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PEMBENTUKAN DAN PENCIRIAN FILEM DARIPADA 

PENGEKSTRAKAN TOMATO UNTUK PENGESAN FOTO UV 

ABSTRAK 

Konsep baru pengesanan foto UV dengan ciri-ciri kuasa dan biodegradable 

diperlukan untuk menyelesaikan masalah tenaga dan alam sekitar. Dalam kerja ini, 

filem nipis tomato digunakan sebagai lapisan organik aktif dalam pengesanan foto 

UV kerana tomato kaya dengan antioksidan. Apabila sinaran UV berinteraksi dengan 

antioksidan, pemindahan elektron yang melibatkan pelepasan dan perangkapan 

elektron mungkin berlaku. Fenomena pengangkutan elektron ini boleh dimodulasi 

dengan mengaplikasi sumber kuasa luaran. Dengan konsep ini, tomato telah 

digunakan untuk penyelidikan ini. Kesan suhu pengeringan (60⁰C, 80⁰C, 100⁰C, 

120⁰C dan 140⁰C) pada sifat struktur, kimia, optik, elektrik dan pengesan filem nipis 

tomato telah disiasat. Pengesanan foto UV terdiri daripada struktur berlapis substrat 

kaca / lapisan aktif filem nipis tomato / elektrod aluminium interdigitated. Suhu 

pengeringan optimum peranti adalah 120 °C, perbezaan peratusan responsif tertinggi 

(70.6%) di rantau positif direkodkan dan diukur pada 0 V dengan kecekapan 

kuantum () iaitu 2.53x10-7%, R iaitu 0.0519x10-6 A / W, dan D * iaitu 0.7645x1021 

Jones. Tanpa bekalan kuasa luaran (0 V), pengesanan foto berfungsi dengan 

responsif yang paling tinggi, menjadikannya sebagai penjimatan tenaga dan peranti 

berkuasa diri. Kemudian, ia diikuti dengan membandingkan sifat-sifat tomato filem 

nipis yang dihasilkan daripada ekstrak tomato dengan dan tanpa asid oksalik. Peranti 

yang diekstrak dengan menambahkan dengan dan tanpa asid oksalik pada 120oC, 

perbezaan peratusan responsif tertinggi (89.60%) di kawasan positif dicatatkan 

dalam pengesanan foto dengan filem nipis tomato dan asid oksalik dikeringkan pada 

120oC dan diukur pada 5 V dengan kecekapan kuantum ()iaitu 1.0335x10-5%, R 
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iaitu 2.1178x10-6 A / W, dan D* iaitu 1.1649x1021 Jones. Ini menunjukkan bahawa 

filem nipis tomato kering pada suhu tertentu ini adalah yang terbaik digunakan untuk 

mengesan UV-C (254 nm) pada 0 V dan UV- (302 nm) pada 5 V, dan nilai masing-

masing adalah 2.53x10-7% dan 7.7384x10-6%. Masa tindak balas untuk menaikkan 

dan menurunkan semua ujian kurang daripada 0.3 s yang diperhatikan dalam kerja 

ini membolehkan filem nipis tomato digunakan sebagai pengesanan foto UV pada 

gelombang spesifik ini. Di samping itu, prestasi peranti bergantung kepada kehadiran 

kumpulan berfungsi, kekasaran permukaan dan indeks biasan filem nipis tomato. 

Parameter ini telah menjejaskan penyerapan UV yang secara langsung 

mempengaruhi pembentukan radikal dan aktiviti pemotongan dalam tomato, yang 

membawa kepada tindak balas semasa peranti. Oleh itu, tindak balas yang cepat, 

responsif yang tinggi, pengesan dan kestabilan yang tinggi membolehkan peranti 

filem nipis tomato yang diperolehi digunakan sebagai pengesan foto UV. 
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FORMATION AND CHARACTERIZATION OF THIN FILM FROM THE 

EXTRACTION OF TOMATO FOR UV PHOTODETECTOR 

ABSTRACT 

New concept of UV photodetector with self-powered and biodegradable features are 

needed to solve energy and environment. In this work, thin-film tomato was used as 

an active organic layer in UV photodetector because tomato was also rich in 

antioxidant. When UV radiation interacts with antioxidant, transfer electrons that 

involve either releases and traps of electrons may occur. This electron transportation 

phenomenon can be modulated by applying an external power source. With this 

concept, tomato has been used for this research. In addition, the effect of drying 

temperature (60⁰C, 80⁰C, 100⁰C, 120⁰C and 140⁰C) on the structural, chemical, 

optical, electrical and sensing properties of thin-film tomato was studied. The UV 

photodetector was made of a sandwich structure of glass substrate/thin-film tomato 

active layer/ interdigitated aluminium electrode. The optimum drying temperature of 

the device was 120°C,  the highest responsivity percentage difference (70.6%) in 

positive region is recorded and measured at 0 V with quantum efficiency () of 

2.53x10-7 %, R of 0.0519x10-6 A/W, and D* of 0.7645x1021 Jones. Without external 

power supply (0 V), and yet the photodetector works with the highest responsivity, 

makes it as an energy saving and self-powered device. Then, it is followed by 

comparing the properties of thin-film tomato produced from tomato extract with and 

without oxalic acid. The fabricated using tomato extracted by adding with and 

without oxalic acid at 120oC, the highest responsivity percentage difference 

(89.60%) in positive region is recorded in photodetector with thin-film tomato with 

oxalic acid dried at 120oC and measured at 5 V with quantum efficiency () of 

1.0335x10-5 % , R of   2.1178x10-6 A/W, and D* of 1.1649x1021 Jones.   Above 
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these results indicate that the thin-film tomato dried at this specific temperature is the 

best to be used to detect UV-C (254 nm) at 0 V and UV- (302 nm) at 5 V, 

respectively, and their respective  values are 2.53x10-7 % and 7.7384x10-6 %. The 

response time for raising and falling for all testing less than 0.3 s observed in this 

work enables the thin-film tomato being used as a UV photodetector at this specific 

wavelength. In addition, the performance of the device dependent on the presence of 

functional groups, the surface roughness and refractive index of thin film tomato. 

These results had affect the UV absorption that directly influence the radical 

formation and scavenging activity in tomato, leading to current response of the 

device. Therefore, the quick response, high responsivity, high detectivity and 

stability enable the obtained thin-film tomato device to be used as UV photodetector. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Research Background 

The Sun is the most powerful ultraviolet (UV) source, and living species of the 

Earth’s ecosystem are affected by the solar UV radiation, which is usually classified into 

three bands, UV-A (400–320 nm), UV-B (320–280 nm) and UV-C (below 280 nm) as 

shown in Figure 1.1. UV-A is a long-range UV radiation between 320 and 400 nm. 

Although UV-A is not as energetic as the other two types of UV, UV-A can penetrate 

deep into our skin (dermis). This can cause immediate tanning and premature skin aging, 

over certain period of time, it may cause skin cancer (Wang et al., 2014). UVA is not 

readily absorbed by the ozone layer, about 95% gets through, and it usually involves in 

stimulating photosynthesis and synthesizing vitamins and biochemical compounds 

(Monory, et al., 2003) and it is an important radiation in maintaining the quality of food 

supply for mankind (Ahmed and Robinson, 1998).  

UV-B is a short-wave UV radiation between 280 and 320 nm. A large amount of 

UV-B is absorbed by the ozone layer, only 5% reaches planet's surface. It has 

deteriorating effect on organic materials and affecting output of crops (Pancotto et al., 

2003, Chen et al., 2015, Corbineau et al., 1995, Predieri et al., 1995, Soheila, 2000, Nara 

and Takeuchi, 2002, Chang et al., 2003). UV-B (280-320) is a radiation source for 

various applications, namely in medical imaging (Grundfest, 1999), forensic analysis 

(Smith and Lam, 2010), protein analysis and DNA sequencing  (Karczemska and 

Sokolowska, 2002).  
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UV-C, with wavelengths between 100 and 280 nm, is very energetic. It is very 

dangerous to all forms of life, even with short exposure. However, UV-C radiation has 

been filtered out by ozone layer and it never reach the earth. This type of UV is 

technological useful whereby it can be engineered to kill bacteria and germs (Bolton and 

Cotton, 2008, Kowalski, 2009, Rauth, 1965, Monroy et al., 2003), disinfection and 

decontamination (Knight, 2004), forensic analysis (Smith and Lam, 2010), protein 

analysis and DNA sequencing (Karczemska and Sokolowska, 2002), space observation 

(VUV/EUV ranges) (Malinowski et al., 2010), and DUV(193 nm)/EUV(13.5 nm) 

lithography (Association, 2001) and flame detection (Monroy et al., 2003). 

 

 

 

 

 

 

Figure. 1.1: Electromagnetic radiation spectrum (Kerker, 2016). 

UV photodetectors have been used in various areas, whereby its application 

including biological and chemical sensors (detecting ozone, pollution level, organic 

compound and biological agents), flame detection (fire alarm, missile warning or 

combustion engine control), spatial optical communications (intra-and inter-satellite 

secured communications), emitter calibration (UV dosimetry and UV lithography) and 
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astronomical studies (Omnes, 2010, Omnès et al., 2007, Monroy et al., 2003). Among 

these area, the flame detection, biological  and chemical sensor are related to this work 

because of they are working in the UV-B and UV-C  range (Monroy et al., 2003, 

Predieri et al., 1995). For practical applications, the photodetector must be flexible, 

intelligent and multifunctional in design. Currently, the most widely used 

semiconductor-based photodetector materials is silicon (Si) because of the UV 

responsivity of Si-based UV photodetector are ranging from 100-350 nm (Shi and 

Nihtianov, 2012, Hwang et al., 2016, Kim et al., 2016, Hwang et al., 2015, Solt et al., 

1996, Scholze et al., 2006, Scholze et al., 2002). Wide and direct bandgap 

semiconductors such as SiC, III-nitrides including AlN, GaN, InN and selected II-V 

compounds that have been used as the sensing materials for UV detection as they are 

having better spectral selectivity if compared with Si-based photodetector (Consonni and 

Feuillet, 2014, Leung et al., 2010, Kim et al., 2015, Zhou et al., 2016, Parida et al., 

2017).   

Regardless whether the sensing materials are made of Si or those typical wide 

bandgap semiconductors, they are all sharing a common attribute that is inability to 

degrade in a short period of time after lifetime of the photodetector has expired. 

Therefore, disposable of the photodetector may create a huge environmental issue (Alaie 

et al., 2015, Yang et al., 2017, Moore, 2007). As a result, intensive effort has been 

initiated to search for materials that can easily degrade with least toxicity and ease of 

fabrication aiming to reduce electronic waste (Perkins et al., 2014, Hong et al., 2015). 

One of the solutions is to employ natural organic materials to fabricate photodetectors 

and other electronic devices that can be used for a designated period of time with 
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acceptable performance. There are no reported work of using natural organic materials 

for UV photodetector application. However, there are some works using natural organic 

materials to produce electronic devices such as memory, battery, transistor, etc (Kim et 

al., 2009, Eder et al., 2004, Fu et al., 2017). The materials are carotenoid (Głowacki et 

al., 2011), β-carotene (Shah and Brown, 2005), aloe vera (Lim and Cheong, 2015, Lim 

et al., 2017), silk (Kim et al., 2009), leather (Martins et al., 2009) have been used as an 

active or passive material for the fabrication of biodegradability and environmental 

sustainable devices.  

In this work, tomato as a natural source of organic material has been chosen to be 

used as an active source to detect UV radiation. Tomato is a member of Solanaceae 

family and it is considered as a kind of “Mediterranean diet”, which is strongly 

associated with the ability to reduce chronic degenerative diseases (Agarwal and Rao, 

2000, Rao et al., 1998, Bulling, 2013, Rao and Agarwal, 1999) due to its various 

pharmacologic properties (Giovannucci et al., 2002, GIULIANO, Hartje et al., 2000, 

Hamid et al., 2010). In addition, tomato is also rich in antioxidant (Clinton, 1998, Li et 

al., 2011d, Elbadrawy and Sello, 2016, Kotíková et al., 2011). Various vitamins 

available in tomato are believed to be the source of antioxidant. When UV radiation 

interacts with antioxidant, transfer electrons that involve either releases and traps of 

electrons may occur. This electron transportation phenomenon can be modulated by 

applying an external power source. With this concept, tomato has been used for this 

research. In order to use it as a solid-state UV photodetector, the extracted tomato juice 

must be formulated, deposited on a glass substrate, and processed it into a thin film. This 

natural material has yet been employed for this kind of work. Similarly, there are no 
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related works that used natural organic materials for this purpose. Majority of the works 

utilized synthetic polymers (Zhang et al., 2009, Persano et al., 2015, Xu et al., 2010, 

Burkhardt et al., 2012, Liao et al., 2012, Shao et al., 2013b) or inorganic materials 

(Koide, 2008, Jain et al., 2000, Auret et al., 2001, Young et al., 2006, Xu et al., 2006). 

The only available applications of tomato in electronic devices are for electronic nose 

tongue (Gomez et al., 2008) based on tomato juice but not in the form of thin film. 

Without a solid form of geometry, it is impossible to be used as a building block for a 

solid-state device application. Therefore, it is extremely important to process the tomato 

juice into a solid thin film. However, up-to-date, there is no literature related neither to 

the processing condition nor the property of thin-film tomato. Therefore, in this work, 

systematic investigation has been performed in order to extract, formulate, and process 

the extracted tomato juice into a functional solid thin film with the objective of using 

this active layer to detect selective UV radiation with minimum operating power that is 

able to address issue of electronic waste.  

1.2 Problem statements 

Incorporation of the UV photodetector in flexible, intelligent and wearable 

design for the application of health and safety has been an intensive research area (Alaie 

et al., 2015, Yang et al., 2017). Not limited to this, the photodetectors must be able to be 

disposed safely after their lifetime in order to minimize impact to the environment. 

Researches on human and environmental-friendly materials have been the focus to 

address this issue (Perkins et al., 2014, Yang et al., 2017). However, there is no reported 

work that uses natural organic materials forming into a thin film and use for UV 

detection purposes. Therefore, in this research, tomato has been selected as a choice to 




