

AUTOMATED DYNAMIC SERVICE PLACEMENT AND

REPLICATION FRAMEWORK USING TEAM

FORMATION APPROACH TO ENHANCE SERVICE

AVAILABILITY

OOI BOON YAIK

UNIVERSITI SAINS MALAYSIA

2012

AUTOMATED DYNAMIC SERVICE PLACEMENT AND

REPLICATION FRAMEWORK USING TEAM

FORMATION APPROACH TO ENHANCE SERVICE

AVAILABILITY

by

OOI BOON YAIK

Thesis submitted in fulfillment of the requirements

for the degree of

Doctor of Philosophy

May 2012

 ii

ACKNOWLEDGEMENTS

First and foremost I offer my deepest gratitude to my supervisor, Dr. Chan Huah

Yong, who has guided me throughout my postgraduate studies with patience. I

deeply appreciate all the teachings, training, guidance and advice given by him.

I am also very grateful to have Dr. Cheah Yu-N as my co-supervisor. I want to thank

him for all the encouragement, guidance and advice given to me.

In my daily work, I want to thank everyone at the School of Computer Sciences,

USM who have helped and supported me to accomplish my postgraduate studies and

I want to extend my gratitude to my colleagues from the Faculty of Information,

Communication and Technology, UTAR for their support and understanding.

I thank the Institute of Postgraduate Studies (IPS), USM for their support,

cooperation and understanding.

Last but not least, special thanks go to my parents, my two brothers and my wife for

their unconditional love and unlimited moral support. Without their support and

understanding, I may not have been able to complete my postgraduate studies. Thank

you.

 iii

TABLE OF CONTENTS

 Page

Acknowledgements ii

Table of Contents iii

List of Tables vii

List of Figures ix

List of Abbreviations xii

Abstrak xiii

Abstract xv

CHAPTER 1 - INTRODUCTION

1.1 Overview and Motivation 1

1.2 Problem Statements and Research Questions 4

1.3 Research Objectives 5

1.4 Research Contributions 6

1.5 Methodology 9

 1.5.1 Research Scope 10

1.6 Thesis Layout 12

CHAPTER 2 - LITERATURE REVIEW

2.1 Overview 13

2.2 Definition of Availability 13

2.3 Existing Approaches to Enhance Service Availability 18

2.4 Service Placement Algorithms and Resource Evaluation Functions 21

 2.4.1 Rule-Based Techniques 24

 2.4.1.1 Constraint-Based Techniques 25

 2.4.2 Utility Function-Based Techniques 26

 2.4.3 Procedure-Based Techniques 30

 2.4.4 Hybrid-Based Techniques 32

 2.4.5 Discussion 32

2.5 Fuzzy Inference System (FIS) 33

 2.5.1 ANFIS: Adaptive Network-based Fuzzy Inference System 35

2.6 Conclusion 37

 iv

CHAPTER 3 – THE DYNAMIC SERVICE PLACEMENT AND

REPLICATION FRAMEWORK

3.1 Introduction 39

3.2 Overview of the Dynamic Service Placement and Replication

Framework

40

3.3 The Team Formation Algorithm 42

 3.3.1 Stabilizing the Team Formation Process 45

 3.3.2 Solving Resource Contention between Teams 48

3.4 Identifying the Appropriate Resource 49

 3.4.1 Justifications for Adopting ANFIS: ANFIS vs. Neural

Network

54

 3.4.2 Ability of ANFIS to Model Fuzzy Logic 57

3.5 Resource Evaluation Criteria for Team Formation 59

 3.5.1 Availability 60

 3.5.2 Cost 64

 3.5.3 Performance 66

3.6 The Team Formation Complexity and Potential Solutions 68

 3.6.1 Branch-and-Bound using Resource Availability to Reduce

Search Space

72

 3.6.2 Team Formation Algorithm using Greedy Best-First Search

to Reduce the Complexity of Generating Possible Candidate

Teams

78

3.7 Summary 80

CHAPTER 4 – IMPLEMENTATION AND SIMULATION DESIGN

4.1 Introduction 82

4.2 Implementation of the Service Placement and Replication Process 82

4.3 Workflow of the DSPR Framework 83

4.4 The Implementation Details of a DSPR Agent 85

 4.4.1 The Team Formation Coordinator Module 86

 4.4.2 The Resource Evaluation Module 88

 4.4.3 The Execution Module 90

 4.4.4 The Monitoring and Discovery Service (MDS) Module 90

 v

4.5 Implementation of the DSPR’s Simulation for Experimental

Results

91

4.6 Implementation of Existing Resource Evaluation Functions 94

4.7 Summary 95

CHAPTER 5 – EVALUATION AND RESULTS

5.1 Introduction 96

5.2 Test 1: Comparison of Resource Evaluation Techniques 97

5.3 Test 2: Ability of DSPR to Increase Service Availability 104

 5.3.1 Type2 (a): Evaluation of the Ability of DSPR to Increase

Service Availability in Environment where Resources are

Dynamically Removed and Restored.

106

 5.3.2 Type2 (b): Evaluation of the Ability of DSPR to Increase

Service Availability in Environment where Resources are

Dynamically Removed and NOT Restored.

111

5.4 Test 3: Evaluation of the Ability of DSPR in Achieving the

Administrator’s Service Requirements

116

5.5 Test 4: DSPR Framework from a User Perspective 121

5.6 Summary and Conclusion 127

CHAPTER 6 - CONCLUSION AND FUTURE WORK

6.1 Revisiting the Contributions 129

6.2 Revisiting the Objectives 130

6.3 Research Limitations 132

6.4 Future Work 133

REFERENCES 136

LIST OF APPENDICES

A. Details of the resources in building A and B 144

B. Experimental results of Test 4 145

C. Performance comparison between NN and ANFIS 146

 vi

D. Output comparison between NN and ANFIS with various training

sizes

147

E. The details of Fuzzy Logic configuration for the services used in

this work.

148

LIST OF PUBLICATIONS 153

 vii

LIST OF TABLES

 Page

Table 2.1 Various definition of availability functions

15

Table 2.2 Overview of the advantages and limitations of existing

methods

20

Table 2.3

List of existing service placement algorithms with

respective service placement objectives and resource

evaluation techniques

22

Table 3.1 Pearson’s correlation coefficient between FL and ANFIS

with corresponding p-value using different training size

58

Table 3.2 Scope of availability in the DSPR system

61

Table 3.3 Different system availability configuration

62

Table 3.4 Solutions of the two different teaming methods

80

Table 4.1 Estimated availability of components used in the

simulation

92

Table 5.1 Summary of experiments

96

Table 5.2 Details of the 7 machines in the resource pool

98

Table 5.3a Effectiveness of various resource evaluation functions

from stages 1 to 4

99

Table 5.3b Effectiveness of various resource evaluation functions

from stages 5 to 7

100

Table 5.4 Service requirements of the 5 simulated services

105

Table 5.5 Mean square error (MSE) between the simulation and the

value computed using hypergeometry distribution function

110

Table 5.6 Resource ranking using DSPR’s adaptive fuzzy-based (the

proposed) technique

114

 viii

Table 5.7 Resource ranking using the utility function-based

technique

115

Table 5.8 Details of cloud instances

117

Table 5.9 The ability of DSPR in achieving the requirements of the

services

119

Table 5.10 The availability, cost and performance of the servers used

by DSPR

123

 ix

LIST OF FIGURES

 Page

Figure 1.1 Research contribution

7

Figure 2.1 Availability in series

17

Figure 2.2 Availability in parallel

17

Figure 2.3 Classification of resource evaluation functions in this

work

23

Figure 2.4 Schematic diagram of fuzzy inference system

34

Figure 2.5 ANFIS with two inputs and an output

36

Figure 3.1 Overview of the relationships between administrators,

resources, and users in the DSPR framework

40

Figure 3.2 Anatomy of a DSPR managed resource

42

Figure 3.3 The proposed team formation cycle

43

Figure 3.4 Overview of the DSPR resource evaluation process

50

Figure 3.5 Limitation of the fuzzy inference system, producing

same score for Team A and B

52

Figure 3.6 An example of the DSPR evaluation function feedback

53

Figure 3.7 Average training time taken for 2500 data

55

Figure 3.8 Average RMSE after the training

56

Figure 3.9 Average number of epoch required for training

56

Figure 3.10 Scatterplot charts that show the correlation between FL

and ANFIS using different training size

58

Figure 3.11 The scope of availability in DSPR

60

Figure 3.12 Example of system availability that is more fine grained

in term of infrastructure availability

63

Figure 3.13 Total number of team combinations vs. number of

resources. The maximum team size is capped at 5

72

Figure 3.14 Representing resources in a resources pool using a tree

data structure

74

 x

Figure 3.15 The structure of the simulated environment with 25

machines deployed in 2 different buildings that share the

same electricity source

76

Figure 3.16 Time taken for DSPR to search for a team with and

without branch-and-bound

77

Figure 3.17 Time taken for DSPR to search for a team

79

Figure 4.1 Different levels of service placement and replication

82

Figure 4.2 The implementation overview of a DSPR workflow

84

Figure 4.3 The modules in a DSPR agent

85

Figure 4.4 The workflow of a team formation coordinator

87

Figure 4.5 Workflow of configuring the resource evaluation

module

88

Figure 4.6 Workflow of the resource evaluation module

89

Figure 4.7 Workflow of the DSPR simulation

91

Figure 5.1 Configuration of the simulation environment for testing

the DSPR’s ability in improving service availability

104

Figure 5.2 Autonomic computing benchmark phases

105

Figure 5.3 Fault injection subintervals

105

Figure 5.4 Probability of a service being available with different

number of machines being simultaneously turned on and

off

107

Figure 5.5 Probability of a service being available with different

number of machines being simultaneously turned on and

off, calculated using hypergeometry distribution

function

110

Figure 5.6 Probability of a service that is available at different

stages of the simulation

112

Figure 5.7 Configuration of the simulated environment for testing

the ability of DSPR to achieve the administrator’s

service requirements

117

Figure 5.8 The environment settings for actual service performance

observed by the end user

122

 xi

Figure 5.9 The service performance observed by the user as the

number of concurrent access increases

124

Figure 5.10 The performance and cost from the DSPR versus the

actual request/10 seconds

127

 xii

LIST OF ABBREVIATIONS

ACI Autonomic Computing Initiative

ANFIS Adaptive Network-based Fuzzy Inference System

CSP Constraint Satisfaction Problem

DSPR Dynamic Service Placement and Replication

FL Fuzzy Logic

FIS Fuzzy Inference System

MAUT Multiple Attribute Utility Theory

MCDM Multiple Criteria Decision Making

MSE

Mean Square Error

MTBF Mean Time Between Failure

MTBM Mean Time Between Maintenance

MTTR Mean Time To Repair

NN Neural Network

RMSE Root Mean Square Error

RR Round Robin

RSerPool Reliable Server Pooling

SGE Sun Grid Engine

SLA Service Level Agreement

SOA Service Oriented Architecture

TCO Total Cost of Ownership

VM Virtual Machine

WAN Wide Area Network

 xiii

RANGKA KERJA PENEMPATAN DAN REPLIKASI SERVIS

YANG DINAMIK SECARA AUTOMATIK DENGAN

PENDEKATAN FORMASI PASUKAN UNTUK

MENINGKATKAN KEBOLEHSEDIAAN SERVIS

ABSTRAK

Pengurusan dan pentadbiran servis dalam persekitaran sistem teragih menjadi

semakin rumit disebabkan oleh saiz persekitaran sistem teragih yang semakin meluas

dan dinamik. Tesis ini mencadangkan satu rangka kerja berautomatik untuk

menguruskan servis dalam persekitaran sistem teragih yang dinamik dalam mana

sumber yang tersedia untuk servis tersebut akan berubah dari semasa ke semasa.

Tujuan penyelidikan ini ialah untuk mereka bentuk satu rangka kerja automatik yang

boleh mencari sumber pengkomputeran yang mempunyai prestasi yang lebih tinggi

secara berterusan serta menabung sumber pengkomputeran untuk mencapai tahap

kebolehsediaan yang baik dengan menggunakan pendekatan formasi pasukan.

Pentadbir masih diperlukan tetapi tidak perlu membuat keputusan aras rendah seperti

keputusan tentang penempatan servis yang sebenar serta tatacara “failover” untuk

setiap servis. Tambahan pula, penyelidikan ini juga mencadangkan satu teknik

penilaian sumber yang menggabungkan logik kabur dan “Adaptive Network-based

Fuzzy Inference System” (ANFIS). Ia menggunakan FL untuk mengumpulkan

keperluan servis daripada pentadbir dan ANFIS membenarkan pentadbir membuat

penyelerasan halus terhadap proses penilaian sumber semasa persekitaran sistem

teragih berubah. Simulasi telah dibangunkan untuk menilai keupayaan rangka kerja

yang dicadangkan ini dari segi meningkatkan kebolehsediaan servis dengan

menggunakan cara suntikan kegagalan berturut-turut yang berbilang. Keputusan dari

 xiv

penilaian tersebut menunjukan cadangan ini dapat meningkatkan kebolehsediaan

service walaupun mengalami kegagalan berbilang sumber. Selain itu, penyelidikan

ini juga menerangkan batasan dan penambahbaikan terhadap cadangan kerja ini pada

masa depan yang berpotensi.

 xv

AUTOMATED DYNAMIC SERVICE PLACEMENT AND

REPLICATION FRAMEWORK USING TEAM FORMATION

APPROACH TO ENHANCE SERVICE AVAILABILITY

ABSTRACT

Managing and administering services in the distributed environment are getting more

complicated as the size of the distributed computing environment grows larger and

becomes more dynamic. This thesis proposes an automated framework to manage

services in a dynamic distributed environment where the resources available for these

services would change from time to time. The aim of this research is to design an

automated framework that would continuously search for resources with better

performance and pool resources together to achieve better availability using a team

formation approach. Human administrators are still required but are freed from

making low-level decisions such as to decide the actual placement of the services and

to design the failover procedures for each of the services. In addition to that, this

research also introduces a resource evaluation method that fused Fuzzy Logic (FL)

and Adaptive Network-based Fuzzy Inference System (ANFIS). It uses FL to capture

services’ requirements from administrators and ANFIS to allow administrators to

fine-tune the resources evaluation process when environment resources change.

Simulations were developed to evaluate the ability of the proposed framework in

improving service availability using multiple consecutive random fault injection

method. The experimental results showed that the framework can improve service

availability even during multiple consecutive resource failure. Besides that, this

research also highlights the limitations and potential future enhancement of the

proposed work.

1

CHAPTER 1

INTRODUCTION

1.1 Overview and Motivation

The introduction of various well-distributed computing paradigms such as grid

computing, cloud computing, and ubiquitous computing along with the advancement

of distributed computing technologies namely server virtualization, service-oriented

architecture (SOA), and distributed agents, have greatly increased the flexibility and

scalability of distributed systems. However, these flexibility and scalability are not

achieved without problems of their own, notably the difficulty to manage and

administer resources in a distributed environment [1-3], in view of the tediousness of

maintaining availability, cost, security and performance of a large number of services

running on a huge number of heterogeneous machines across different networks.

Conventional resource management methods that use human administrators to

manage dedicated and specialized infrastructures such as cluster computing to host a

fixed set of services are no longer suitable in view of the rapidly growing size of

networks on the Internet [4]. In general, administrators are required to constantly

monitor utilization of the services and physical resources, define high-level

utilization policies, and perform low-level implementation in order to ensure

performance of all the services are within their respective acceptable range. As the

network size increases, intricacy of the distributed system will affect the productivity

of administrators [5] and often results in high operating cost and non-optimal use of

resources.

2

The need for a self-management framework has begun to emerge [6-14] and it would

be essential when administrators could no longer handle the scale and heterogeneity

of the ever growing distributed computing environment. One of the most notable

movements of self-management automation was the Autonomic Computing Initiative

(ACI) [15] by IBM in 2001. The research direction of ACI was to design a

distributed computing system which can autonomously configure, heal, optimize and

protect according to changes in the environment with minimal intervention from

administrators. This self-management system was inspired by the human body’s

autonomic nervous system, which controls functions such as heart beat, blood sugar

and respiration without requiring conscious human action.

Although the goal of autonomic computing has been set, the goal has yet to be

realized completely [16]. This is due to the fact that the scope of autonomic

computing goes beyond the traditional boundaries of automation. It requires the

components in a distributed environment to work together as one “super organism”

that exhibits the capabilities of self-healing, self-configuring, self-protecting and self-

optimizing [17]. However, a common acceptable definition of an autonomic system’s

characteristics has yet been standardized [4]. For instance, it is difficult to distinguish

between self-protecting, self-healing and self-optimizing mechanisms, as all of these

mechanisms serve in an interwoven manner to improve the state of a system.

Long before ACI, there were many attempts made to automate administrative tasks

and reduce the difficulty of distributed resource management. Organizations have

been sharing the best practices of ICT [18] and there have been continuous

3

development of distributed system management tools for network monitoring,

performance monitoring, load balancing and fault tolerance. Unfortunately, all of

these tools still require a lot of human intervention to the finest detail.

The advancement of virtual machines (VMs) has enabled administrators to decouple

the dependency between software and hardware at the expense of a slight

degradation of the hardware performance [19]. However, as the technologies of

machine virtualization and hardware improve, any difference between VMs and

physical machines would soon be insignificant [20]. The ability of VMs in reducing

setup time, migrating services without downtime, and consolidating multiple

underutilized servers into a smaller number of physical machines have made VM

technology seem a viable way to reduce the intricacy of resource management [21,

22]. Unfortunately, this has yet to become a reality. This is because the

administrators are still required to plan and map the VMs to physical hosts manually.

Even though automated VM migration tools exist, these still require the

administrators to provide low-level detailed migration rules in advance [23].

The emergence of cloud computing seems to be a viable solution in reducing the

total cost of ownership (TCO) of many distributed systems. This is achieved by

sharing hardware infrastructure hosted in a third party data centre [23, 24]. However,

reducing the TCO does not reduce the administrative intricacy, and due to the ease of

deploying and scaling new cloud instances, cloud computing will continue to attract

larger scale of distribute systems to be developed and deployed [25]. Cloud

computing does not solve the problem of managing a large number of services [26].

Moreover, it is possible that services are deployed across multiple networks

4

indiscriminately. Hence, services running on cloud computing environment will still

require the administrators to plan the architecture of the distributed system carefully

to leverage on the scalability offered by cloud computing [27, 28]. Making a service

available in a cloud computing environment does not mean that the service is

automatically converted into high availability mode [29].

Thus, a self-management framework for a distributed computing environment is

required to act as a middleware between the services and the physical resources. This

would allow human administrators to cope with the dynamic and fast-growing

distributed computing environment.

1.2 Problem Statements and Research Questions

As a result of the ever-growing distributed computing environment, many service

placement algorithms [30-37] have been introduced to automatically manage the

services. Besides being different in terms of their centralized and decentralized

architectures, each of them was built on different resource evaluation schemes with

different objectives. The decisions made are also based on different criteria. Most

service placement algorithms are application specific and aim to improve service

performance or to reduce operation cost. A majority of the algorithms did not

consider the availability of resources which will directly affect service availability.

Besides the differences in architecture and objectives, most of the solutions proposed

to improve service availability [38-40] are based on having redundant servers to

mask failures. The effectiveness of these solutions is often very dependent on the

5

experience and knowledge of the system administrators. Although the additional

servers increase service availability, the difficulty in managing the distributed system

increases as well.

In addressing these problems this research focuses the following questions:-

 How to free administrators from making low-level decisions such as to decide the

actual placement of services and design the failover capabilities for each service?

 How a self-management framework could make service placement and replication

decisions according to the requirements given by the system administrators?

 What are the factors that contribute directly to the availability of a service and

how to enhance the availability of services even during the event of multiple

consecutives resources failures?

 How effective is the proposed solution in term of enhancing services availability?

1.3 Research Objectives

The main objective of this research is to design a self-management framework that

manages services in a dynamic distributed environment according to the

administrators’ service requirements. Depending on the environment, this self-

management framework will continuously manage the placement and replication of

its services to maintain the performance and availability of the services.

The proposed self-management framework is designed based on the following sub-

objectives:-

6

1. To perform low-level decisions on the placement and replication of the services

on behalf of an administrator. Continuously manage services on behalf of the

administrators in terms of availability, performance and cost.

2. To autonomously evaluate and select resources according to the preference of

administrators. The preference of the administrators must be configurable into the

framework.

3. To automatically increase the availability of managed services even during the

event of multiple consecutives resource failures by taking into account of factors

that affect service availability.

4. To simulate a distributed environment in order to measure the effectiveness of the

proposed self-management framework in increasing the availability of the

managed services in different scenarios.

1.4 Research Contributions

The proposed self-management framework is called the Dynamic Service Placement

and Replication framework (DSPR). At first glance, this work might seem similar to

some existing work such as server failover. In general, failover techniques can be

categorized into two types namely static and dynamic. Static failover requires the

administrator to define the hardware involved and carefully plan the failover

procedure [41, 42]. Dynamic failover uses a pool of servers that are identified by the

administrator to perform failover instead of specifying the exact servers to be used

[43, 44]. Although failover techniques can mask hardware failure and increase

service availability, they cannot be used to improve service performance.

7

There may also be some semblance of this work to resource allocation techniques.

Resource allocation in distributed computing is a process of mapping computational

tasks to processing units [45]. There are two types of computational tasks namely

batch jobs and services. Resource allocation for batch jobs is commonly known as

jobs scheduling while resource allocation for services is known as service placement.

From our literature review, we found that most service placement algorithms focus

on performance and cost effectiveness rather than service availability. Figure 1.1

distinguishes our framework from the existing work such as failover and resource

allocation.

Figure 1.1 Research Contribution

The following is the contributions of this research:-

1. The main contribution of this research is the design of the self-management

framework. Depending on the environment, the framework leverages on the service

placement and replication techniques automatically and continuously maintain the

8

availability, cost, and performance of all the managed services are within the range

specified by the administrator.

2. Besides that, this work also identified an appropriate resource evaluation technique

that uses FL and ANFIS together to be employed in the proposed framework. The

resource evaluation technique has the ability to represent the administrator’s resource

management policies using rules with approximate values which are more intuitive

for the administrator to set compared to assigning specific values for the rules (please

refer section 2.4.1 for details). In addition, the proposed resource evaluation

technique has the ability to learn from the feedbacks given by the administrators to

make better decisions preferred by the administrators in the future.

3. In the event of resource failures, the framework will search for opportunities to

enhance service availability by migrating services to other available resources. Even

in low-availability environments, DSPR will resort to replication to improve service

availability. Thus, the design of this framework enables physical resources to be

added and removed from the distributed environment without having to be concerned

about the services running on the framework. From a user’s perspective, services

managed by DSPR that are running in a dynamic distributed environment would be

perceived as services running on high-availability infrastructure.

4. A simulator was developed to evaluate the effectiveness of the proposed solution

in term of service availability. The experimental results also highlights the

limitations and potential future enhancement of this research.

9

1.5 Methodology

The design and development of the proposed framework is divided into 3 stages. In

the first stage, a team formation algorithm that makes decisions on service placement

and service replication is designed. The team formation algorithm is inspired by the

way humans team up autonomously to solve problems that cannot be achievable

individually. Bruce Tuckman proposed a model of group development that for a team

to grow, to overcome challenges, to solve problems, and to deliver solutions, the

team has to go through stages such as forming, storming, norming and performing

[46]. Team formation algorithm using stages approach but does not use similar stages.

The team formation process is designed to be a closed control loop and an adaptive

process where the team will continuously recruit new members (other available

machines in the resource pool) and remove existing underperforming members

(existing service-host pairs that are not performing) until the best working group is

attained to satisfy the service level specified by the administrator. Whether a member

is performing or underperforming depends on the resource evaluation technique that

is used and how it is configured. Please refer to Section 3.4 on the resource

evaluation technique proposed in this work.

In the second stage, we identified potential resource evaluation techniques for the

team formation process to perform resource evaluation. Besides reviewing existing

resource evaluation techniques, we also explored fuzzy inference system (FIS) and

adaptive-network-based fuzzy inference system (ANFIS). In the same stage, we

implemented and performed a preliminary evaluation on the team formation

10

algorithm with the proposed resource evaluation technique using simulations. We

continued improvising the framework based on problems that arose from the

preliminary evaluation results. This led us to explore other possible methods to

reduce the search space and speed up the team formation algorithm.

In the final stage, we implemented the improvised framework and evaluated the

ability of the proposed framework in managing services via a simulation. The

simulation simulates a dynamic distributed environment with services to be managed

by the proposed framework. The simulated environment includes an environment

where resources are randomly turned on and off, and an environment where

resources are randomly turned off without being turned on again. We compared the

proposed framework with existing failover techniques with the same simulated

environments.

1.5.1 Research Scope

The focus of this research is the design of a self-management framework and an

algorithm for service placement, and replication. For its complete implementation,

the framework would require other supporting technologies such as:-

 Service migration solutions such as virtual machines to enable services to be

migrated and deployed on heterogeneous types of machines.

 Network protocols such as heartbeat protocol and network algorithms such as

election algorithm to detect and identify faulty nodes.

11

 Pure peer-to-peer (P2P) networking architecture that does not require any super

nodes to remove the dependency of the framework on any centralized components.

However, these technologies are not the focus of this research. There are some

existing work done in [11, 13] that identified the key components which are required

in an autonomic framework.

Instead, the scope of this work focuses on the DSPR framework, particularly on the

service placement and replication decision making component, to enhance service

availability with performance and cost constraints. The framework is designed to

allow violations on certain constraints when the primary criterion is threatened

depending on the administrator’s preference. For instance, the performance and cost

constraints can be violated when the availability of the service is threatened. Many

existing work have explored automated service placement but not many of them

focus on more than two criteria, or allow constraints to be violated during

computational resource crisis.

However, measuring and benchmarking a self-management framework is not without

problem of its own. Notably, different self-management frameworks exhibit different

levels of automation and they could not be quantitatively measured; e.g. different

amount of human intervention required [47] and different objectives such as self-

configuration [48], self-healing [49], self-optimization [50] and self-protection [51].

Self-management frameworks are geared more towards dependability benchmarking

[52, 53]. Unlike the well established performance benchmarking, dependability

12

benchmarking is a relatively new research field and it is still lacks of commonly

accepted benchmarking method [54].

Therefore, for the purpose of this research, the proposed self-management

framework had to be evaluated using simulation and the evaluation focuses on how

the framework design is capable of enhancing service availability using fault

injection method proposed in [53]. Thus, the experimental results shows the ability

of the framework to perform self-management but it would not be able to measure

the effectiveness of the proposed solution. In order to observe the proposed

framework from an end-user perspective, we also implemented the simulation across

a wide area network (WAN).

1.6 Thesis Layout

This thesis is organized as follows. In Chapter 2, we provide a review of existing

service placement algorithms, server failover solutions, and the fundamental details

of Fuzzy Logic and the Adaptive Network-based Fuzzy Inference System (ANFIS).

Chapter 3 presents the details of the proposed self-management framework with

extensive justifications. Details of the proposed framework and simulation

implementation are presented in Chapter 4, and the experimental results are

presented in Chapter 5. Finally we conclude this thesis in Chapter 6 by revisiting the

contributions, and by suggesting some future work.

13

CHAPTER 2

LITERATURE REVIEW

2.1 Overview

This chapter begins with the definition of availability, and exploration of existing

techniques that are commonly employed to improve the availability of services in

distributed computing systems. This is followed by a review of existing service

placement algorithms. This exploration includes a discussion on the advantages and

disadvantages of existing algorithms, and the resource evaluation functions

employed.

2.2 Definition of Availability

Availability is often confused with reliability. Reliability is the probability of a

system performing its intended function over a given period of time without

interruption, while availability measures the ability of a system to be up and ready to

be used at a random point of time [55]. Reliability is commonly measured using

Mean Time Between Failure (MTBF), and Failure Rate (FR) [56] where MTBF is

the average time between consecutive failures, and FR is defined as the inverse of

MTBF. Equation 2.1 illustrates the inverse relationship between MTBF and FR,

while availability is mathematically represented in equation 2.2.

 (2.1)

14

 (2.2)

where MTTR is the mean time to repair. MTTR is a value reflecting the

maintainability of a system. Maintainability is the probability of a maintenance

action completing within a given duration [56].

From the two equations 2.1 and 2.2, the relationship between reliability and

availability can be distinguished more clearly. From equation 2.1, it shows that high

failure rate will result in low MTBF and reliability is improved when the duration

between failures is extended. From equation 2.2, it shows that reliability is only one

of the factors that affect availability and there is another factor that affects the

availability of a system which is the maintainability of a system. Thus, poor

reliability does not necessarily imply low availability. From the availability point of

view, poor reliability can be compensated by having shorter maintenance time,

availability of a system can be increased by having a longer MTBF and shorter

MTTR. For systems that cannot be repaired, the systems’ availability is equivalent to

the systems’ reliability [57].

Besides the general definition of availability mentioned above, there are several other

more specific definitions for availability [57-59] namely inherent availability,

achieved availability and operational availability. Inherent availability, the

availability function only considers the downtime of corrective maintenance and it

assumes that spare parts and manpower are always available without delays. It is

used to determine availability of the design of the equipment. Achieved availability

of a system, the availability function will consider both preventive and corrective

15

maintenance without including the delay of spare parts and manpower arrival. It is

often used to determine the availability of the design of the equipment and facility.

Finally, for operational availability, instead of computing the mean time between

failures, it divides the total system uptime by the total time that the system is

expected to operate. Operational availability is a measure of availability over a of

duration time, and includes the actual time to perform maintenance and the delay of

spare parts, manpower arrival and any administrative waiting time. Therefore, the

operational availability is the actual availability that the user experiences.

The difference between the definitions of inherent, achieved, and operational

availabilities stems from whether or not the duration of preventive maintenance,

corrective maintenance, logistic delay of spare parts, and administrative waiting time

were included or excluded in the general availability equation, i.e. Equation 2.2.

Table 2.1 illustrates the differences among these availability definitions.

Table 2.1 Various definition of availability functions

Type of

Availability

Equation Definition

Inherent

Availability

Inherent availability considers the

downtime of corrective

maintenance only. It assumes that

spare parts and manpower are

always available without delays. It

is used to determine availability of

the design of the equipment.

Achieved

Availability

Achieved availability considers

both preventive and corrective

maintenance excluding the delay of

spare parts and manpower arrival.

It is used to determine the

availability of the design of the

equipment and facility

16

Operational

Availability

Operation availability includes the

actual time to perform maintenance

and the delay of spare parts,

manpower arrival and any

administrative waiting time. The

operation availability is the actual

availability that the user

experiences.

Note: MTBF is Mean Time Between Failure, MTTR is Mean Time Between

Repair and MTBM is Mean Time Between Maintenance.

Another commonly used index to indirectly reflect the availability of a system is the

downtime of a system [60]. Downtime is often expressed using the duration of

downtime per year. On the other hand, availability is often specified in percentage.

The relationship between downtime (measured in minutes/year) and availability can

be expressed with the following equation:-

 () (2.3)

Where total_minutes_in_a_year = 525,600 by assuming that one year has 365 days.

Downtime provides a more intuitive value for understanding the difference between

availability values of two systems [61]. For instance, comparing the availabilities of

two systems, 99.9% and 99.999% might not seem to have much difference but in

terms of downtime, 99.9% availability has 8.76 hours/year of downtime where as

99.999% has 5.256 minutes/year of downtime.

The availability of a system is often dependent on the aggregation of its components’

respective availabilities. The aggregation process is done by computing the

interconnection of components of the system using the following two rules [62]:-

17

Rule 1: If failure of a component will cause the system to fail, then the

availability between the components are considered to be operating in series.

Figure 2.1 illustrates availability in series and the aggregated availability is

shown in equation 2.4.

Figure 2.1. Availability in series

 (2.4)

where is the availability for component X and is the

availability for component Y respectively.

Rule 2: If there is another component to take over a failed component, then the

availability between the components are considered to be operating in parallel.

Figure 2.2 illustrates availability in parallel and the aggregated availability is

computed using equation 2.5.

Figure 2.2 Availability in parallel

 () () (2.5)

18

where is the availability for component X and is the

availability for component Y respectively.

2.3 Existing Approaches to Enhance Service Availability

In most high-availability distributed systems, redundancy is used to increase

availability and mask failure [38, 39, 63]. In case of failure, the redundant server will

take over the responsibility of the actual server. This switching process is known as

failover. Although the failed server is not repaired, the redundant server makes the

system appear as available and operating as usual to the users. Once the failed server

is repaired, a failback procedure is initiated to restore the configuration back to

original before another failover occurred. This failback procedure usually requires

human intervention. Although redundancy is able to increase the availability of a

system, it is not without problems of its own, notably additional cost and

underutilized resources. For instance database mirroring and server replication

techniques [64] require additional hardware that do not contribute to the performance

of a system. The cost would be even higher if the system is required to withstand

multiple consecutive resource failure.

There are also techniques that are available to reduce the number of underutilized

resources by using the additional resources to improve the service performance. For

example, server content caching [65] and load balancing techniques [66] were

introduced to use the additional resources to improve service performance. However,

the design and management of these existing methods to improve service availability

19

in a distributed system itself are by themselves complicated for the system

administrators [67]. This is because the administrators need to decide on the

architecture, roles, and relationships of the servers, while matching applications to

servers. These tasks would be even more complicated in a large distributed

environment.

In order to reduce the intricacy, technologies such as clustering [40, 68, 69] and

reliable server pooling (RSerPool) [70, 71] were devised. For example, the clustering

failover technique used in Sun Grid Engine (SGE), SGE’s master node has all its

child compute nodes arranged in a serial manner to form a series of redundant nodes.

In the event of the master node failure, the first compute node in the serial

arrangement will take over and continue its operation. This process can be repeated

until all the nodes in the SGE fails [40].

At a glance, RSerPool appears similar to clustering. However, RSerPool is different

as it dynamically selects the redundant node, i.e. the selection of the redundant node

is not predefined and arranged in a serial manner. Administrators do need to manage

RSerPool by defining the redundant server selection policies. There are two types of

server selection policies: static or dynamic [71]. Static policies use predefined

schemes such as round robin (RR) where servers are selected sequentially in a cyclic

manner. Besides RR, there are weighted RR where weights are used to indicate the

server’s capacity. On the other hand, policies make decisions based on the current

state of the system. For example, the least used selection policy selects the server

with the lowest load. Besides using the current state of the system, Dreibholz [72]

proposed the distances-aware least-used policy which uses the distance between

20

servers to make server selection decisions. The purpose of having such server

selection policies is to allow servers to be distributed over a large geographical area

to ensure survivability in the event of disasters such as earthquake, volcano eruptions

or tsunami. Table 2.2 highlights the advantages and limitations of existing methods.

Table 2.2 Overview of the advantages and limitations of existing methods

 Improves

Availability

Handles

Multiple

Consecutive

Failover

Selects

Failover Server

Automatically

Manages Size

of Server

Pool for

Failover

Automatically

Considers

Performance

While

Improving

Availability

Server

Mirroring

Technique

Clustering

Failover

Technique

RSerPool

Technique

(static and

dyanmic)

To conclude, existing techniques are capable of improving service availability.

However, most of the techniques did not consider the difficulty in managing the

distributed system as the system grow larger. Although the dynamic server selection

policies of RSerPool appears to be very similar to the proposed work and capable of

handling multiple consecutive failovers, RSerPool does not have the ability to

manage the size of the server pool yet. An administrator is still required to decide the

size of the cluster in order to achieve the desired level of availability. Besides that,

existing failover techniques only focus on availability and not performance. For

instance, a failover would not be initiated when a web server which is heavily loaded

is still running. However, from the users’ perspective the web server would be

21

perceived as not available. Thus, resource management automation is necessary to

help human administrators cope not only with server failures but also to ensure that

the performance of the server is within an acceptable range.

2.4 Service Placement Algorithms and Resource Evaluation Functions.

A survey of existing swarm intelligence techniques for self-organization and service

placement was carried out by Andrzejak in year 2002 [30]. They opined that a good

service placement solution should be decentralized while not overloading the

communication channels. Besides comparing ant colony optimization, broadcast of

local eligibility, and intelligent agents, they also compared simple and stateless

techniques such as round robin and simple greedy algorithms. However, they

concluded that different approaches have different levels of tradeoff between speed

and solution accuracy. Each offers better performance in some circumstances and

they proposed that a combination of techniques is necessary to solve the self-

organization and service placement problem.

Service placement algorithms are required to discover and select appropriate

resources for all the services based on the preferences defined by the administrator.

Different service placement algorithms employ different resource discovery methods

and different resource evaluation functions. Resource discovery methods can be

classified into centralized or decentralized and either complete or heuristic. In order

to distinguish preferable resources from the non-preferable resources, these service

placement algorithms require a resource evaluation function. Resources are usually

22

distinguished using criteria such as performance, dependability, security and cost

[73].

Therefore, these service placement algorithms, besides being different in terms of

their centralized and decentralized architectures, each of them is built on different

dynamic allocation schemes that have different objectives, and the decisions made

are based on different criteria. Table 2.3 summarizes the service placement

objectives and resource evaluation techniques.

Table 2.3 List of existing service placement algorithms with respective service

placement objectives and resource evaluation techniques

No Related Work Service Placement

Objectives

Resource

Evaluation

Technique
1 Hien et al. [74] Optimize global utilization

which consists of SLA

fulfillment and operating cost.

Utility function-

based

2 Marjan et al. [71] Enhance service availability by

automatically select backup

candidate using predefined

scheme.

Rule-based and

Procedure-based

3 Karve et al. [33] Maximize service performance

with minimal number of

placement changes.

Procedure-based

4 Ardagnaa et al. [36] Maximize service revenue

while balancing the cost of

using the resources. The cost

includes energy, software and

hardware required.

Utility function-

based

5 Adam et al. [34, 35] Improve service performance

by performing automated

service placement by mapping

CPU demands to CPU supplies.

Utility function-

based

6 Famaey et al. [37] Improve service performance

by not only mapping CPU

demands to CPU supplies but

taking network latencies into

consideration as well.

Constraint-based

7 Verma et al. in [75], Reduce power consumption via

service consolidation using

virtual machines.

Procedure-based

8 Nogueira et al. [31] Ensure service QoS within

acceptable level. It
Utility function-

based

23

automatically tradeoffs between

performance and QoS.

9 Oikonomou et al. [76, 77] Determine the optimal location

of services without using global

information.

Utility function-

based

10 Menasce et al. [78, 79] Improves QoS of a system by

automatically selecting

appropriate group of services

Utility function-

based

11 Herrmann [80] Designed an adaptive service

placement algorithm to find a

stable and low-cost replica

placement.

Rule-based with

Utility function-

based

We found that utility function-based, rule-based, constraint-based, and procedure-

based methods are the commonly used techniques to perform resource evaluation.

Hence, the review of existing service placement algorithms is classified into

subsections according to the resource evaluation method they employed. In this work,

we explore the potential of using fuzzy logic (FL) to solve the resource evaluation

problem in view of the ability of FL in solving multi-criteria decision making

(MCDM) problems [81]. The resource evaluation process that involves more than

one criterion is very similar to the MCDM problem. Figure 2.3 illustrates the

classification of resource evaluation functions.

Figure 2.3 Classification of resource evaluation functions in this work.

24

2.4.1 Rule-based techniques

A rule consists of two parts namely, antecedent and consequent [82]. In resource

evaluation, rules are used to represent the knowledge and preferences of

administrators. The antecedent of a rule can be used to represent the state of a

resource and the conditions of the environment that need to be fulfilled while the

consequent of a rule is used to represent the suitability of the resource being selected.

The execution of these rules is managed by an inference engine. In general, there are

two principle ways to execute rules, namely forward chaining and backward chaining.

For instance, in grid computing, resource requirements are usually represented in the

form of rules and constraints. It is a set of resource requirements of an application

that must be fulfilled in order for the application to be executed [83, 84]. In addition,

many existing resource management tools require the administrator to provide low-

level instructions such as defining the maximum CPU load and ideal CPU load [85].

Unfortunately, the rule-based technique cannot tolerate situations in which the

resources only fulfill some of the requirements. No rules can be fired unless all

conditions in the antecedent of a rule are met. For instance, if an administrator uses

conventional production rules to represent a preference for a 3GHz CPU at the cost

of 50 cents per hour, such a rule will turn down a 2.98GHz CPU even if the price is

25 cents per hour. Although a huge number of rules can allow rule-based techniques

to deal with more conditions, it is difficult for administrators to ensure that all

possible conditions have been considered, especially those involving tradeoffs

between the criteria. For example, higher CPU with lower availability can be

