluated the effects of Sasobit® contents on the cracking 

temperatures of unaged and long-term-aged PG 58-28 binders using an asphalt 

binder cracking device. The results indicated that in general, the cracking 
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temperatures of both unaged and long-term aged binders increased slightly as the 

Sasobit® content increased. In other words, binders containing higher Sasobit® 

contents were more susceptible to cracking at lower temperatures.  However, within 

the range of Sasobit® contents investigated (0% to 3%), the increment of cracking 

temperatures for both unaged and long-term aged binders was not significant (-

38.98ºC to -35.67oC for unaged binders and -33.23oC to -31.70oC for long-term aged 

binders).  The effects of asphalt binder type and source were not investigated. 

 

Table  2.1:Percentage Change in Creep Stiffness and PHI(Edwards et al., 2006b) 
 

Asphalt Source Sasobit®Content 
(%) 

Changes (%) 
Stiffness at -20ºC PHI 

 0 - - 
1 3 +63 -6.8 
 6 +101 -21 
 0 -  
2 3 81 -37.5 
 6 112 0 
 0 - - 
3 3 +75 -6.12 
 6 +114 -22.5 

 

 

Table  2.2:Percentage Change in Low Temperature Cracking (You et al., 2011) 
 

Sasobit® content (%) Change (%) 

1 5.31 
2 8.5 
3 12.76 

 

 

2.5.5  Effects of Aging on Sasobit®-Modified Asphalt Binder 

Aging and moisture damage are the main factors influencing the durability of 

asphalt pavements (Airey and Choi, 2002). Aging affects binder rheological 
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properties throughout the life of the asphalt pavement. This effect is primarily due to 

two mechanisms. The first is the loss of volatile components and oxidation of the 

binder during mixing at the plant, mixture transportation and paving, which is called 

short-term aging (SP-1, 2003). The second is the progressive oxidation of the 

material in the field, namely long-term aging (SP-1, 2003, Shalaby, 2002). Resins, 

which have small molecular sizes (SMS), turns into asphaltenes, which have large 

molecular size (LMS), consequently increasing the viscosity and the elastic solid 

properties of the asphalt binder during aging (Rajan et al., 2010, Gao et al., 2006). In 

other words, the proportion of LMS increases while the proportion of SMS decreases 

with aging. Asphalt mixture properties are more strongly related to the proportion of 

LMS than to the proportions of SMS and medium molecular size (MMS) (Lee et al., 

2011, Lee et al., 2009a, Doh et al., 2008, Wahhab et al., 1999, Kim and Burati Jr, 

1993). Other factors that may lead to aging include molecular structuring over time 

(steric hardening) and actinic light (primarily ultraviolet radiation, particularly in arid 

conditions)(Airey, 2003). Aging depends on the asphalt binder content and 

properties, the type of aggregate and its particle size distribution, the mixture type, 

the void content in the mixture, time and the ambient temperature(Xiaohu and 

Isacsson, 2002). Additives may affect the rate and degree of short and long-term 

aging. Gandhi and Amirkhanian (2007) conducted a laboratory study to evaluate 

aging in Sasobit®-modified asphalt binders. They found that for each binder source 

considered, asphalt binder extracted from short-term-aged and long-term-aged 

Sasobit®- WMA samples showed less aging in terms of normalized viscosity,G*/sin 

δ, G*sin δ and binder stiffness, compared to binder extracted from HMA samples. 

The reduced aging in the Sasobit®-modified asphalt binder is due to reduced 

volatilization and oxidation because of lower construction temperatures (Gandhi et 
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al., 2009). Meanwhile, Sasobit®-modified asphalt binder exhibited lower rate of gain 

in amount of G* over time as compared to binder samples without Sasobit®, 

indicating lesser susceptibility to aging of asphalt binders blended with 

Sasobit®(Banerjee et al., 2012). 

 

2.5.6 Effect of Sasobit® on Thermal Characteristics of Asphalt Binder 

The thermal characteristics of Sasobit®-modified asphalt binders have been 

investigated by some researchers. The crystallization temperature of Sasobit®is 

102.5°C (Seller, 2009), while the crystallization temperature of Sasobit®-modified 

asphalt binder decreases with decreasing Sasobit® content. For example, the 

crystallization temperatures of modified asphalt binder containing 20% and 1% 

Sasobit® are 95.9°C and 73.8°C, respectively. 

Sasobit® increases the crystal starting and wax melt out temperatures, but has 

no effect on the glass transition temperature, according to laboratory research 

conducted by Edwards et al., (2006b). In another study, Gnadhi (2008) carried out a 

thermal analysis on Sasobit®-modified asphalt binders. The results showed two 

different trends with temperature. At low temperatures, adding Sasobit® increased 

the glass transition temperature of the modified asphalt binders compared to that of 

the control binder.  

At higher temperatures (higher than 80°C), Sasobit® decreased heat flow for 

the warm binder samples, meaning that the wax melted at those temperatures. From 

Equation (2.2), a significant reduction in G* is also expected beyond 100°C because 

this temperature is approximately the melting point of Sasobit®. 

Different methods of heating the asphalt binder samples can give different 

results for the crystallization temperature. Figure 2.2(a) and (b) illustrate the first and 
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