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PENINGKATAN PRESTASI ALGORITMA PENGOPTIMUMAN 
KOLONI LEBAH TIRUAN 

ABSTRAK 

Algoritma Koloni Lebah Buatan (ABC) adalah algoritma pengoptimuman 

berinspirasikan biologi terkini yang mensimulasi fenomena pencarian makanan oleh 

lebah. Walaupun kajian terdahulu telah menunjukkan kehebatan algoritma ABC ke 

atas banyak fungsi penanda aras dan aplikasi dunia sebenar, namun algoritma ABC 

yang asal and varian-variannya telah dikenalpasti mengalami masalah seperti kadar 

penumpuan yang lambat, terdedah kepada perangkap optima setempat, keupayaan 

mengeksploitasi yang lemah dan keupayaan menggantikan penyelesaian berpotensi 

yang lemah. Untuk mengatasi masalah-masalah ini, penyelidikan ini telah 

mencadangkan beberapa varian ABC yang baharu dan terubahsuai; algoritma Gbest-

Influenced Random ABC (GRABC) yang mengeksploitasi dua persamaan mutasi 

yang berlainan secara sistematik untuk mengeksplorasi dan mengeksploitasi ruang 

carian dengan cara yang sesuai, algoritma Multiple Gbest-guided ABC (MBABC) 

yang meningkatkan keupayaan untuk mencari optima global dengan 

mengeksploitasi kawasan terbaik pada ruang carian yang dijumpai, algoritma 

Enchanced ABC (EABC) yang mempercepatkan eksplorasi untuk penyelesaian yang 

optima berdasarkan ruang carian yang terbaik dijumpai dan algoritma Enchanced 

Probability-Selection ABC (EPS-ABC), versi algoritma Probability-Selection ABC 

terubahsuai yang menggunakan tiga persamaan mutasi yang berlainan secara 

serentak untuk menentukan optima global. Semua varian ABC yang dicadangkan 

telah digabungkan dengan skim lebah-pengakap pintar yang dicadangkan, manakala 

MBABC dan EABC menggunakan skim kemaskini elit yang baharu. Kadar 

penumpuan varian-varian ABC yang dicadangkan telah dibandingkan dengan 
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varian-varian ABC sedia ada dan algoritma pengoptimuman yang lain menggunakan 

dua puluh lima fungsi penanda aras. Prestasi algoritma pengoptimuman yang 

dicadangkan juga telah dianalisis ke atas tiga aplikasi; penganggaran parameter 

untuk motor aruhan, pengoptimuman gandaan pengawal PID untuk mengawal 

pengatur voltan automatik dan pengoptimuman kos pengeluaran elektrik dengan 

penjadualan unit-unit penjanaan kuasa. Keputusan selanjutnya telah dianalisis 

menggunakan ujian-t and ujian statistik wilcoxon-signed-rank.  Analisis telah 

menunjukkan bahawa algoritma-algoritma pengoptimuman yang dicadangkan telah 

menghasilkan keputusan yang ketara lebih baik berbanding algoritma 

pengoptimuman yang lain. Secara keseluruhannya, prestasi kadar menumpuan 

terbaik yang dicapai oleh GRABC, MBABC dan EABC adalah lebih daripada dua 

kali ganda cepat daripada saingan kedua terbaik mereka.  Prestasi kadar penumpuan 

terbaik algoritma EPS-ABC pula adalah hampir dua kali ganda lebih cepat 

berbanding algoritma PS-ABC. 
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PERFORMANCE ENHANCEMENT OF ARTIFICIAL BEE 
COLONY OPTIMIZATION ALGORITHM 

 

ABSTRACT 

Artificial Bee Colony (ABC) algorithm is a recently proposed bio-inspired 

optimization algorithm, simulating foraging phenomenon of honeybees. Although 

literature works have revealed the superiority of ABC algorithm on numerous 

benchmark functions and real-world applications, the standard ABC and its variants 

have been found to suffer from slow convergence, prone to local-optima traps, poor 

exploitation and poor capability to replace exhaustive potential-solutions. To 

overcome the problems, this research work has proposed few modified and new 

ABC variants; Gbest Influenced-Random ABC (GRABC) algorithm systematically 

exploits two different mutation equations for appropriate exploration and 

exploitation of search-space, Multiple Gbest-guided ABC (MBABC) algorithm 

enhances the capability of locating global optimum by exploiting so-far-found 

multiple best regions of a search-space, Enhanced ABC (EABC) algorithm speeds 

up exploration for optimal-solutions based on the best so-far-found region of a 

search-space and Enhanced Probability-Selection ABC (EPS-ABC) algorithm, a 

modified version of the Probability-Selection ABC algorithm, simultaneously 

capitalizes on three different mutation equations for determining the global-

optimum.  All the proposed ABC variants have been incorporated with a proposed 

intelligent scout-bee scheme whilst MBABC and EABC employ a novel elite-update 

scheme. The convergence rates of the proposed ABC variants have been compared 

with a number of existing ABC variants and other optimization algorithms on 

twenty five benchmark-functions and on three optimization applications; estimation 

of induction motor parameters, optimization of PID controller gains for controlling 
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automatic voltage regulator and optimization of electricity production cost by 

scheduling power generating units. The results of the optimization algorithms have 

been further analyzed using t-test and wilcoxon-signed-rank statistical tests. The 

analysis has shown that the proposed optimization algorithms have produced 

significantly better results than the existing optimization algorithms. Overall, the 

best performances of GRABC, MBABC and EABC have exhibited more than twice 

faster convergence than their second best competitors. The best performance of 

EPS-ABC algorithm has exhibited almost twice faster convergence than PS-ABC 

algorithm. 
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CHAPTER 1 

INTRODUCTION 

1.1 Bio-Inspired Optimization Algorithms 

In our everyday lives, we encounter with numerous optimization problems such as 

optimizing fuel-usage, distance travelled and daily expenses. Optimization is a 

process to either minimize or maximize output results by systematically rejecting 

unfeasible values in a search for optimal solutions. Mathematically, the unfeasible 

values are rejected on the basis of a predefined set of rules known as fitness-

function, also called objective-function. Optimization is a recurrently visited 

problem of science and engineering ranging from profit maximization, to signal 

interference minimization, to controllers’ optimization in process control 

engineering, to circuit design optimization in evolutionary electronics.  

All social living beings yield useful behavior in response to the cooperative 

behavior of individuals, where individuals act asynchronously in parallel and 

individuals communicate with each other using some form of stigmergy (Bonabeau 

et al, 1999). Nature inspires researchers to propose solutions for optimally-solving 

problems which do not have straight-to-the-point solutions. The proposed solutions 

adopt multi-agent, task distribution and/or resources allocation phenomena exhibited 

by such social living beings. This evolves the term bio-inspired global optimization 

algorithms. Bio-inspired optimization algorithms belong to derivative-free, 

stochastic and population-based meta-heuristic optimization algorithms.  

A survey carried out by Eck et al. (2006) has clearly divulged the importance 

of bio-inspired optimization. The research work has shown that the optimization 
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algorithms have been effectively applied in very diverse fields such as control 

engineering, data mining, clustering, and optimizing neural networks and fuzzy 

systems. For instance, El-Zonkoly (2006) and Mostafa et al. (2012) have applied 

Particle Swarm Optimization (PSO) algorithm to optimize power-system stabilizers 

(PSS) for stability enhancement of power-systems. Ant Colony Optimization (ACO) 

algorithm has been applied by Karaboga et al. (2004) to design an optimal infinite 

impulse-response (IIR) digital filter. Evolutionary algorithms and PSO have been 

applied to evolve optimal proportional integral derivative (PID) controller in the 

works of Jiang et al. (2006), Elbayomy et al. (2008) and Kim et al. (2008). Artificial 

Bee Colony (ABC) and PSO algorithms have been used to cluster data (Chuang et 

al., 2011; Karaboga and Ozturk, 2011). Genetic Algorithm (GA) and Differential 

Evolution (DE) have been applied for image-segmentation by Melkemi et al. (2006) 

and Cuevas et al. (2010). Liu et al. (2008) have applied DE for microelectronic 

circuit design where reported results have confirmed enhanced performance of the 

systems designed using DE in comparison to conventional techniques. The diverse 

applications of bio-inspired algorithms are increasing with passage of time. This 

proves the importance and strength of the optimization algorithms in real-world 

problem solving. 

Research carried out in the field of bio-inspired optimization algorithms can 

be divided into two areas; computing inspired by the natural phenomenon and 

simulation-and-emulation of the natural phenomenon (Castro, 2006). Computing 

inspired by natural phenomenon makes use of state-of-the-art natural inspirations to 

develop techniques for solving problems, which do not have straight-to-the-point 

solutions. The core idea of this area is to develop algorithms on the basis of natural 

phenomena as we know it. The second area, simulation-and-emulation of nature 
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synthesizes patterns, adopts the behaviors of organisms which do not necessarily 

resemble the natural phenomena. Hence, the second area deals with enhancing the 

performance of the algorithms synthesized in the first area by incorporating many 

diverse heuristics. Research presented in this thesis is related to the second area of 

bio-inspired optimization algorithm’s research. 

Bio-inspired optimization algorithms have been classified into two major 

classes; evolutionary algorithms (EA) and swarm-intelligence-based algorithms 

(Karaboga and Basturk, 2007). Evolutionary optimization algorithms evolve optimal 

solutions on the basis of evolution notion. GA, DE, Evolution Strategy (ES) and 

Evolutionary Programming (EP) are examples of evolutionary algorithms. On the 

other hand, swarm-intelligence-based optimization algorithms such as ACO, PSO 

and ABC have been inspired by the behavior of tiny social-insect societies such as 

ants, swarm of birds and honeybees. This research work is related to performance 

enhancement of ABC optimization algorithms. 

1.2 Motivation to Artificial Bee Colony (ABC) Algorithm 

Artificial bee colony (ABC) optimization algorithm is an element of swarm-

intelligence-based bio-inspired optimization algorithms. It has been inspired by 

honeybees foraging philosophy. ABC optimization algorithm has been proposed in 

2005 (Karaboga, 2005). Honeybees optimize time spent on the nectar-amount of 

foraged food-sources. Although ABC algorithm is a relatively new optimization 

algorithm than very prominent bio-inspired optimization algorithms, it has captured 

much attention of the research community since its inception. This is mainly due to 

its better convergence and fewer control-variables.  
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Many research works have been carried out to assess the performance of the 

standard ABC optimization algorithms. Normally, the performance evaluation has 

been carried out by using two different approaches, i.e., based on benchmark 

functions and another on applications. The following two subsections present the 

performance analysis of ABC algorithm based on the two approaches.  

1.2.1       Performance of ABC Algorithm on Benchmark-functions 

Research carried out by Karaboga and Basturk (2007) has compared ABC algorithm 

with GA, PSO and Particle Swarm inspired Evolutionary Algorithm (PS-EA) on 

high-dimensional five benchmark-functions. The results have proven superior 

convergence of ABC algorithm among the optimization algorithms on all test-

functions. Comparative analysis carried out by Karaboga and Basturk (2008) has 

compared ABC algorithm with PSO, EA and DE on five benchmark-functions. The 

results validate the best performance of ABC algorithm among the compared 

optimization algorithms. 

Another study carried out by Karaboga and Akay (2009) has evaluated 

convergence of ABC algorithm in comparison to PSO, GA and DE on fifty 

benchmark-functions. Moreover, the reference has also compared ABC with a few 

variants of ES such as Covariance Matrix Adaptation ES (CMA-ES), ES Learned 

with Automatic Termination (ESLAT), Canonical ES (CES), Self-organizing Maps 

ES (SOM-ES), Neural Gas ES (NG-ES) and Fast ES (FES) on a few benchmark-

functions. ABC has been shown to perform better than PSO, GA and DE on most of 

the benchmark-functions, specifically multi-modal benchmark-functions. Overall, 

ES variants have performed better than ABC algorithm. However, it has to be noted 

that the comparative analysis has used more advanced ES variants which have 
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exhibited better performance but they require more control-variables than the 

standard ABC algorithm. 

Another comparative study carried out by El-Abd (2012) has compared 

ABC, PSO, DE, ES, ACO, GA, Bee algorithm (BA), Bacterial Foraging 

Optimization (BFO) and Harmony Search (HS) optimization algorithms. The 

comparative analysis has been carried out on twenty-five benchmark-functions. PSO 

and ABC algorithms have stood out as the best algorithms among the compared 

optimization algorithms with PSO converging faster in comparison to ABC on 

unimodal functions. Nevertheless, the convergence of ABC has been better than 

PSO on multi-modal test-functions. Moreover, ABC algorithm has resulted in the 

best performance among the compared optimization algorithms on hybrid 

benchmark-functions and on few unimodal functions as well. This demonstrates the 

capability of ABC algorithm at optimization.  

1.2.2      Performance of ABC Algorithm on Applications 

ABC optimization algorithm has not only outperformed other bio-inspired 

optimization algorithms on benchmark-functions but also on a few real-world 

applications.  Taspnar et al. (2011) has applied ABC algorithm for performance 

enhancement of multicarrier code division multiple access (MC-CDMA), a 

promising wireless communication technique. The performance of ABC has been 

compared with various conventional techniques and the results have shown that 

ABC-optimized system has outperformed all other optimized systems in terms of 

computational complexity and power consumption. Moreover, Yajun et al. (2010) 

have compared ABC, PSO and GA for performance enhancement of orthogonal 

frequency division multiplexing (OFDM), which is another potential technique for 
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wireless communication. The performance of ABC-optimized OFDM has shown to 

be better than other optimized OFDM.  

Research work carried out by Akay (2012) has extensively evaluated the 

performance of ABC and PSO algorithms for multilevel threshold segmentation, a 

technique employed in image processing field. The results have shown better 

performance of ABC algorithm in comparison to PSO optimization algorithm.  

Data clustering technique has been used in various engineering problems to 

assemblage data into different groups depending upon the associated-attributes. The 

performance of ABC algorithm for data-clustering has been analyzed by Karaboga 

and Ozturk (2011). Their work has compared ABC with PSO, Radial Basis Function 

ANN (RBF) and other techniques such as bagging, multi-boost-AB, ripple down 

rule (Ridor) and Voting Feature Interval (VFI) on thirteen benchmark data-sets taken 

from UCI. The reported results have shown that ABC algorithm has performed the 

best among all the compared techniques on almost all data-sets.  

Zhang et al. (2010) have evaluated the performance of ABC, ACO, GA, 

PSO, Simulated Annealing (SA) and Tabu-Search (TS) for data clustering on 

various benchmark data-sets. The results substantiate the best convergence of ABC 

algorithm among the compared optimization algorithms. Safarzadeh et al. (2011) 

have compared the performance of ABC and GA algorithms for optimizing 

pressurized water reactors used in nuclear reactors. It has been concluded that ABC 

algorithm has been more robust and has better ability to determine the optimal-

solutions for the problem.  

Unit-commitment is an operation-planning problem of power-systems and it 

optimizes power-demand allocation to various online power generators. The 
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problem has been optimized using ABC algorithm by Chandrasekaran et al. (2012). 

ABC optimization algorithm has been compared with PSO and GA. The results have 

testified the best performance of ABC algorithm among the compared optimization.  

The performance of ABC and PSO have been extensively evaluated for 

automatic-generation-control of interconnected power-systems by Gozde et al. 

(2012). ABC optimization algorithm has outperformed PSO algorithm on the 

optimization problem. Gozde and Taplamacioglu (2011) has optimized PID 

controller for the performance enhancement of automatic-voltage-regulator (AVR) 

using ABC, PSO and GA. The reported results have revealed the best performance 

of ABC optimized PID controller among all other algorithms’ optimized PID 

controllers.  

There are numerous real-world application where ABC algorithm has been 

applied with very promising results (Jeya Mala et al.,2010; Sabat et al., 2010; Xu 

and Duan, 2010; Abu-Mouti and El-Hawary, 2011; Dos-Santos, 2011; Sencan et al., 

2011). A review of ABC algorithm applications, modifications and hybridization has 

been carried out by Karaboga et al. (2012). The review has clearly demonstrated an 

exponential increase of ABC algorithm-based research publications. The literature 

survey results have been depicted in Figure 1.1. The figure shows that more than 

half of the total research has been published in 2011. This proves excellent 

capability of ABC optimization algorithm for determining the optimal-solutions of 

any problem at hand. Hence, ABC has motivated this research work. 
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Figure 1.1 Number of ABC optimization algorithm related publications per year (Karaboga 
et al. (2012)). 

1.3 Problems in ABC Optimization Algorithm 

It is understandable that nothing in this world is perfect. Despite yielding very 

promising results in the realm of optimization, ABC algorithm suffers from few 

demerits similar to other bio-inspired optimization algorithms. ABC algorithm has 

been found to suffer from converge slow (Zhu and Kwong, 2010; Kang et al, 2011; 

Li et al. 2012). Figure 1.2 shows the convergence plots of the standard ABC 

algorithm and few variants of ABC algorithm, i.e. I-ABC, PS-ABC and GABC 

algorithms (Li et al. 2012). The figure clearly shows considerably inferior 

convergence of ABC algorithm than its variants.  

Besides, ABC algorithm has been prone to local optima traps while solving a 

complex multi-modal test-function (Banharnsakun et al., 2011; Gao and Liu, 2011; 

Li et al. 2012). Figure 1.3 shows the convergence plots of ABC and few variants of 

ABC algorithm, i.e. I-ABC, PS-ABC and GABC algorithms on a multi-modal test-

function (Li et al. 2012). The figure shows that ABC and GABC algorithms could 
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not converge on the test-function. On the other hand, I-ABC and PS-ABC 

algorithms have managed to avert local optima successfully.   

 

Figure 1.2 Convergence comparisons of ABC algorithm and its variants on a test-function 

(Li et al. 2012). 

 
Figure 1.3 Convergence comparisons of ABC algorithm and its variants on a test-function 

(Li et al. 2012) 

ABC algorithm has poor capability to replace currently poor-potential 

solutions. ABC algorithm replaces the poor potential solutions with newly initialized 

potential solutions. However, the replacement is a randomly initialized potential 
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solution. Due to a random initialization, there are very bleak chances of getting a 

better (fitter) potential solution as the replacement (Banharnsakunl et al., 2011).  

Figure 1.4 portrays possible positions of randomly initialized potential 

solutions in a search space. If a potential solution is to be randomly initialized from 

the whole search-space, the chances of placing the solution near to global optimum 

are very small. Now, consider a potential solution A which is to be replaced because 

it has been identified as a poor potential solution. As the standard ABC algorithm 

randomly initializes the replacement of poor potential solution, there are bleak 

chances of generating a replacement which is fitter than solution A. It would be 

desirable to have a scheme which narrows the search space only around fitter 

population space at every generation. 

 

Figure 1.4 Possible positions of randomly initialized potential solutions in a search space 

Furthermore, Li et al. (2012) have proposed a potential variant of ABC 

named Probability-Selection ABC (PS-ABC) algorithm. PS-ABC algorithm 

capitalizes on three different mutation equations for generating optimal solutions. 

However, all the mutation equations of PS-ABC are excessively self-reinforced and 

hence, PS-ABC suffers from slow convergence (Castro, 2006). Moreover, all the 
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three mutation equations belong to the same class of mutation equations. Hence, it 

can be concluded that the equations possess the same merits and demerits that the 

algorithm may not perform equally well over a wide set of optimization problems. 

Therefore, it can be concluded that there is scope for enhancing the performance of 

PS-ABC optimization algorithm. 

1.4 Research Objectives  

As has been discussed in the previous section, ABC bio-inspired algorithm 

suffers from few demerits. To overcome the demerits, this research work has 

proposed few modifications to the standard ABC algorithm and its variants which 

have essentially produced new ABC variants. The objectives of the research work 

are: 

(i) To develop a new ABC variant, GRABC which employs a modified 

mutation equation and a proposed scout-bee stage. 

(ii) To develop a new ABC variant, MBABC which employs a modified 

mutation equation, proposed elite-update stage and a proposed scout-bee 

stage. 

(iii) To develop a new ABC variant, EABC which employs a modified mutation 

equation, proposed elite-update stage and a proposed scout-bee stage. 

(iv) To develop enhanced PS-ABC algorithm (EPS-ABC) which employs 

different mutation equations and a proposed scout-bee stage. 

(v) To assess the convergence of the proposed algorithms on numerous 

benchmark-functions and to evaluate their performance on few optimization 

applications. 
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Some intelligence has been integrated into the proposed scout-bee scheme in 

the sense that it picks a fitter potential solution to replace a poor solution. The 

proposed scout-bee stage has been named intelligent scout-bee stage. Two different 

intelligent scout-bee schemes have been proposed. The first proposed scout-bee 

randomly initializes a potential solution in the vicinity of gbest potential solution. 

The second proposed scout-bee systematically initializes a potential solution in the 

vicinity of gbest potential solution. The modifications aim to speed up the 

convergence of an ABC algorithm. In this research work, a novel stage named elite-

update has also been proposed to enhance convergence-rate and to avert local-

optima. 

Mutation equation of an algorithm governs its performance, as the equation 

set rules for communication among population elements, i.e. potential solutions. 

Mutation equation of GRABC algorithm generates candidate-solutions around 

randomly picked potential solutions. It also incorporates intelligent scout-bee 

scheme. The mutation equation of MBABC algorithm generates candidate-solutions 

around multiple gbest potential solutions. The algorithm also capitalizes on the 

intelligence scout-bee and elite-update stages. During the elite-update stage, 

MBABC algorithm only updates multiple gbest potential solutions for speeding up 

convergence and averting local-optima traps. 

The proposed EABC algorithm generates candidate-solutions only around 

the single gbest potential solution. It also employs the intelligent scout-bee and the 

elite-update stages. 

Lastly, the performance of PS-ABC algorithm has been enhanced by 

replacing its mutation equations in such a way that each mutation equation belongs 

to a different class. Thus, every mutation equation possesses different merits and 
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suffers from different demerits. This way, EPS-ABC may perform better over a 

wide-set of optimization problems. 

The proposed algorithms have been compared with various existing ABC 

variants and other bio-inspired optimization algorithms on twenty five benchmark 

functions. They have also been compared with various existing variants of ABC 

algorithm on their capability at solving three optimization applications. 

1.5 Thesis Outline  

This thesis has been organized in the sequence in which the objectives have been 

stated. The second chapter, Literature Review, discusses various optimization 

algorithms adapting their principles from various social phenomena of honeybees. 

The chapter also discusses the standard ABC optimization algorithm in a detailed 

manner. Additionally, the chapter critically reviews various existing variants of 

ABC algorithm in good detail. 

The third chapter, Intelligent Scout-bee Guided ABC Algorithm, introduces 

two different suggestions to enhance the performance of ABC algorithm’s scout-bee 

stage. The modifications indoctrinate some intelligence into the scout-bee stage of 

ABC algorithm. The performance of intelligent scout-bee-based ABC algorithm has 

been compared with the existing scout-bee schemes, on various benchmark-

functions. The best intelligent scout-bee method has been adapted for the proposed 

ABC variants. 

The fourth chapter, Proposed Variants of ABC Algorithm, presents the 

proposed modifications for enhancing the performance of ABC optimization 

algorithm. In the four different variants of ABC optimization algorithm have been 
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presented and discussed. All the four-proposed optimization algorithms integrate the 

proposed intelligent scout-bee scheme rather than the standard scout-bee scheme.  

The fifth chapter, Results and Discussion, presents the comparative analysis 

of the proposed variants of ABC algorithm with a few existing variants of ABC 

algorithms on high-dimensional benchmark-functions. The results have been 

statistically analyzed using two different statistical tests. The chapter also presents 

comparative analysis of the proposed algorithms with nineteen other state-of-the-art 

optimization algorithms (i.e. PSO and its variants, DE and its variants and, ES and 

its variants) on a very wide set of benchmark-functions taken from research works 

published in the reputable journals.      

The sixth chapter, Applications of Proposed Optimization Algorithms, of this 

thesis presents the performance comparison of the proposed optimization algorithms 

with various existing variants of ABC algorithm on three different applications; 

parameter estimation of induction motor, economic load dispatch and PID controller 

optimization. Two different test-cases of each application have been adapted for 

rigorous performance analysis of the proposed optimization algorithms. The results 

have also been discussed in the chapter.  

The seventh chapter of this thesis presents the conclusions, contribution and 

scope for possible extension of this work. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Adapting Honeybee Natural Phenomenon 

Honeybee swarm is a very appealing natural-swarm. Honeybees are social insects, 

which can be conceived as a dynamical society that adjusts its behavior according to 

the surrounding environment. They gather information, adjust themselves and 

perform task based on their specializations. Honeybees have photographic memory, 

excellent navigation and the ability to make a group decision such as queen 

selection. Besides that, storing, retrieving and distributing honey and pollen, 

information communication and foraging are the additional capabilities of 

honeybees which have captured attention of various researchers working in the field 

of bio-inspired optimization algorithms.  

In honeybee society, there are queen bee, forager bees, drone bees, worker 

bees and others. Queen bee can live for many years and she is the only egg laying 

female in the colony. The queen fertilizes by consuming sperms stored while mating 

and produces unfertilized eggs. Then eggs are fertilized and few remain unfertilized 

also. From the unfertilized eggs male-bees are produced, also called drones and from 

the fertilized eggs female-bees are produced. The prime role of drones is to fertilize 

a new queen and they die after mating with the queen. Drones do not live for 

duration more than six months. On the contrary, the female-bees collect and store 

food, remove dead-bees, ventilate and guard the hive. On the second-half of their 

lives, female-bees go outside of the hive for foraging. Jung (2003) has formulated an 

optimization algorithm based on the queen-bee phenomenon. The queen performs a 
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dance in the hive for attracting the drones and mate with the drones far from the hive 

during her flights. Hussein (2003), Marinaki et al. (2010) and Marinakis et al. 

(2011) have designed optimization algorithm based on honeybees mating 

phenomenon. 

Forager-bees go outside of the hive to forage food-sources. After coming 

back to the hive, the forager-bees perform a dance. By dancing, the foragers 

communicate the information about nectar amount, direction and distance of the 

explored food-sources with the other bees of the colony. This is how a forager 

recruits other honeybees in search for productive locations. The information 

exchange among bees is the most important part of the collective knowledge. 

Various researchers have proposed different optimization algorithms on the basis of 

honeybees’ information sharing approach (Walker, 2003; Wedde et al., 2004). 

Honeybee-swarm has excellent capability to accomplish a task by dividing it 

into smaller units. For example, while selecting a new nest-site, honeybees consider 

the size of cavity to hold combs, tightness of cavity, weather condition and the 

construction time. To achieve the task, numerous honeybees work in parallel for 

exploring the potential sites and share the information with each other using various 

types of dances to select the best-one. Various optimization algorithms have been 

proposed in the literature based on task-accomplishing approaches of honeybees 

swarm (Nakrani and Tovey, 2004; Sadik et al., 2007 and Gutierrez and Huhns, 2008). 

Foraging is the process of searching for food-sources and collecting nectar 

amount for making honey. Various optimization algorithms based on foraging 

phenomenon have been proposed by Lucic and Teodorovic (2002), Lucic and 

Teodorovic (2003), Walker (2004),  Karaboga and Basturk (2007) and Saleem and 

Farooq (2007). One among numerous optimization algorithms proposed on the basis 
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of foraging phenomenon of honeybee swarm is Artificial Bee Colony (ABC) 

optimization algorithm (Karaboga and Basturk, 2008).  

A survey carried out by Karaboga et al. (2012) has produced a plot of 

popular honeybee-based optimization algorithms. The results have shown a 

prominent contribution of ABC optimization algorithm in comparison to the rest of 

honeybee-based optimization algorithms. The plot clearly highlights the importance 

and popularity of ABC optimization algorithm among various honeybees-based 

optimization algorithms. The percentage of contribution is shown in Figure 2.1.  

 

Figure 2.1 Literature contributions of various optimization algorithms based on honeybees 
(Karaboga et al. (2012)). 

2.2 Standard Artificial Bee Colony (ABC) Optimization Algorithm  

As explained earlier, the optimal-solution generating philosophy of ABC 

optimization algorithm has been inspired by the foraging phenomenon of honeybee-

swarm. ABC optimization algorithm divides the swarm into three types of bees. The 

first type of bees is called employed-bees, the second is named onlooker-bees and 

the third is known as scout-bees. One of the advantages of ABC algorithm over 

various other bio-inspired optimization algorithms is the use of fewer control-

variables. ABC algorithm carries only three control-variables, i.e. colony-size, limit 

and number-of-generations. Colony-size and number-of-generations are the common 
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control-variables of all bio-inspired optimization algorithms whereas “limit” is the 

only ABC algorithm-specific control-variable. Algorithm-specific control-variables 

are only utilized by any specific algorithm such as; limit has not been used by any 

optimization algorithm other than ABC algorithm. 

ABC algorithm divides colony of honeybees into three different classes, i.e. 

employed-bees, onlooker-bees and a scout-bee. Number of onlooker and employed 

bees is equal to half of the colony-size in the standard ABC algorithm and its 

variants. Larger colony-size and higher number-of-generations will result in better 

performance of ABC algorithm (Karaboga and Basturk, 2008). 

Figure 2.2 illustrates the flow chart of ABC optimization algorithm. ABC 

optimization algorithm starts searching for optimal-solutions by randomly 

initializing the initial food-sources. The food-sources symbolize potential solutions. 

Every potential solution has number of indices equals to the number of a problem 

dimensions. Each index of a potential solution represents a dimension of the 

problem. Therefore, if a problem has one-hundred dimensions then each potential 

solution is required to have one-hundred indices. Table 2.1 portrays structure of 

food-sources/potential solutions. In Table 2.1, D represents dimension, m is the last 

food-source, nm1 symbolizes the first index of mth

After randomly initializing food-sources, ABC algorithm assesses nectar-

amount of every food-source. In ABC algorithm, the nectar-amount of a food-source 

corresponds to the quality of a potential solution or the fitness of a potential 

solution. Alternatively, after initializing potential solutions ABC algorithm 

calculates fitness of every potential solution. The fitness of a potential solution has 

been calculated by the formula presented in equation (2.1) (

 food-source and n is any integer. 

Karaboga and Basturk, 

2007; Karaboga and Akay, 2009). 
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Figure 2.2 Flow chart of the standard ABC optimization algorithm. 

Table 2.1 Structure of ABC algorithm food-sources/potential solution 

Food-source 
Indices of food-sources 

1 2 3 4 5 …………………. D-2 D-1 D 
1st n Food-source n11 n12 n13 n14 …………………. 15 n n1D-2 n1D-1 1D 

2nd n Food-source n21 n22 n23 n24 …………………. 25 n n2D-2 n2D-1 2D 

3rd n Food-source n31 n32 n33 n34 …………………. 35 n n3D-2 n3D-1 3D 
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 (2.1) 

where fi symbolizes objective-function value of ith food-source and fiti

It is important to mention that the number of food-sources is equal to the 

number of employed-bees. After fitness calculation of all food-sources, every 

employed-bee is assigned a food-source for its neighborhood exploration. The 

neighborhood of food-sources is explored by the following equation (

 is the 

corresponding fitness value after calculation. 

Karaboga and 

Basturk, 2007; Karaboga and Akay, 2009).  

 ( )ij ij ij ij kjz y y yφ= + −  (2.2) 

where yij symbolizes jth dimension of ith food-source, ykj represents jth dimension of 

kth food-source, zij corresponds to candidate-solution of jth dimension of ith

ABC algorithm’s scale factor varies from [-1, 1] and hence, creates more 

diverse population. Diversity among food-sources is the primary condition for better 

exploration of a search-space. Equation (2.2) is also called mutation equation of the 

standard ABC optimization algorithm. Mutation equation of an optimization 

algorithm governs its performance. ABC algorithm explores neighborhood of a 

food-source using a randomly selected food-source. If the randomly selected food-

source is a fitter then, the mutation may produce a fitter neighborhood and vice 

versa. 

 food-

source, i and k are the mutually-exclusive food sources, j Є [1,2,…. D], D is the 

dimension of search space, j and k are randomly chosen numbers, Ø is a random 

number within [-1, 1] and it is called scale factor. 
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ABC algorithm explores the neighborhood of a food-source using vector 

difference similar to DE algorithm. In fact, ABC algorithm capitalizes on the same 

mutation equation as that of DE algorithm. However, the results presented in 

Karaboga and Basturk (2008), Karaboga and Akay (2009) and El-Abd (2012) 

(Section 1.2) show that ABC algorithm has performed better than DE algorithm. 

Hence, it can be concluded that the philosophy behind generating optimal-solutions 

of ABC algorithm is better than DE algorithm. After exploring the neighborhood of 

a food-source, ABC algorithm calculates fitness of the modified food-source (i.e. 

candidate food-source) using equation (2.1). Then ABC algorithm compares fitness 

of the food-source before and after the modification. ABC algorithm selects the 

food-source which has higher fitness value. This is called greedy-selection. 

From the discussion of two previous paragraphs, it can be concluded that 

there are three different steps involved in updating a food-source. Firstly, ABC 

algorithm mutates a food-source. Secondly, ABC algorithm evaluates fitness of the 

mutated food-source using a user-defined fitness-function. This step has also been 

termed as fitness-function evaluation. Finally, ABC algorithm attempts to update the 

food-source, if the mutated food-source is fitter than the existing food-source. ABC 

algorithm attempts to update only one index of every food-source during employed-

bee stage of the algorithm and this is also called mutation-rate. Hence, the number of 

mutations, fitness-function evaluations and attempts to update food-sources are 

equal in the standard ABC optimization algorithms. Additionally, other bio-inspired 

optimization algorithms follow the same rule however, there are exceptions and the 

algorithms shall be duly identified as the thesis progresses. 

For unbiased comparison optimization algorithms should update food-

sources/potential solutions for the equal number of times. As the number of 
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mutations, fitness-function evaluations and attempts to update food-sources are 

generally equal. Therefore, it is generally said that for even comparison the total 

number of fitness-function evaluations (FFEs) should be the same (Suganthan et al., 

2005; Karaboga and Basturk, 2008; Zhu and Kwong, 2010). For ABC optimization 

algorithm, FFEs can be calculated by the following equation; 

 Number of FFE = 2 × Population size × MCN (2.3) 

where Population size  = Colony-size/2 and MCN is maximum number of 

cycles/generations 

Once the neighborhood of all food-sources has been explored by employed-

bees, the bees then pass the information to onlooker-bees. However, there is a slight 

difference between neighborhood exploration of food-sources by employed-bees and 

onlooker-bees although mutation equation is the same during both stages of ABC 

algorithm. Employed-bees explore the neighborhood of all food-sources whereas, 

onlooker-bees explore only selected food-sources. Food-sources which have higher 

nectar-amount have higher probability for being selected by onlooker-bee. Hence, 

fitter food-sources among the population have been enhanced more-times than less-

fitter food-sources. Therefore, the algorithm may converge rapidly. 

Onlooker-bees wait in a dancing area of the hive where employed-bees come 

to recruit the onlooker-bees. Employed-bees communicate all required information 

of a food-source such as its direction with respect to hive, distance from hive and 

nectar amount using round or waggle dance. Time-period of the dance-performance 

corresponds to the nectar-amount of a food-source. Similar to employed-bees, 

onlooker-bees explore the neighborhood of food-sources based on equation (2.2). 
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The probability of selecting a food-source for onlooker-bees can be calculated by the 

following equation (Karaboga and Basturk, 2007; Karaboga and Akay, 2009); 

 
i

i NS

j
j i

fitp
fit

=

=

∑
 

(2.4) 

where NS corresponds to the number of food-sources, fiti is the fitness of a selected 

food-source and Pi is the selection-probability of the ith

ABC algorithm has the ability to induct new food-sources into its population 

while the algorithm is running. ABC algorithm abandons any food-source, which 

has been explored over a maximum number of times without any success. The 

maximum number of times has been controlled by a user-defined control variable 

named limit. At the end of every generation, ABC algorithm looks for any food-

source which is to be abandoned. If the food-source exists, then ABC algorithm 

replaces the current food-source with a newly found food-source. The capability of 

ABC algorithm limits its dependency on colony-size, as it reinitializes exhausted 

food-sources. The new food-source can be obtained based on the following equation 

(

 food-source. 

Karaboga and Basturk, 2007; Karaboga and Akay, 2009); 

 min max min(0,1)( )ij j j jy y rand y y= + −  (2.5) 

where yij symbolizes jth dimension of ith
min
jy food-source,  is the lower limit of 

search space and max
jy  is the upper bound of search space.  

It is clear from the above equation that the food-source has been randomly 

initialized from the whole search-space. Hence, there are bleak chances of getting a 

food-source having higher fitness value.  
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2.3 Variants of ABC Optimization Algorithm  

To overcome the flaws of the standard ABC optimization algorithm, as discussed in 

Section 1.3, various variants of ABC algorithm have been proposed. The standard 

ABC algorithm optimizes real parameters. To avert the limitation, Tasgetiren et al. 

(2011) and Kashan et al. (2012) have proposed ABC algorithm for discrete 

parameter optimization. The standard ABC algorithm can only optimize 

unconstrained problems. Singh (2009), and Karaboga and Akay (2011) have 

proposed ABC algorithm for constrained optimization problems. Karaboga, Ozturk 

et al. (2012) have very recently proposed artificial bee colony algorithm on the foot-

steps of genetic-programming for symbolic regression called ABC programming. 

Manuel and Elias (2012) have modified the initialization step of potential solutions 

for a filter design.  

2.3.1 Hybrid ABC Algorithms 

Yildiz (2012 (a)) and Yildiz (2012 (b)) have proposed a hybrid ABC algorithm by 

incorporating a local search-technique called Taguchi method into ABC algorithm. 

The proposed variants have been compared with other optimization algorithms on 

two low-dimensional mechanical engineering problems. The reported results show 

better performance of the hybrid algorithm.  

Similarly, Wu et al. (2012) have hybridized ABC and HS algorithms. The 

results show better performance of the hybrid ABC variant then few variants of HS 

algorithm. However, the hybridized algorithm has not been compared with the 

standard-ABC algorithm.  

Kang et al. (2011) have incorporated a local-search technique named 

Rosenbrock into ABC algorithm and the hybridized algorithm has been named 
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