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KELAKUAN LENTUR BAGI KERATAN KELULI DENGAN WEB 

BERBENTUK SEGITIGA 

 
ABSTRAK 

 

Rasuk dan galang yang beralur telah digunakan secara meluas dalam industri bangunan, 

gudang atau dalam pembinaan jambatan bagi jalan raya dan kereta api. Dalam usaha 

untuk memaksimum penggunaan beban berbanding dengan keratan keluli web rata 

(FW), keratan keluli yang dikenali sebagai profil web berbentuk segitiga (TRIWP) telah 

dikaji. Keratan keluli TRIWP terdiri daripada dua plat bebibir yang disambungkan 

kepada plat web berbentuk segitiga. Kajian ini adalah tentang prestasi lentur dalam paksi 

utama (Ix) dan paksi sekunder (Iy) bagi keratan keluli TRIWP dibandingkan dengan 

keratan keluli FW. Penyelidikan ini mengandungi dua peringkat iaitu analisis unsur 

terhingga dan ujikaji makmal. Kajian ini melibatkan enam model keratan keluli FW 

sebagai spesimen kawalan dan enam model keratan keluli TRIWP yang masing-masing 

bersaiz 200×100×6×3 mm dan 180×75×5×2 mm. Daripada keputusan analisis unsur 

terhingga dan ujian makmal, boleh diperhatikan bahawa pesongan dalam paksi sekunder 

bagi keratan keluli TRIWP adalah lebih rendah daripada keratan keluli FW. Ini bermakna 

keratan keluli TRIWP lebih kukuh berbanding keratan keluli FW dalam paksi sekunder. 

Sementara itu, pesongan dalam paksi utama bagi keratan keluli TRIWP adalah lebih 

tinggi berbanding dengan keratan keluli FW. Ini bermaksud, pada paksi utama, keratan 

keluli FW adalah lebih kukuh daripada keratan keluli TRIWP. Ia boleh disimpulkan 

bahawa keratan keluli web berbentuk segitiga memberikan kesan kepada kelakuan rasuk 

untuk merintangi lenturan. 
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BENDING BEHAVIOUR OF TRIANGULAR WEB PROFILE STEEL BEAM 

SECTION 

 

ABSTRACT 

 

Corrugated beams and girders are widely used in industrial buildings, warehouses or in 

bridge constructions for road and rail. In order to assure that the steel section can resist 

more loads compared to that of flat web steel section (FW), a new steel section known as 

triangular web profile (TRIWP) steel section has been studied. A TRIWP steel section is a 

built-up steel section consisting of two flanges connected to a web plate with a triangular 

profile. This thesis described the study on the bending behaviour about major (Ix) and 

minor (Iy) axes of TRIWP compared to that of flat web (FW) steel sections. This research 

consists of two main stages namely finite element analysis and laboratory testing. The 

study involved six models of FW steel section as control specimens and six models of 

TRIWP steel sections of size 200×100×6×3 mm and 180×75×5×2 mm, respectively. 

From the finite element and laboratory testing results, it was observed that the deflection 

about minor axis for TRIWP steel section is less than FW steel section. It means the 

TRIWP steel section was stiffer compared to that of FW steel section about minor axis. 

Meanwhile, the deflections about major axis for TRIWP steel section was more than that 

of FW steel section. Its means the FW was stiffer than TRIWP steel section about major 

axis. It was concluded that the triangular web of steel section contributed much effects in 

the behaviour of the beam to resist bending.  
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CHAPTER 1 

INTRODUCTION 

1.1 General                                

Beam is a structural element which is most frequently used in structural design. 

The main function of a beam is to transfer vertical loading to adjacent structural 

elements and finally to the foundations (McKenzie, 1998). The most common types of 

beam with an indication of the span range for which they may be appropriate are given 

in Table 1.1.  

 

Table 1.1 The most common types of beam (McKenzie, 1998) 

 
 

Span 

(m) 

Beam Types 

Angle   Channel    Joist   Tube   Universal beam   Compound 

beam 

UB      RHS     Composite beams           Castellated beams   

Castellated beams    Welded plate girders    Welded box girders   

1 

- 

2

0 

1 

- 

4

0 

15 - 

200 
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In many instances, it is necessary to support heavy vertical loads over long spans 

resulting large bending moments and shear forces. If the magnitude of bending moments 

and shear forces is large, then it is necessary to fabricate a beam utilizing plates welded 

together into an I-shaped section. The primary purpose of the flange plate is to resist the 

tensile and compressive forces induced by the bending moment. While, the primary 

purposes of the web plate is to resist the shearing forces (McKenzie, 1998). These 

sections are normally more efficient in terms of steel weight than rolled sections, 

particularly when variable depth girders are used because it can be designed to suit the 

requirements. 

If the span or magnitude of loading required that larger and deeper sections are 

used, castellated beams formed by welding together with profiled cut UB sections, plate 

girders or box girders and corrugated plate in which the web and flanges are individual 

plates welded together can be fabricated. The corrugated plate is used in structural 

component in aircraft, ships, offshore structures, bridges and buldings. Corrugated webs 

used in beams have been employed in bridges in France and Japan for several years and 

the corrugated steel web have found comprehensive application in long-span roof beams 

in Sweden (Usman, 2001).              

Zeman and Co in Vienna, one of the Austrian companies is produced economical 

built-up girders consisting of plate flanges welded to a corrugated web. Engineers have 

long realized that corrugations in webs enormously increase their stability against 

buckling and affect the costing of the design. Thus, corrugated web I-Beams have the 

potential to eliminate the cost of web stiffeners (Figure 1.1). In addition, the use of 

thinner webs may used less raw material cost with savings estimated at 10%-30% 

compared with conventional built-up sections and more than 30% compared with 



 

3 

standard I-beams. Corrugated web I-beam provide high strength to weight ratio and 

reduce the depth of steel when compared to truss systems. As the clear span increase, the 

costs also can be reduced. The higher resistance against rotation also reduces the need of 

brace angles or tubes. The minimum length of a corrugated web I-beam is 6 m and the 

maximum length is 20 m (Zeman and Co, 1999). 

 

 
 

Figure 1.1 The corrugated web I-beams for both columns and girders (Zeman and Co, 

1999) 



Modern plate girders are normally fabricated by welding together two flanges 

and a web plate to form an I-section. Such girders are capable of carrying more loads 

over longer spans and generally using standard rolled sections or compound girders. 

Plate girders are typically used as long-span floor girders in buildings, as bridge girders, 

and as crane girders in industrial structures. Normally a plate girder may not be require 

until the span exceeds 25 m and recently numerous plate girders spanning 60 m to 100 m 

have been constructed (Clarke and Coverman, 1987). Therefore, stiffeners are used to 

reinforce the web.  
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Nowadays, the corrugated webs are introduced to allow the use of thin plates 

without stiffeners for buildings and bridges. It could eliminate the usage of larger 

thickness and stiffeners that contribute to the reduction in beam weight and cost. 

Steel construction in Malaysia usually used steel web I-beam and H-column 

rather than non uniform section such as trapezoidal web profile (TWP) or corrugated 

web. However, steel beam with trapezoid web profile (Figure 1.2) have been widely 

used in recent years (Elgaaly et al., 1995; Chan et al., 2002; Atan, 2001) because the 

demand of steel as a construction material increases since it has become a popular 

construction material. The purpose of using TWP sections is to take advantage of the 

benefits offered by the sections which has thin and corrugated web (Tahir et al., 2008). 

 

 
Figure 1.2 A typical shape of trapezoid web section (Tahir et al., 2008) 

 

 In Malaysia, the technology was introduced by Trapezoid Web Profile Sdn. Bhd. 

based in Pasir Gudang. Trapezoid Web Profile Sdn. Bhd., subsidiary of the Johor Heavy 

Industries Group of Companies, was incorporated on 25th September 1995 as part of the 

policies to manufacturing activities of TWP steel section for construction (Usman, 

2001). In the absence of any specific design guide, the British Standard (BS 5950-1, 

2000) can be applied as a basic design for a corrugated steel section. However, 

Isometric 

view 

Plan 

Elevation 
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simplification and conservativeness must be carried out because the general design 

considerations are limited to flat web steel section and there is no special provision for 

TWP in BS5950-1:2000.  

A triangular web profile (TRIWP) steel section is a section made of two flanges 

connected to a slender web. The web and the flanges can be produced from different 

steel grades depending on design requirements. The flanges width and thickness is 

determined based on the depth of the section. The web is corrugated at regular interval 

into triangular shape along the length of the beam. Figure 1.3 shows the shape and the 

dimensions of a typical section of TRIWP steel system.  

 

D
d

B

tf

twD
d

D

B

 

Figure 1.3 Shape and dimensions of a typical TRIWP steel section (all units are in mm) 

 

tf -  Flange thickness 

B - Flange width 

tw -Web thickness 

d - Depth of web 

D - Overall depth 

θ  - Web corrugation                                     

 

      (a) Isometric view  

      (b) Plan view  

(c) Side view  (d) Section view  

θ angle 



 

6 

The purpose of this study is to examine bending behaviour about minor and 

major axes for TRIWP in comparison with FW steel section. Finite element analysis and 

laboratory testing have been conducted. The hypothesis of this research was that the 

TRIWP maybe able to resist bending better than FW steel section.  

 

1.2 Problem Statement    

The structural action of a beam is predominantly bending, with other effects such 

as shear and bearing also present. In addition to ensure that beams have sufficient 

capacities to resist these effects, it is important that the stiffness properties are adequate 

to avoid excessive deflection of the cross section. 

According to the previous study (Luo and Edlund, 1996a), the highest value of 

strength obtained when the girder with trapezoidal web is loaded at the centre of the 

oblique part (of corrugation). Meanwhile, the girder has the lowest strength when it is 

applied at the centre of the flat part. In order to increase the bending behaviour of 

corrugated steel section, a new shape of steel section known as triangular web profile 

(TRIWP) steel section have been studied in this research.  

This triangular web profile (TRIWP) steel section eliminated the use of eccentric 

stiffeners as used in trapezoidal web profile (TWP) steel section. The transition model 

from trapezoidal web profile (TWP) steel section to triangular web profile (TRIWP) steel 

section are shown in Figure 1.4. This type of steel section was used to study the bending 

behaviour about minor and major axes by finite element analysis and laboratory testing.  

The second moment of area is one of the important elements because it give 

affects bending behaviour. The second moment of area value can be easily calculated for 

a normal FW steel section because the web is flat and uniform in profile throughout the 
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length. But, for a TRIWP steel section, second moment of area calculation is difficult to 

calculate due to the corrugated shape of web. For the current application and 

conservative solution, the web profile is neglected when calculating the second moment 

of area, assuming it does not bring a significant contribution towards the buckling 

strength (Elgaaly et al., 1997). However, other researchers found that the web 

contributed to the increase in the second moment of area (Atan, 2001; Tan, 2004). 

Therefore, it is important to know the calculation method of the second moment of area 

for TRIWP steel section. 

In steel design, the second moment of area about y-y axis, Iy (see Figure 1.5) 

value is important either in structural safety or to increase the efficiency of the section. 

In British Standard 5950- Part 1:2000, the basic derivation of the second moment of 

area, Iy in terms of the geometry of cross sections is already available for I-beam section. 

However, this formula is not suitable for other corrugated sections such as the TRIWP 

steel section. It is the purpose of the thesis to report on the finite element analysis and 

laboratory testing carried out to obtain the second moment of area value, Iy of a member 

of TRIWP specimens. The determination of the second moment of area, Iy value of 

TRIWP steel section in term of, Iy of the FW steel section is clearly described in this 

thesis.   
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Trapezoidal web profile steel 

section 

Triangular web profile steel 

section 

Transition model of steel 
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Figure 1.4 Transition model from TWP steel section to TRIWP steel section 
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Figure 1.5 A typical diagram of x-axis and y-axis 
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The hypothesis of this research was that the TRIWP maybe able to resist bending 

better than FW steel section. This is due to the greater value of the second moment of 

area in minor axis, Iy of TRIWP steel section. Thus, the assumption done by previous 

researchers (Elgaaly et al., 1997) who neglected the web when calculate the second 

moment of area is imprecise.  

 

1.3 Objectives  

The objectives of this research are: 

a) To study the bending behaviour of TRIWP steel section by finite element 

analysis. 

b) To perform parametric study of TRIWP steel section by finite element 

analysis. 

c) To verify the bending behaviour of TRIWP steel section by laboratory testing. 

 

1.4 Scope of Work 

This study focused mainly on finite element analysis and laboratory 

testing for TRIWP subject to bending behaviour. FW steel section is used as the 

control specimen for this research. The scope of work can be divided into several 

important parts: 

a) Determination of specimen sizes for FW and TRIWP steel section.  

b) The FW and TRIWP steel section specimens were analysed using LUSAS 

software. This involved the finite element analysis on the effect of the web 

thickness, effect of the depth of web, effect of the corrugation angle and 

effect of the loading position. 
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c) Then laboratory testing was performed to obtain the second moment of area, 

Ix and Iy for the FW and TRIWP steel sections. Bending tests included six 

specimens (three sizes of FW as control specimens and three sizes of TRIWPs 

steel section with two types of dimensions) were used. Each of beam section 

was tested using several spans such as 3 m, 4 m and 4.8 m. In total, 24 sets of 

readings were collected. The test involved two types of sizing, namely 

180×75×5×2 mm and 200×100×6×3 mm section. All bending tests were 

carried out at elastic loading to obtain the elastic relationship between the 

load and deflection of the beams. Later, the data from both types of the beam 

were compared. 

d) The results obtained in modelling with LUSAS software and laboratory 

testings were then compared. 

e) Lastly, the ratios of the Ix and Iy values in term of Ix and Iy of FW for the two 

sections (i.e FW and TRIWP steel section) by finite element analysis and 

laboratory testing were determined. 

 

1.5       Organisation of Thesis 

This thesis consists of five chapters. Chapter 1 consists of the introduction and 

overview of the research. A review of the relevant literatures is given in Chapter 2 where 

the review of past researches on corrugated section such as bending capacity, lateral 

torsional buckling and design procedure are presented.  

Chapter 3 presents method of the analysis about the bending behaviour of TRIWP 

steel section about major and minor axes compared to that of FW steel section.  



 

11 

Chapter 4 deals with the laboratory testing work of TRIWP steel section 

compared to that of FW steel section.  

Chapter 5 summarises the important conclusions of the study. Important areas for 

future research are also recommended.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1  Introduction 

A number of tests have been conducted by previous researchers to investigate 

various mechanical properties of TWP steel section such as moment capacity, flange 

capacity,  shear buckling strength, axial buckling and deflection (Usman, 2001; Tahir et 

al., 2008; Atan, 2001; Tan, 2004; De’nan, 2008; Yew, 2007). Studies on the behavior of 

beam with trapezoid web profile have been conducted since the early 60’s and only 

since 1980 the full capacity of trapezoid web profile plates has been studied in greater 

detail (Johnson and Cafolla, 1997b; Elgaaly et al., 1997). 

In the mid-90s, Advanced Technology for Large Structural Systems (ATLSS) 

Center at Lehigh University and Modjeski and Masters, Inc., with funding by the 

Federal Highway Administration, began studying on non-traditional steel bridge beam 

configurations. The study involved on the selecting of optimum corrugated shape 

(trapezoidal or sinusoidal) by considering structural performance, fabrication, and 

manufacturing processes. This corrugated shape was designed to replace the routine box 

and I-girder shapes, and it was found that the strength and ability of HPS (High 

Performance Steels) corrugated shapes would increases web stability, allow for 

reduction in web thickness without the web stiffeners and more benefits in fabrication 

and erection (Wilson, 1992). 

The early studies have been done by Elgaaly et al. (1995) which are focused on 

the vertically trapezoidal corrugation. The failure mechanisms of beams with corrugated 

web under different loading modes such as bending mode, shear mode and compressive 

patch loads were investigated. It was found that the failure of beams under shear loading 
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is due to local buckling on the web for coarse corrugation and global buckling on the 

web for dense corrugation (Elgaaly et al., 1996). The contribution of the web profile 

could be neglected in the calculation of the second moment of area of the TWP section, 

due to its contribution towards the beam load-carrying capability. Six specimens of 

corrugated webs in the center panel and flat panels adjacent to the support were tested 

experimentally. The entire specimens were cross braced to ensure that the failure would 

occur in the center panel. The dimension and the test setup are shown in Figure 2.1. All 

the specimens tested failed due to flange yielding followed by vertical buckling of the 

compression flange into the web (Elgaaly et al., 1997).   

 

 

Figure 2.1 Dimensions of test specimens and corrugation profiles (Elgaaly et al., 1997) 

  

 The test results indicate that the contribution of the web to the bending capacity 

of the beam could be neglected because the corrugated web has no stiffness 

perpendicular to the direction of the corrugation, except for a very small distance that is 

adjacent to and restrained by the flanges. Thus its contribution could be neglected and 

the ultimate moment capacity is based on the flange yield stress. The test specimens 

were modeled using ABAQUS program to perform nonlinear finite element analysis. 
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The finite element model was able to show the test results to a very good degree of 

accuracy.  It was concluded that the moment capacity increases with the increase of the 

ratio between the plastic and yield stresses of the flange material (Elgaaly et al., 1997).  

However, the web might have contribution towards increasing the second 

moment of area (Atan, 2001; Tan, 2004). An experimental investigations, theoretical 

analysis and finite element analysis were carried out using LUSAS finite element 

software to study the flexural behavior of trapezoid corrugated web sections. From the 

theoretical analysis, the deflection values, bending stresses and ultimate moment 

capacities for trapezoid corrugated sections were found to be approximately equalled to 

normal FW sections. This was expected since all calculations were performed by 

neglecting the web contribution. However, from the finite element analysis and 

experimental investigation, the deflection of trapezoid corrugated section was found to 

be 12% higher than that of the normal FW section. It indicated that the elastic behavior 

of the trapezoid corrugated web section was more stiffens compared to the ordinary 

normal FW section in flexure and that the web contribution cannot be ignored in 

calculating the elastic flexural properties and ultimate moment for the trapezoid 

corrugated web section.  

Besides that, analytical and experimental studies on 300×120×10×2 mm TWP 

section were performed by Tan (2004) to determine the second moment of area about its 

minor axis (Iy). Compared to FW section, it was found that the corrugation thickness (hr) 

to section width (B) ratio has a significant effect on the buckling load for the TWP 

section.  On the other hand, increasing the depth of section (D) would not change its 

compression resistance. Nevertheless, under compressive patch loads, two distinct 

modes of failure were observed. These involve the formation of collapse mechanism on 
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flange followed by the web crippling or yielded web cripples followed by vertical 

bending of the flange into the crippled web. The failure of these beams is found to be 

dependent on the loading position and corrugation parameters where it can be a 

combination of the aforementioned modes (Elgaaly and Seshadri, 1997).  

The effect of web corrugation on the strength of beam has been studied by Chan 

et al. (2002). Beams with plane web, vertically and horizontally corrugated webs were 

modelled and analysed using LUSAS finite element package where material non-linear 

elastic-plastic behavior has been considered. The corrugation profiles studied are half 

circle corrugation, which is shown in Figure 2.2. For the horizontally corrugated case, 

one arc and two arcs were studied, while half-circular (22.41 mm mean radius) wave 

corrugation was used for the vertical type. Three different radius corrugations were 

taken for each type of the beam to investigate its effect on the strength of beam. 

Ordinary I-beams, with plane web, were also tested experimentally. I-beam of 500 mm 

length, 75 mm flange width and 127 mm deep were selected to be the basis for 

investigation. The comparison between the results obtained from both methods, for the 

plane web type, shows 3.1% to 7.1% differences and for the beams with vertically 

corrugated web stands 38.8% to 54.4% higher moments than the horizontal type. The 

vertically corrugated web provides a good resistance against the flange buckling, 

compared to the plane and horizontally corrugated web types and the same results for 

the other three radiuses. Moreover, corrugated web beams with larger corrugation radius 

could resist higher bending moment and it is true for the sizes used. The vertically 

corrugated beam had a 10.6% reduction in weight when compared with the beam with 

FW. 
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(a) PWx  

(Plane Web) 

 

(b)  HC1Rx          

(Horizontal one 

arc     

corrugation) 

(c)  VCRx  

       (Vertical arcs 

       corrugation) 

(d) HC2Rx 

(Horizontal two 

arcs 

corrugation) 

 

Figure 2.2 Corrugation profiles for the type of beam investigated (Chan et al., 2002) 

 

Khalid et al. (2004) studied the bending behaviour of mild steel structural beams 

with corrugated web subjected to three-point bending. Semicircular web corrugation in 

the cross-sectional plane (horizontal) and across the span of the beam (vertical) were 

investigated experimentally and computationally using finite element technique. In the 

finite element analysis, test specimen was modelled using commercially available finite 

element software LUSAS and a non-linear analysis was performed. Corrugation radius 

of 22.5 mm thickness, with constant corrugation amplitude to cycle length ratio (H/λ) 

and flange thickness 6 mm were selected at the base sizes. The flat web beams, welded 

and ordinary rolled, were also tested with both methods to develop the benchmark 

results. Five models of beams were selected for the experimental tests. The detail 

dimensions of these tests are shown in Figure 2.3. The comparisons between the 

experimental and the finite element analysis results were satisfactory. 
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(a) Plane             (b) One arc corrugation  (c) Two arcs corrugation 

                (OPW/WPW1)         (HC1R1-1)                    (HC2R1-1) 

 

 
(d) Semicircular wholly corrugated (VCR3-1) 

 

        Figure 2.3 Geometry of the models tested experimentally (Khalid et al., 2004) 

 

 It was observed that the specimens gradually bend until the compression flange 

yielded and subsequently buckled vertically into the crippled web. The web crippling 

failure was not significantly seen from the HC2R1-1 and VCR3-1 specimens. It was 

noted that the vertical-corrugated web beam (VCR) could carry between 13.3% and 

32.8% higher moment compared to the plane and horizontal-corrugated web beams. 

Besides that, larger corrugation radius could resist higher bending up to the yielding 

stage. This gives effect to the increment of the second moment of area (I) that had 
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influence on the direct bending stresses (σzz). In addition, reduction in weight could be 

achieved by using the vertical-corrugated web with the maximum size of corrugation 

radius. This was true for the corrugation shapes and sizes taken. 

Luo and Edlund (1996a) performed nonlinear finite element analysis to study the 

effect of strain hardening model, corner effect, initial imperfection (local and global), 

loading position, load distribution length and variation of geometric parameters. Elastic-

perfectly plastic model and Ramberg-Osgood’s model were used to analyze the first 

factor. It was found that with a Ramberg-Osgood strain-hardening model for webs, the 

ultimate strength of the girder is about 8%-12% higher than the ultimate strength with an 

elastic-perfectly plastic model. A block distribution of the yield stress was used to study 

the corner-effects, and it was found that the yield stress and the degree of strain 

hardening for the material in a small region around the corner of the web profile is 

higher than in other regions.  

For initial imperfections of the girder, it was found that small global initial 

imperfection does not have much effect on the behavior and load-carrying capacity of 

the girder, while local initial imperfection results in a notable reduction of nearly 7% in 

the ultimate load. As far as the load position is concerned, the influence of three loading 

positions as shown in the Figure 2.4 was considered. The highest value of strength is 

obtained when the girder is loaded at the centre of the oblique part of corrugation 

whereas the girder has the lowest ultimate load when the load is applied at the centre of 

the flat part. The load distributions also affected the failure load of the girder. Patch load 

apparently resulted in a much higher ultimate load than that under knife load. It was 

observed that the ultimate load for a girder subjected to a knife-load is about 40% and 

20% lower than that when the knife-load was replaced by a uniformly distributed patch 
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load with length, c = 115.2 mm and 50 mm respectively. Besides that, the performance 

of corrugated girders can be affected by the corrugation parameters. Girders with larger 

corrugation angle and thicker web and flange have higher ultimate strength or ultimate 

shear capacity. In addition, the shear capacity increases proportionally with the girder 

depth but an insignificant effect on the ultimate strength was observed when subjected to 

patch load. The panel dimension H and L as shown in Figure 2.5 do not effect on the 

ultimate strength for girders with tf = 10 mm, except when H is extremely small (≤ ≈ 200 

mm) (Luo and Edlund, 1996a). 

 

 

 

Figure 2.4 Types of loading positions (Luo and Edlund, 1996a) 

 

 

 

(a) The girder and the load 

 

Figure 2.5 A steel girder with trapezoidally corrugated webs under patch loading (Luo 

and Edlund, 1996a) 
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(b) The geometry of the web and the flange 

 

Figure 2.5 (continued) 

 

Luo and Edlund, (1996b) used non-linear finite element analysis to perform a 

geometrical parametric study and compared the numerical results with existing empirical 

and analytical formulae. Within the parametric range studied (see Figure 2.6), the 

ultimate shear capacity increases proportionally with the girder depth and seems not to 

be dependent on the ratio of girder length over girder depth (L/H), while the post-

buckling shear capacity not only increases with the girder depth, but also dependent on 

the ratio of girder length over girder depth. The ultimate and the post-buckling shear 

capacity increase as the web thickness increases but not proportional to the cube of the 

web thickness. The corrugation depth did not have much effect on the ultimate shear 

capacity but affected the degree of the localization of the buckling mode. Besides that, 

shear capacity increases slightly as the corrugation angle increases from 30
o
 to 60

o
. The 

buckling mode changes from a global buckling mode for α = 30
o
, to a zonal buckling 

mode for α = 45
o
 and to a more localized bucking mode for α = 60

o
. Other geometric 

parameters that had been studied were flat sub-panel width, b, which the ultimate and 

the post-buckling shear capacity decrease as the flat sub-panel width b increases. It can 

be concluded the reduction of the shear capacity and the post-buckling shear capacity is 

in the average of about 20%-30% of the ultimate shear capacity. 
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(a) The geometry and loading 

 

 

(b) Notation of corrugation and flange geometry 

 

Figure 2.6 A plate girder with trapezoidally corrugated webs in shear (Luo and Edlund, 

1996b) 

 

Sayed-Ahmed (2005a) investigated the behavior of corrugated steel webs, the 

different buckling modes, the interaction between the yield failure criterion and buckling 

modes and proposed an interaction equation considering the different failure criteria 

including steel yielding. It was found that the panel width had the most significant effect 

on the mode of buckling. An ideal ratio between the inclined panel width and the 

horizontal panel width for a trapezoidal corrugation profile is proposed to be 1.0. 
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Besides that, global buckling mode governs the instability behavior for significantly 

small corrugation width b (dense corrugation) and the local buckling mode governs the 

behavior for significantly large values of b. The corrugation angle also affects the 

interactive critical stress for small panel widths, b where the behavior of the corrugated 

web is governed by either pure global buckling or interaction between global buckling 

and steel yielding. Then, the nonlinear finite element model was extended to investigate 

the post-buckling strength of corrugated web girders. The numerical analysis reveals that 

girders with corrugated steel webs continue to carry loads after web buckling is 

encountered. The post-buckling strength of corrugated web girders was highly 

dependent on the panel width. For corrugated webs with larger panel widths, the post 

buckling strength may reach 53% for a 400 mm panel width. It was concluded from the 

numerical analysis that resistance to lateral torsion-flexure buckling of such girders is 

12% to 37% higher than the resistance of plate girders with traditional plane webs to 

lateral buckling (Sayed-Ahmed, 2005b). 

In steel design, the second moment of area about y-y axis, Iy is important as it has 

an effect on the lateral torsional buckling resistance of a TWP steel section. An 

experimental study was carried out to determine the elastic load-deflection behaviour of 

steel sections containing flat web and TWP of the same dimensions (Denan, 2008). The 

dimensions of the sections are 170×100×9×4 mm and 200×80×5×2 mm. The objective 

of the tests was to obtain the flexural stiffness (P/δ) of TWP and FW steel sections. 

These were then used to obtain the Ix and Iy values of the TWP sections. The vertical 

deflection readings were recorded in all tests. A total of 24 elastic bending tests were 

carried out. The results of the study indicate that the Iy of TWP is in the range of 1.28% 

to 6.57% more than the Iy of FW. However, the value of Ix for the TWP section is in the 
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range of 11.51% to 16.54% lower than the Ix of the FW.  In summary, the TWP steel 

section has a higher stiffness in minor axis compared to the FW but has lower stiffness 

in major axis. Denan et al. (2009) studied the second moment of area in major (Ix) and 

minor (Iy) axes of TWP steel sections and present the results of an experimental 

investigation.  

The ability of a wholly corrugated web (WCW) H-beam to resist buckling have 

been studied quantitatively by Zhang et al. (2000) and Li et al. (2000) which involves 

the influence of the corrugation parameters. A set of optimized parameters were 

developed for the WCW based on basic optimization of the plane web beams. It was 

found that the corrugated web beam had 1.5-2 times higher buckling resistance than the 

plane web beam. The WCW can enhance greatly the stability of the web to resist 

pressure and the ability to resist buckling better than plane web beam. The structure 

feature of the WCW H-beam is shown in Figure 2.7, with periodic corrugations along 

the direction of the web length. 

 

Figure 2.7 Structural character of the WCW H-beam (Zhang et al., 2000; Li et al., 2000) 

 

Osman et al. (2007) carried out an experimental work on a composite beam with 

trapezoidally corrugated web steel section to study its structural performance in elastic 
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and plastic stage in comparison with the composite beam with FW. For comparison, a 

full scale composite beam test specimen with trapezoidal steel section and with FW 

section was tested under bending. Two specimens of 5 m in length with steel section of 

300×120 mm and concrete section of 110×1000 mm were tested. Sufficient stud 

connectors were provided to give full interaction between the steel and concrete. 

Deflections behavior under loading, position of neutral axis, distribution of strain across 

the depth of the composite section were measured and analysed. It was found that, in 

elastic state, the contribution of trapezoidal web in TWP-composite beam in resisting 

tension is too small and can be neglected. This is because the tension force resistance is 

only concentrated at the flanges of TWP steel section, causing the bottom flange to yield 

earlier than the normal FW beam. This was based on the analysis of strain distribution 

and the position of the neutral axis in both beam specimens. In the elastic-plastic region, 

especially after the bottom flange reached its yield strength, TWP section shows a better 

performance with less deflection and the web is stiffer at buckling. The results show that 

the composite beam with trapezoidal web has no significant difference in its structural 

performance at elastic stage compared to the composite beam with normal FW. 

Recently, Yi et al. (2008) studied the nature of the interactive shear buckling of 

corrugated webs (Figure 2.8), and concluded that the first order interactive shear 

buckling equation that does not consider material inelasticity and material yielding 

provides a good estimation of the shear strength of corrugated steel webs. The geometric 

parameters affecting the interactive shear buckling was determined as a/h and d/t. As 

conclusion, a/h < 0.2 and d/t > 10.0 were proposed as the limit conditions for the 

corrugated webs. Later, shear strength and design criteria of trapezoidally corrugated 

webs, based on the first order interactive equation proposed by Yi et al. (2008) were then 


