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PENGHASILAN DAN PENCIRIAN RESIN BERDASARKAN MINYAK 

KELAPA SAWIT YANG DIMATANGKAN MELALUI SINARAN 

ULTRAUNGU  

 

ABSTRAK 

 

Dalam kajian ini, resin berasaskan minyak kelapa sawit yang dimatangkan 

melalui sinaran ultraungu telah disediakan melalui pengubahsuaian minyak kelapa 

sawit dengan gliserol dan glisidil metakrilat (GMA). Dalam kajian awal, parameter-

parameter seperti jumlah pemangkin yang diperlukan, suhu tindakbalas, masa 

tindakbalas dalam pengubahsuaian kimia telah dikaji. Daripada analisis Fourier 

Transform Infrared (FTIR), didapati GMA telah berinteraksi secara kimia dengan 

monogliserida (MG), kenaikan puncak 1630 cm
-1

 dalam spectrum FTIR telah 

diperhatikan apabila lebih GMA telah digunakan dalam pengubahsuaian kimia 

tersebut. Dalam kajian seterusnya, kesan nisbah gliserol/ minyak kelapa sawit (MG) 

kepada GMA/MG dalam penyediaan resin MG-GMA telah dikaji. Didapati bahawa, 

nombor hidroksil MG meningkat apabila lebih banyak gliserol digunakan dalam 

campuran gliserol/minyak kelapa sawit dalam proses alkoholisis. Ini menunjukkan 

bahawa kebanyakan kumpulan hidroksil adalah disumbangkan oleh MG seperti yang 

ditunjukkan dalam keputusan kromatografi gas kapilari (GC). Berat purata berat 

molekul (Mw) resin meningkat apabila nisbah GMA/MG meningkat sehingga 

mencapai ke titik ambang yang mana selepas itu Mw menurun. Fenomena ini 

disebabkan oleh berlakunya homopempolimeran monomer GMA semasa rawatan 

MG dengan GMA. Corak yang sama telah ditunjukkan dalam keputusan kelikatan. 

Kandungan gel filem MG-GMA termatang melebihi 98%. Selain itu, didapati 

kekerasan, perekatan lorekan silang dan kestabilan terma filem MG-GMA boleh 

dipengaruhi oleh jumlah GMA serta gliserol yang digunakan dalam penyediaan MG. 

Kedua-dua kalorimetri peimbasan pembezaan (DSC) and analisis termogravimetri  

(TGA) menunjukan bahawa penambahan GMA dalam resin MG-GMA telah 

meningkatan kestabilan terma pada filem termatang UV.  Kinetik penguraian terma 

filem MG-GMA termatang menunjukkan kaedah Friedman adalah serupa dengan 

kaedah Ozawa-Flynn-Wall (O-F-W). Kinetik FTIR pematangan (RT FTIR) resin 

MG-GMA menunjukkan  penukaran ikatan berganda dan kadar pempolimeran resin 

adalah dipengaruhi oleh kepekatan kumpulan ikatan berganda.  
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PRODUCTION AND CHARACTERIZATION OF ULTRAVIOLET CURED 

PALM OIL BASED RESIN 

 

ABSTRACT 

 

In this study, a Ultraviolet-radiated curable resin from palm oil was prepared 

by modifying palm oil with glycerol and glycidyl methacrylate (GMA). In the 

preliminary study, different parameters such as the amount of catalyst needed, 

reaction temperature and time for this chemical modification had been studied. From 

the Fourier Transform Infrared (FTIR) analysis, GMA was proved to be chemically 

attached to the monoglyceride (MG), an increment at peak 1630 cm
-1

 in FTIR 

spectrum was observed when more GMA was used in the chemical modification. In 

the subsequent study, the effect of different glycerol/palm oil (MG) to GMA/MG 

ratio in the preparation of MG-GMA resin was studied. It was noticed that hydroxyl 

number of MG increased as more glycerol was used in the glycerol/palm oil mixture 

in alcoholysis process. This indicated that most of the hydroxyl groups were 

contributed by MG as shown by capillary gas chromatography (GC) results. The 

weight average molecular weight (Mw) of the resin increased as the ratio of 

GMA/MG was increased to a threshold point after which it decreased. This 

phenomenon was due to homopolymerization of GMA monomer during the 

treatment of MG with GMA. A similar trend was also observed in the result of 

viscosity. The gel content of the cured MG-GMA film was more than 98%. The 

hardness, cross hatch adhesion and thermal stability of the MG-GMA film was 

influenced by the amount of GMA used as well as the glycerol used in MG 

preparation. Both differential scanning calometry (DSC) and thermogravimetry 

analysis (TGA) showed that the increment of GMA amount in MG-GMA resin had 

improved the thermal stability of the UV-cured films. Thermal decomposition 

kinetics of MG-GMA film discovered that Friedman method showed a good 

agreement with that of Ozawa-Flynn-Wall (O-F-W) method. Real time FTIR (RT 

FTIR) curing kinetics of MG-GMA resin showed that double bonds conversion and 

polymerization rate of the resin were affected by the concentration of unsaturation 

groups.  
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CHAPTER 1  INTRODUCTION 

 

1.1 Background 

Polymer resins prepared from renewable natural resources have become 

increasingly important due to the low cost, ready availability as starting materials, 

and biodegradability (Li et al., 2003, Mosiewicki et al., 2005). The continuously 

decreasing petroleum based resources coupled with the ever increasing 

environmental concerns and legislation constrains, imposing numerous restrictions 

on the use of chemicals that may generate volatile organic compound (VOC). 

Synthesized resins as well as other chemicals utilized in various industrial 

applications are oppressed day by day due to the mentioned causes. Therefore, there 

is a need to evaluate, identify and use products and processes, that employ rapid, 

energy efficient and non-polluting polymerization techniques.  

 

Research efforts are already directed towards reducing VOC which have 

proven to have an adverse effect on the environment and human health depending on 

the chemicals used. If we look around us today, there is a world of ultraviolet (UV) 

or electron beam (EB) products. These products, in some way, have utilized or could 

utilize UV or EB radiation techniques for their curing of coatings in various sectors 

of applications such as graphic arts, microelectronics inks and adhesives. The 

industry has made the shift since 1990; they have embraced sustainable concepts 

(Weiss, 1997, Koleske, 2001, Chen et al., 2011). UV radiation curing now represents 

one of the new techniques that are replacing the use of conventional thermally 

curable or low solids, solvent borne coatings. Besides the ecological aspect of 

minimizing the VOC and ensuring that the resins are environmentally friendly, ultra 
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fast cure speed, room temperature operation, consequent low energy consumption, 

and high-quality end products are additional aesthetic and economic factors of 

noteworthy significance (Paul, 1996, Crivello et al., 1997, Kumar et al., 2006, 

Rozman et al., 2010).
 
Thus UV/EB curable resins are popular and it should play a 

key role in producing materials by non-polluting polymerization process. 

 

 While the petroleum based resources are diminishing due to the depleting of 

their natural resources, the use of vegetable oils to replace the petroleum based 

resources in polymer resins in the world market is ever increasing. World market for 

vegetable oils witnessed a significant rise in terms of value and volume over the last 

decade, the total production of vegetable oil in the world at 1997 is 73 million metric 

tons, reaching 146 million metric tons at 2010 and is estimated to reach 169 million 

tons by the year 2015 (United Soybean Board, 2005, Jose, 2010, American Soybean 

Association, 2011). Hence, it is high time to find alternative sources from which 

these prepolymers (oligomers) or monomers that can be conveniently, easily and 

cheaply prepared. For these reasons, vegetable oils have attracted considerable 

amount of attention as a raw material for polymeric material preparation. Vegetable 

oils such as linseed oil and tung oil have long found various uses in paint and 

varnishes industries. Soybean oil, safflower oil, castor oil, sunflower oil and canola 

oil have also been used in preparation of resin (Rheineck and Cummings, 1966, Li 

and Larock, 2000, Li et al., 2001, Güner et al., 2002, Kolot and Grinberg, 2004, 

Mosiewicki et al., 2005, Kong and Narine, 2007). 

 

Vegetable oils are considered to be one of the most important classes of 

renewable sources. Vegetable oil or plant oils‘ constituents made up of complex 
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multi component mixtures of fatty acids and glycerol ester, those triglycerides with 

numerous active sites amenable to chemical reactions to be converted into useful 

polymeric materials (Khot et al., 2001, Tan and Chow, 2010). The usages of 

vegetable oils are well known in the manufacturing of alkyl resin, however, 

relatively little work has been reported on the conversion of fats and oils to high 

molecular weight polymers. Since the unsaturated group in the fatty acid are unable 

to be polymerized, an interesting alternative is to modify the triglyceride structure by 

attaching reactive groups to the molecule.  

 

In Malaysia, our main agriculture product palm oil which constitutes 41.37% 

of the total world production is a type of vegetable oil. With nearly 4.85 million 

hectares of planted land and 416 mills operating across the country, Malaysian palm 

oil industry is expected to generate over 19.8 million tonnes of Empty Fruit Bunches 

(EFB) and 60 million tonnes of palm oil mill effluent (MPOB, 2009, Lim, 2010, Ng 

et al., 2011). In the year 2000, Yusof reported that Malaysia monopolized half of the 

world's palm oil production (Yusof, 2002). About 80 to 85% of the total world 

production of palm oil was dominated by Malaysia and Indonesia in 2008, in which, 

they held a world market share of approximately 31% (Tan and Chow, 2010). Palm 

oil is a non drying oil which cannot be polymerized when exposed to air. It can only 

be polymerized when an effective and suitable modification is conducted to 

introduce the appropriate reactive groups. Thus, it is believed that by attaching a 

functional group to palm oil molecule, the behaviour of palm oil change from non-

curable palm oil to a curable product. The technology of palm oil in the coatings 

industry area is relatively new and in a steady course of development, hence, more 

research and developments need to be carried out. Furthermore, palm oil is 
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considered to be a more suitable raw material for the production of coatings as 

compared to soya bean oil, tung oil, castor oil and linseed oil because it contains 

lower levels of unsaturation.   

 

Driven by stricter environment and legislation constraints, coatings industry 

is moving through a major revolution to a ―greener‖ industry. It is of our interest to 

find out to what extent palm oil or its products could be applied in coatings industry. 

In this study, UV curable resin was prepared from monoglyceride (MG). MG 

produced from palm oil was treated with glycidyl methacrylate (GMA) in order to 

introduce unsaturated groups to MG (MG-GMA) through etherification reaction. 

Etherification reaction is believed as one of the novelty in this research. Then, MG-

GMA was mixed with different percentages of photoinitiator to study the extent of 

reaction of the former. Other parameters studied relative to GMA modification of 

MG were reaction temperature, reaction time and the amount of catalyst. It is 

believed that the findings from this research could be a worthy contribution to the 

advancement of green technology which will become increasingly important in the 

future because of the ultimate goal of supporting a sustainable world by producing a 

green product.  

 

1.2  Objectives    

 To determine the reaction condition in the preparation of MG-GMA resin. 

 To study the effect of glycerol/ palm oil ratio (MG) on the properties of cured 

MG-GMA.  

 To study the effect of GMA/MG ratio on the properties of cured MG-GMA.  

 To investigate the reactivity of the prepared palm oil based UV curable resin 

with photoinitiator in UV curing systems. 
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CHAPTER 2  LITERATURE REVIEWS 

 

2.1 Surface Coatings  

Today, many objects that we come across in our daily lives, including the 

house in which we live and the materials we use, such as, toothbrushes, pots and 

pans, refrigerators, televisions, computers, cars, furniture etc,  all come under the 

―umbrella‖ of coated materials. Likewise, fields such as military applications, 

vehicles, artilleries and invisible radars and aerospace products all involve the 

widespread use of coated materials. Clearly, the importance of coatings has increased 

hugely during the modern era of technology. In general, paints, varnishes and 

lacquers (opaque or colored varnishes) are termed as coatings (Gradzielski, 2008). 

 

Coatings may be described by their appearance (e.g., clear, pigmented, 

metallic, or glossy) and by their function (e.g., corrosion protective, abrasion 

protective, skid resistant, decorative, or photosensitive). Coatings are mainly applied 

on surfaces for decorative, protective, or functional purposes, but in most cases it is a 

combination among them (Goldschmidt and Streitberger, 2003, Schwalm, 2007a). 

Based on applications, coatings may also be classified as:- 

 

(i) architectural (decorative) coatings 

(ii) product coatings used by original equipment manufacturers (OEM coatings) 

(iii) special purpose coatings, and specialty (maintenance) coatings 

(iv) miscellaneous coatings 
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Architectural coatings include all paints, varnishes, and lacquers sold for 

direct application to either interior or exterior surfaces of residential, commercial, 

institutional, and industrial buildings. Typical types of paint sold as architectural 

coatings include house paint, stains, and undercoats (i.e. primers and sealers). They 

are often called trade sales paints. They are sold directly to painting contractors and 

do-it-yourself users through paint stores and other retail outlets (Weiss, 1997, Wicks, 

2007).  

 

Product coatings, also called industrial coatings, are applied in factories on 

products such as automobiles, appliances, magnet wire, aircraft, furniture, metal cans, 

chewing gum wrappers—the list is almost endless. This market is often called the 

OEM market, that is, the original equipment manufacturer market. The volume of 

product coatings depends directly on the level of manufacturing activity. This 

category of the business is cyclical, varying with OEM cycles. In most cases, product 

coatings are custom designed for a particular customer‘s manufacturing conditions 

and performance requirements. The number of different types of products in this 

category is much larger than in the others; research and development requirements 

are also higher (Weiss, 1997, Wicks, 2007). 

 

Special purpose coatings include industrial coatings applied outside a factory, 

along with a few miscellaneous coatings, such as coatings packed in aerosol 

containers. It includes refinish coatings for cars and trucks that are applied outside 

the OEM factory (usually in body repair shops), marine coatings for ships (they are 

too big to fit into a factory), and striping on highways and parking lots. It also 
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includes maintenance paints for steel bridges, storage tanks, chemical factories, etc  

(Wicks, 2007). 

 

According to Wicks (2007), the Census Bureau defines miscellaneous paint 

and coating products as paint removers, thinners, pigment dispersions, glazing 

compounds, etc. The terms ‗paint‘ and ‗surface coating‘ are often used 

interchangeably. In the strictest sense, the term "surface coating" is the more general 

description of any material that may be applied as a thin continuous layer to a surface, 

whereas, the term "paint" refers to any pigmented materials used in a film layer as 

distinct from clear films which are more properly called lacquers or varnishes 

(Lambourne and Strivens, 1999, Zarras et al., 2007). 

 

A paint coating is basically a polymer resin, dispersed in a solvent, modified 

by additives to achieve specific properties and pigments for providing colour, 

corrosion protection and other important properties. The nature of the coating 

revolves round the type of resin that is used, whether alkyd, epoxy, urethane, vinyl or 

polyester (Khanna et al., 2008, Gradzielski, 2008). Depending on their compositions, 

paints can be divided into three groups: solvent-borne, water-borne and solvent-free 

(100% solid). Solvent-borne paints consist of resin, additives and pigments that are 

dissolved or dispersed in organic solvents. Similarly, in water-borne paints the 

ingredients are dispersed in water. In solvent-free compositions, the paints do not 

contain any solvent or water and the ingredients are dispersed directly in the resin  

(Gradzielski, 2008). 
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Coatings dry by several mechanisms. The simplest is by evaporation of the 

solvent. The second most common mechanism is reaction with oxygen. Oil based 

coatings such as alkyd coatings dry by the reaction of oils with oxygen. But this 

process is rather slow; it needs several days to completely cure an alkyd coating. The 

third main mechanism of curing is the chemical reaction between resin and hardener 

in two-component systems. As the resin and the hardener or catalyst are mixed, 

crosslinking starts and with time the hardness of the mixture increases till it becomes 

the complete solid. The fourth mechanism is radiation curing, where the paint is 

dried by exposing it to microwave radiation or UV radiation. In the fifth case, the 

paints are dried by heating. This process is called stoving. In coil coatings, where the 

strips are coated online, the immediate coated strip is passed through a long furnace, 

maintained at a fixed temperature (Khanna et al., 2008). 

 

Over the past 25 years, coatings technologies have been influenced by the 

need to lower VOC emissions because of their detrimental effect on air quality as 

well as to reduce the use of costly petroleum based solvents (Weiss, 1997, Baghdachi, 

2009, Chen et al., 2011). Concern about toxic hazards has led to the need to change 

many raw materials that were traditionally used in coatings (Wicks, 2007). Owing to 

the raw material cost rising and the stricter environmental regulations, the coatings 

industry is transforming to a ―greener‖ industry by incorporating more alternative 

renewable raw materials and ―greener‖ technologies such as radiation cure, high 

solids, and waterborne coating technologies (Joshi et al., 2008, Chen et al., 2011). 

The industry has made the shift since 1990s. It has embraced sustainable concepts. 

The future of green technology is bright because its ultimate goal is to support a 

sustainable world by producing environment friendly products. Waterborne, powder, 
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UV-curable and high solids coatings have shown a significant growth (Weiss, 1997, 

Baghdachi, 2009). 

 

Although waterborne, powder and high solids coatings have emerged recently 

in which solvent emission is minimized, they still do not meet the stringent VOC 

regulations. The key features of radiation curing are that the reactive monomeric 

liquids used eliminate the need for volatile solvents, thereby meeting existing and 

forthcoming VOC regulations (Rao et al., 1995, Groshart, 1997). Radiation cure 

coating technology including UV (ultraviolet) and EB (electron beam) cure has the 

capability to produce high performance coatings with high productivity, low energy 

consumption and extremely low VOC emissions. It has been enjoying fast market 

growth since its introduction to the coatings industry. Utilization of biorenewable 

raw materials in the radiation cure coatings is a promising ―green + green‖ solution 

to the challenges that the coatings industry is facing (Rao et al., 1995, Groshart, 1997, 

Chen et al., 2011). 

 

 

2.2 Resin (Binder) 

Resins are the generally solid, sticky materials that hold the system together. 

They are also called binders (Lambourne and Strivens, 1999, Tracton, 2005, Talbert, 

2007). The resin or binder is the film forming element of a coating or adhesive. In 

simple terms, a coating‘s resin is the ―glue‖ which holds together, and which is 

principally responsible for providing adhesion to a substrate, binds pigments and 

extenders together, and determines important properties of the coating film such as 

durability, flexibility and gloss. The character of the resins has the greatest impact on 
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the performance of the coatings, and defines its properties (Marrion, 2004, Talbert, 

2007, Wicks, 2007). With a few exceptions, the resin is nearly always organic, 

consisting of natural resins or man-made polymers or prepolymers (Weldon, 2009). 

The formulation of a paint material and the particular chemicals used are influenced 

by the particular resin or resin combination used. When in a solvent, resins are the 

vehicles for the system (Tracton, 2005, Talbert, 2007). 

 

Paint binders may be referred to as convertible and nonconvertible types. 

Convertible paints are materials that are used in an unpolymerized or partially 

polymerized state and undergo reaction to form a solid film after application to the 

substrate. Nonconvertible paints are based on polymerized binders dispersed or 

dissolved in a medium that evaporates after the coating has been applied to leave a 

coherent film on the substrate surface. Convertible binders include oils, oleoresinous 

varnishes, alkyds, amino resins, epoxy resins, phenolic resins, polyurethane resins, 

and thermosetting acrylics. Nonconvertible resins such as cellulose, nitrocellulose, 

chlorinated rubber, and vinyl resins will not be covered in this study, because they 

are usually used in low solid, high-solvent content coatings that are not compliant for 

the majority of modern industrial applications (Talbert, 2007). 
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2.3 Natural oils based resin  

Natural resins and oils have a long history being used in the manufacture of 

decorative and protective coatings. They are derived from natural sources such as 

plants, animals and fossilized remains (Sharma and Kundu, 2006, Weldon, 2009, 

Chen et al., 2011). 

 

There has been a growing trend in utilizing the vegetable oils extensively as 

raw materials for the preparation of resins and polymeric materials due to their 

inherent biodegradability, low cost, societal favourably advantages and availability. 

The main intention of using vegetable oil is to replace the traditional use of 

petroleum based raw materials due to the environment issue. Various researches have 

been conducted to make full use of linseed, castor, soya, safflower, sunflower, canola, 

tung, tall oils etc (Rheineck and Cummings, 1966, Li et al., 2001, Güner et al., 2002, 

van Haveren et al., 2007, Kong and Narine, 2007). 

 

Vegetable oils are tri-glyceride esters of fatty acids, the general structure of 

which is shown in Figure 2.1. Triglycerides comprise three fatty acids joined by 

a glycerol center  (Khot et al., 2001). The fatty acids bonded in the oils are relatively 

long-chain, aliphatic, unbranched monocarboxylic acids; they may be saturated or 

varying highly unsaturated (containing double bonds)  (Brock et al., 2000). Most of 

the common oil contains fatty acids that vary from 14 to 22 carbons in length, with 

1– 3 double bonds (Khot et al., 2001). The fatty acid distribution of several common 

oils is shown in Table 2.1. In addition, there are some oils comprise fatty acids with 

other types of functionalities (e.g., epoxies, hydroxyls, cyclic groups and furanoid 

groups) (Sharma and Kundu, 2006).  
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Figure 2.1: The triglyceride chain containing three fatty acid chains joined by a 

glycerol center (Li et al., 2001) 

 

 

Table 2.1: The type and percentage present of fatty acid compositions of some 

commonly used oils (Oldring et al., 2002) 
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Saturated  

Caprylic  8                                   

Capric  7                                   

Lauric  49                                   

Mystiric  17 2                 1             4 

Palmitic  9 39 1 1 14 7 2 20 7 6 4 5 6 4 6 4 4 31 

Stearic  2 5 1 1 1 3 1 2 3 4 3 2 5 3 4 1 3 17 

Arachidic            4 2 1 1                   

Behenic            2                         

Unsaturated  

Oleic  6 45 2 2 76 64 20 35 30 42 36 20 21 8 8 7 46 43 

Ricinoleic      92 11                             

Erucic              50                       

Linolenic  2 9 4 85 9 20 22 42 54 47 62 72 17 38 8 10 35 5 

Linoleic              3   5 1   1 51 47     12   

Oleostearic                               78     

Lieanic                             74       

 Iodine Value  9 54 84 60 88 92 100 107 127 130 145 145 178 190 150 163 130 45 

 

 

Vegetable oil contains a higher percentage of a desirable fatty acid and crops 

that contain unique, unusual fatty acids, those triglycerides with numerous active 

sites amenable to chemical reactions to be converting to useful polymeric materials 

(Derksen et al., 1995, Khot et al., 2001, Tan and Chow, 2010). For non-food 

applications, oleochemical as well as fine chemicals industries have expressed their 

interest in new fatty acids with unusual properties and functionalities, since current 
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sources contain more than 10 different types of fatty acid as shown in the Table 2.2 

(Oldring et al., 2002).  

 

Table 2.2: The composition of fatty acids (Oldring et al., 2002) 

Common Name 
No. of 

Carbon 
Type Formula 

Lauric  12 Saturated  CH3-(CH2)10-COOH  

Myristic  14 Saturated  CH3-(CH2)12-COOH  

Palmitic  16 Saturated  CH3-(CH2)14-COOH  

Stearic  18 Saturated  CH3-(CH2)16-COOH  

Arachidic  20 Saturated  CH3-(CH2)18-COOH  

Oleic  18 Unsaturated  CH3-(CH2)7CH=CH(CH2)7-COOH  

Ricinoleic  18 Unsaturated  CH3-(CH2)4-CHOH-CH2-CH=CH(CH2)7-COOH  

Linoleic  18 Unsaturated  CH3-(CH2)4-CH=CH-CH=CH-(CH2)7-COOH  

Linolenic  18 Unsaturated  C2H5-CH=CH-CH2-CH=CH-CH2-CH=CH-(CH2)7-COOH  

Oleostearic  18 Unsaturated  (CH)3(CH2)3-CH=CH-CH=CH-CH=CH-(CH2)7-COOH  

Liconic 18 Unsaturated  

CH3-(CH2)3-CH=CH-CH=CH-CH=CH-(CH2)4-CO-(CH2)2-

COOH  

 

 

Vegetable oils could be classified as drying, semi-drying, or non-drying, and 

this is related to the behaviour of the unmodified oil, depending on whether it is, on 

its own, able to oxidize and crosslink to a dry film. A good drying oil contains over 

60% of the polyunsaturated linoleic and linolenic acids, while semi-drying oil 

contains just over 50% of linoleic acid. By contrast, a non-drying oil contains 90% 

saturated lauric acid and less than 10% unsaturated fatty acid (Lambourne and 

Strivens, 1999).  

 

The vegetable oil or its drying form owe their value as raw materials for 

surface coating ( including decorative) to their ability to polymerize and cross-link, 

or dry (cure) after they have been applied to surface, to form a tough, adherent, 

impervious, and abrasion-resistant polymeric film on the surface. Their film-forming 

properties are closely related to their degree of unsaturated centers or double bonds 

that polymerization and crosslinking take place. Unsaturation is an important factor 
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of vegetable, which enhances its use in coating industries. In terms of paint 

properties, the number of double bonds is the most important feature (Crivello and 

Narayan, 1992, Mosiewicki et al., 2005, Sharma and Kundu, 2006). Figure 2.2 is 

selected fatty acid for paint application. 

 

 

Figure 2.2: Selected fatty acid for paint application (Derksen et al., 1996) 
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2.4 UV-radiation curing technology  

During the sixties, the oil crisis was followed by ever escalating costs of 

conventional energy sources and petrochemical derived solvents. This trend has been 

spurred not only by the realization that the supply of fossil resources is inherently 

finite, but also the threat of environmental concerns on VOC and energy shortages. 

Simultaneously, this had created a favourable climate for the development of 

radiation curing technology (Dufour et al., 1991, Derksen et al., 1996, Weiss, 1997). 

Radiation cure coatings technology represents one of the new techniques that 

replacing the use of conventional or low solids, solvent-borne coatings (Weiss, 1997, 

Satas and Tracton, 2001, Koleske, 2001). As radiation curing technology was the one 

answering the challenge of the future and modern finishing by meeting the 3 ―E‖ 

rules fixed as a basic for each new development in the much diversified areas of 

coatings. The 3 ―E‖ are Economy, Energy and Ecology (Dufour et al., 1991). 

Moreover, the quality demands while taking into consideration environment 

pollution and energy saving, this has lead to an increasing use of the UV technology 

in the coatings, paint and ink industries.  

 

The radiation curing technology which has been widely used in the 

application of coatings, paint and ink industries are ultraviolet (UV) or electron beam 

(EB) radiation technology. Both UV and EB radiations are classified as 

electromagnectic radiations along infrared (IR) and microwave (MW). The main 

difference between UV and EB curing lies in the frequency, wavelength and 

mechanism by which the polymerisation reactions are induced (Groshart, 1997, 

Gloeckner, 2008). In UV cure coatings, it has low energy irradiation, thus the initial 

step requires photoinitiators (or photosensitizer) by absorption of photons of UV– 
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visible electromagnetic radiation to achieve effective curing. In EB cure coatings, the 

initial step is ionization and excitation of the coating resins by high energy electrons. 

EB are so energetic, so that photoinitiators are not required. Cross-linking is initiated 

by reactive intermediates that are generated from the photoexcited photoinitiator in 

UV curing and from excited and ionized resins in EB curing. Without any doubt, UV 

irradiation process is the lowest-cost option because the equipment is simpler, 

smaller and considerably less expensive to purchase and operate (Braithwaite et al., 

1991, Rao et al., 1995, Gloeckner, 2008).  

 

UV radiation is used to transform a reactive liquid monomers and oligomers 

to solids polymer (crosslinked polymer), at ambient temperature using ultraviolet 

(UV) radiation. This process involved the essentially physical changes due to either 

polymerization, crosslinking or grafting (Mehnert, 1998, Davidson, 2001, Christian, 

2002). 

 

For a photocuring polymerization of formulations to occur, there are three 

key requirements. The first is a UV irradiation source that produces high intensity 

UV radiation, the second are vehicles containing unsaturated polymerisable 

multifunctional monomers or oligomers (prepolymers), and last is a photoinitiator 

(Fouassier and Rabek, 1993, Dietliker et al., 2007, Chittavanich, 2009). Most 

monomers do not produce initiating species with sufficiently high yields when they 

are exposed to UV light, therefore a photoinitiator must be added to the formulations 

to generates reactive species (free radicals or ions) to initiate the polymerization 

reaction process (Decker, 1996, Decker 2001). In addition, formulations may consist 

of co-initiator, pigments, fillers, thermal stabilizer or additives. The overall 



17 
 

photocurable formulation process can be represented schematically as shown in 

Figure 2.3. 

 

 

 

Figure 2.3: Photocurable formulation (Decker, 1996). 

 

There are two classes of polymerization reactions in UV curing, which are 

free-radical and cation-initiated chain-growth polymerization. The latter is not 

common in use today and is not covered here. The details of free-radical 

polymerization will be discussed in details in this chapter. Free radical 

polymerization currently dominates because of its low cost and the ease of design 

afforded by a wide selection of usable monomers. Cationic polymerization has poor 

reactivity, sensitive to moisture and high water uptake of polymer are the adverse 

effect (Gruber et al., 2011). Cationic polymerization will continue outside the 

irradiation zone (dark cure), even when the initiating species are no longer being 

created, providing chain transfer and termination reactions do not occur due to the 

presence of nucleophilic species (Kennedy, 1982). During ambient UV curing there 

is the ever present and uncontrolled nucleophile water. The water will be present 

either dissolved within the liquid coating, chemically bound to substituents within 

the coating, such as fillers or pigments, or will be present in a gaseous state 

Furthermore, the cationic UV catalyst can suffer poisoning effects (Brann, 1990). 
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2.4.1 Advantages of UV curing technology  

UV radiation curing has become a well-accepted technology which has found 

a large variety of industrial applications because of its peculiar characteristic and 

distinct advantages compare to thermal and solvent based coatings. Overall, the most 

important features of this technology can be summarized in Table 2.3 (Rao et al., 

1995, Koleske, 2001, Satas and Tracton, 2001, Schwalm, 2007a, Gloeckner, 2008, 

Drobny, 2010). 

 

Table 2.3:  Advantages of UV radiation curing technology (Rao et al., 1995, 

Koleske, 2001, Satas and Tracton, 2001, Schwalm, 2007a, Gloeckner, 2008, 

zDorbny, 2010). 

Energy  

 Saving in energy: energy is used to initiate the radical polymerization which 

then cures the coatings. Commonly rapid cure at room temperature, no energy 

require heating the substrate. 

 Energy saving: green energy 

 

Economy advantages  

 High productivity: High curing speed. 

 Saving in investment cost: compact installations. 

 Saving in materials: often lower film weight coatings, giving better properties 

are possible with radiation cure formulations.  

 Saving man power: possibility of achieving different coating in line.  

 Decrease floor space: Small space requirements 

 

Ecology  

 No pollution of the atmosphere:  solvent free formulations (VOC reduction), 

100% solid system possible.  

 Minimal CO₂ evolution: energy used is electricity and therefore no carbon 

dioxide is formed by burning gas or oil to thermally cure the coating. 

However, unless nuclear or hydro-generation of electricity is used then there 

will be CO₂ evolution associated with the consumption of electricity.  

 Possibility of easy recycling: waste reduction 
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2.4.2 UV and Visible Radiation 

UV radiation is part of the electromagnetic spectrum which is shown in 

Figure 2.4 and it spans wavelength in the range from 100 to 400 nm (Dufour et al., 

1991, Drobny, 2010). The UV lamp is used to generate UV light which is a non-

ionizing or actinic radiation and has short wavelength cover the energy band from 

100-400 nm. The particular wavelength of UV radiation is emitted by heating the 

inert gas within the bulb, thereby vaporing of mercury and causing emission of UV 

light.  

 

 
Figure 2.4:  Electromagnetic energy spectrum (Dufour et al., 1991).  

 

 

UV radiation is divided into four regions, namely UVA, UVB, UVC and 

VUV. While UV light wavelengths are divided into three categories, which are 

referred as long, medium and short wavelength (Dufour et al., 1991, Arthur Green, 

2010, Drobny, 2010). Table 2.4 show the UV radiation regions and its applications. 
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Table 2.4:  UV radiation regions and its applications (Dufour et al., 1991, Arthur 

Green, 2010, Drobny, 2010) 

Name Wavelength 

range (nm) 

Applications 

UVA 

(longwave, or 

black wave) 

400nm - 315nm Used for low energy UV polymerization 

reactions, non-destructive fluorescent 

inspection methods and tanning salons. Photons 

in UVA always promote through cure with 

thicker film layers.  

UVB 

(medium wave) 

315nm – 280nm Used along with UVA for polymerization, is 

the most energetic region of natural sunlight, 

for accelerated light aging of materials and 

medical treatment curing. Photons inUVB 

contribute to bulk cure.  

UVC 

(short wave, or 

germicidal) 

280nm – 100nm Used for rapid surface cure of UV inks and 

lacquers, sterilization and germicidal irradiation 

and application, the most energetic of the 

wavelength used in UV curing. Photons in 

UVC are important for surface cure and 

promote surface properties such as hardness, 

stain resistance, and abrasion resistance. 

VUV 

(Vacuum 

Ultraviolet) 

100nm – 200nm Only can be used in a vacuum, they have very 

significant commercial importance. Used as 

envelope material for bulbs. 

 

 

2.4.3 UV radiation polymerization reaction  

UV radiation process is a photochemical process in which an abundant 

amount of UV energy is produced by a mercury discharge lamp and focused at 

monomers through cross linking or polymerization. In photochemical process, 

energy is absorbed from a photon to form an energised or excited state. This excited 

state must lose its excess energy to become stable and this can be lost in one of two 

ways. The first involves re-radiation of energy and the second a non-radiative energy 

transition. In both processes excited states are interconverted with each other or with 

the ground state. The processes can be called photophysical process. As a 

generalisation, the net effect of light energy being absorbed is that light can be 



21 
 

converted to light of a different wavelength, heat or to a potentially chemically 

reactive moiety (Allan et al., 1991, Drobny, 2010). 

 

In photochemical process, a photon is absorbed to initiate the reaction then 

produce new chemical species which are different from the starting materials. 

Whereas in photophysical process do not produce new chemical compounds, but it 

interconvert exited states with each other or exicited state with ground state 

(Dietliker, 1991a, Koleske, 2002). 

 

Basically, at the beginning of the phtochemical reaction, a photon is absorbed 

by a molecule called as photoinitiator, it causes the generation of species which is 

cabable if initiating polymerization of polymerisable constituents within the coating 

directly or indirectly (Dietliker, 1991a, Satas and Tracton, 2001). Photoinitiator plays 

a key role in converting the absorbed energy from the incident light into chemical 

energy in the form of reactive intermediates (Dietliker, 1991b). These intermediates 

are either free radicals which able to initiate radical polymerization or reactive 

cationic species which able to initiate cationic polymerization. 

 

 

2.4.4 Mechanism of free radical polymerization  

In the UV radiation polymerization reaction mechanism, the production of an 

initiating species by photochemical reaction occurs in the first step from photo 

polymerizable formulations and then the chain process amplifies the first 

photochemical reaction (Mehnert et al., 1998). 
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To produce free radicals, the photoinitiator has first to absorb energy from the 

UV light, the energy absorbed is sufficient to form an excited species. The 

photoinitiator fragments into free radicals that are the reactive species for the 

polymerisation of unsaturated moieties of monomers or oligomers, this process is the 

ignition of the polymerization reaction. Generally, no polymerisation would occur in 

UV curable system in the absence of photoinitiator (Dietliker, 1991a) 

 

Free radical photopolymerization involves four processes: initiation, 

propagation, chain transfer, and termination. Only the initiation step is photosensitive; 

all the other steps are thermally driven (Dietliker, 1991b, Davidson, 2001, Arthur 

Green, 2010): 

 

(i) Initiation - comprises the process of absorption of UV energy by a 

photoinitiator, the generation of radical species from the reaction is known as 

the photoinitiation process (initiation step) follow by photo polymerization 

process.  

(ii) Propagation – repeating addition of monomeric units in a chain reaction to 

produce the polymer backbone.  

(iii) Chain transfer- involves the reaction of the growing polymer chain by 

hydrogen donor to terminate the growing chain with concomitant production 

of a new donor radical that can generate a new polymer chain by reacting 

with more monomer. If the newly formed radical can start another chain 

reaction, this is called a chain transfer process.  

(iv) Termination- the continuance of the free radical chain can be terminated by 

various processes such as recombination and disproportionation reactions to 
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give a neutral species, so that the polymer chain stops growing and 

subsequently form a solid polymer matrix. 

 

Several steps involved in the photoinitiated polymerization can be summarized in 

the following Figure 2.5.  

 

  

 
 

PI = photoinitiator  

PI* = excited photoinitiator  

R₁· + R₂· = radical fragments of the photoinitiator  

X-H = hydrogen donor  

M = monomer  

 

Figure 2.5: Various steps in a photoinitiated polymerization (Dietliker, 1991a) 
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In coatings cured by free radical initiated by UV radiation, free radicals are 

photogenerated and initiate polymerization by adding to vinyl double bonds, 

primarily acrylates. In all practical cases, the initiating radicals are generated from 

electronically excited photoinitiator molecules. There are three basic stages involve 

in this photoreaction (Allan et al., 1991): 

 

i) Absorption of a photon resulting in an electronically excited state. 

ii) A primary photochemical process which may involve rearrangements in 

the electronically excited molecules. 

iii) A secondary or dark process which results from the intermediates 

produced from the primary photochemical process.  

 

From schematic mechanism (as shown schematically in the Figure 2.6), a 

photoinitiator molecule AB is excited into the singlet state (S₁) by photon absorption. 

Radical formation occurs via a triplet state (T₁). Fast transformation of the singlet 

into a triplet by inter system crossing (ISC) is a necessary condition for obtaining a 

high radical yield. Although, sometimes side reaction such singlet decay by 

fluorescence or triplet quenching by oxygen have to be avoided. Radical formation 

occurs via two possible reaction sequences. They are designated as Norrish type I (α-

cleavage) and Norrish type II (intermolecular hydrogen transfer) reactions. In the 

first case, the photoinitiator triplet state decays into a radical pair by homolytic 

decomposition. In the second case, the photoinitiator triplet state decays into a 

radical pair by hydrogen abstraction or electron transfer from a co-initiator. A 

geminate radical pair is formed surrounded by solvent cage. Diffusional motion 

prevents the immediate recombination of the radical in the pair and is the driving 
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