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PENGESANAN KEROSAKAN DAN DIAGNOSIS MOTOR ARUHAN 

DENGAN MENGGUNAKAN RANGKAIAN KABUR MIN-MAX  

DAN POKOK KLASIFIKASI DAN REGRESI 

 

ABSTRAK 

 

 

Dalam tesis ini, satu pendekatan baru untuk mengesan kerosakan dan 

mendiagnosis Motor Aruhan (IMs) yang komprehensif menggunakan rangkaian 

Kabur Min-Max (FMM) dan Pokok Klasifikasi dan Regresi (CART) dicadangkan.  

Model pintar gabungan, yang dikenali sebagai FMM-CART, mengeksploitasi 

kelebihan kedua-dua FMM dan CART untuk masalah pengelasan data dan  

pengekstrakan peraturan.  Pengubahsuaian terhadap FMM dan CART diperkenalkan 

untuk memastikan model pintar gabungan yang terhasil bekerja dengan cekap.  

Untuk membandingkan prestasi FMM-CART, data penanda aras dari kerosakan alas 

motor dan repositori pembelajaran mesin UCI digunakan untuk analisis, dan 

keputusan dibincangkan dan dibandingkan dengan keputusan daripada kaedah lain. 

Hasil kajian menunjukkan bahawa FMM-CART mampu mendapatkan kadar 

ketepatan yang setanding, sekiranya tidak lebih baik, berbanding dengan yang 

dilaporkan dalam literatur. Kemudian, model IM disimulasikan dengan pelbagai 

kerosakan, dan diikuti dengan satu siri eksperimen ke atas IM sebenar.  Teknik 

pemantauan keadaan tidak invasif, iaitu teknik Analisis Tandatangan Motor Semasa 

(MCSA), digunakan untuk mewujudkan satu pangkalan data yang terdiri daripada 

tandatangan semasa pemegun di bawah keadaan kerosakan yang berbeza.  Beberapa 

nilai harmonik diekstrak daripada Ketumpatan Kuasa Spektral (PSD) bagi 

tandatangan arus motor, dan digunakan sebagai ciri masukan diskriminasi untuk 

mengesan kerosakan dan diagnosis dengan FMM-CART.  Satu senarai komprehensif 

keadaan kerosakan IM, iaitu bar pemutar patah, bekalan kuasa yang tidak seimbang, 

kerosakan pemegun, dan masalah kesipian, telah berjaya dikelaskan menggunakan 
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FMM-CART dengan kadar ketepatan yang baik, iaitu lebih daripada 98.53% dengan 

gabungan semua keadaan kerosakan dan bebas kerosakan.  Keputusan adalah 

setanding dengan, jika tidak lebih baik daripada, yang dilaporkan dalam literatur. 

Peraturan penjelasan yang berguna dalam bentuk pokok keputusan daripada FMM-

CART dapat digunakan untuk analisa dan pemahaman keadaan kerosakan IM yang 

berbeza.  Tambahan pula, satu Sistem Pengesanan Kerosakan dan Diagnosis Dalam 

Talian (OFDDS) yang terdiri daripada papan perolehan data (DAB) and Perisian 

Motor Diagnostik (MDS) yang direkabentuk sendiri untuk perolehan data  dan 

pengesanan kerosakan dan diagnosis secara dalam talian bagi IM dilaksanakan. 

OFDDS tersebut mampu mendapatkan tandatangan arus dari dua IM serentak 

sementara memproses sampel data yang diperoleh dan mengemaskini ramalan 

keadaan dua IM dalam suatu mod operasi dalam talian. OFDDS tersebut juga 

mempunyai keupayaan untuk memantau dan mengesan keadaan IM dari jauh dan 

memberhentikan motor dengan segera jika kerosakan awal dikesan. 
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FAULT DETECTION AND DIAGNOSIS OF INDUCTION MOTORS  

USING THE FUZZY MIN-MAX NEURAL NETWORK AND  

THE CLASSIFICATION AND REGRESSION TREE 

 

ABSTRACT 

 

 

In this thesis, a novel approach to detecting and diagnosing comprehensive fault 

conditions of Induction Motors (IMs) using an Fuzzy Min-Max (FMM) neural 

network and the Classification and Regression Tree (CART) is proposed.  The 

model, known as FMM-CART, exploits the advantages of both FMM and the CART 

for undertaking data classification and rule extraction problems.  Modifications to 

FMM and the CART are introduced in order for the resulting model to work 

efficiently.  In order to compare the FMM-CART performance, benchmark data sets 

from motor bearing faults and from the UCI machine learning repository are used for 

analysis, with the results discussed and compared with those from other methods.  

The results show that FMM-CART is able to obtain comparable, if not better, 

accuracy rates with respect to those reported in the literature.  Then, an IM model is 

first simulated with various faults, which is then followed by a series of experiments 

on real IMs.  A non-invasive condition monitoring technique, i.e., the Motor Current 

Signature Analysis (MCSA), is applied to establish a database comprising stator 

current signatures under different fault conditions.  A number of harmonics values 

are extracted from the Power Spectral Density (PSD) of the motor current signatures, 

and used as discriminative input features for fault detection and diagnosis with 

FMM-CART.  A comprehensive list of IM fault conditions, viz. broken rotor bars, 

supply unbalanced, stator winding faults, and eccentricity problems, has been 

successfully classified using FMM-CART with good accuracy rates, i.e., more than 

98.53% with all potential faulty and fault-free conditions combined.  The results are 

comparable, if not better, than those reported in the literature.  Useful explanatory 
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rules in the form of a decision tree are elicited from FMM-CART for analysis and 

understanding of different IM fault conditions.  In addition, an Online Fault 

Detection and Diagnosis System (OFDDS), which comprises a self-designed Data 

Acquisition Board (DAB) and a Motor Diagnostic Software (MDS), for online data 

acquisition and fault detection and diagnosis of IMs is implemented.  The OFDDS is 

capable of acquiring current signatures from two IMs simultaneously while 

processing the acquired data samples and updating the predicted conditions of the 

two IMs in an online operation mode.  The OFDDS also features the ability to 

remotely monitor and detect various motor conditions and to turn off the IMs if 

incipient faults are detected. 



 

 

 

1 

 

CHAPTER 1 

INTRODUCTION 

1.1   Background 

In recent years, the demand of early and accurate fault detection and diagnosis 

(FDD) methods has increased for complex industrial systems to be safer and more 

reliable, while minimizing the process downtime and unscheduled machine 

downtime (Aydin et al., 2011).  Indeed, every second of downtime contributes to 

financial losses of a company (Nandi et al., 2005).  In general, FDD covers two main 

parts, i.e., fault detection for determining the system conditions (either normal or 

abnormal), and fault diagnosis for classifying the system conditions (the type of 

faults) (Wang, 2008).  Fault detection tasks can be in the form of a simple decision, 

whether the system is working well or something has gone wrong (Martins et al., 

2011).  Classifying the fault is as important as detecting it, as the fault could be of 

varying degrees of severity.  In this regard, fault diagnosis specifically classifies the 

existence of fault in a system, which may include isolation of the fault (Reppa & 

Tzes, 2011). 

 

Faults may occur in a process or an instrument, either independently or 

simultaneously.  Simple faults can be detected by a single measurement.  However, 

in complex systems, it is difficult to directly measure process states.  As such, more 

elaborate and automated measures are necessary.  Automating FDD for condition-

based maintenance can assist in reducing wastage caused by poorly maintained, 

degraded, and/or improperly controlled equipment (Han et al., 2011).  As an 

example, FDD in the operation of chillers (Cui & Wang, 2005; Han et al., 2011) has 
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resulted in less expensive repairs, timely maintenance, and shorter downtimes.  Other 

examples of FDD applications include a class of nonlinear systems with modelling 

uncertainties (Huang & Tan, 2009).  To detect faults in robotic systems, a 

combination of FDD with artificial neural networks (ANNs) has been used (Huang et 

al., 2007a).  Besides, FDD systems have been employed for improving safety, 

reliability, and availability of nuclear power plants (Ma & Jiang, 2011) and steam 

turbine power plant (Salahshoor et al., 2010).  All these demonstrate the importance 

of FDD in complex systems.   

 

One of the key demands of FDD in complex system is on motors.  Motors are 

used in many applications to transform electrical energy into mechanical energy 

(Saidur, 2010).  In general, electric motors can be classified by the source of 

electrical power, i.e., either Alternating Current (AC) or Direct Current (DC).  

Among different types of AC motors, induction motors (IMs) contribute more than 

60% of the electrical energy consumed (Cusidó et al., 2008).  IMs are widely used in 

different areas, which include manufacturing machines, belt conveyors, cranes, lifts, 

compressors, trolleys, electric vehicles, pumps, and fans (Montanari et al., 2007).  

Indeed, IMs are the workhorses of a lot of complex systems, owing to their rugged 

configuration, versatility, and simple operation capability. 

 

While IMs are reliable, it is common to have situations where these motors 

malfunction, owing to wear and tear as well as other inter-related causes in complex 

systems.  Indeed, failure of a single motor could potentially shut the entire 

production line (Penman et al., 1994).  In daily usage, IMs are subject to unavoidable 

stresses, such as electrical, environmental, mechanical, and thermal stresses, which 
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could lead to faults in different parts of the motor (Bonnett & Soukup, 1988).  It is 

imperative to avoid sudden breakdowns of these motors, as a direct influence on 

production, which may result in substantial productivity losses, could occur.  As 

explained earlier, an effective FDD method can reduce maintenance expenses by 

preventing unscheduled downtimes.  In recent years, a lot of investigations on 

monitoring IM faults have been reported, with the aim to reduce maintenance costs 

and to prevent unscheduled downtimes (Martins et al., 2011).  A detailed review is 

presented in Chapter 2. 

 

Ideally, an FDD method should require minimum information from the 

process/instrument under monitoring while quickly determining its condition (Bellini 

et al., 2008).  In general, FDD methods can be broadly classified into two: model-

based and model-free methods.  In order for model-based FDD methods to be highly 

effective, the system model must be known and must be accurate.  However, a good 

model of an IM system not only is difficult to obtain, but also may be inaccurate 

owing to component values, parasitic components, and unavoidable limitations 

(Diallo et al., 2005).  In this aspect, quantitative FDD approaches which do not 

require process models (i.e., model-free methods) have attracted much interest lately.   

 

Pattern recognition methods provide an approach to solving FDD problems, 

whereby an exact process model is not known or is very complicated (Sorsa & 

Koivo, 1993).  The task of pattern recognition is carried out daily by humans, 

without much conscious effort.  Humans receive patterns using sensing organs, in 

which the patterns acquired are processed by the brain to form useful information, 

and subsequently, a decision for action to be taken for the patterns is made (Duda et 
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al., 2002).  Research in pattern recognition has inspired researchers from many 

disciplines owing to its cross-fertilization nature, which include physics, cognitive 

science, engineering, mathematics, and computer science (Wang, 2003).  In general, 

the task of pattern recognition can be divided into two stages (Young & Calvert, 

1974; Duda et al., 2002):  

o Feature Extraction:  Procedure of finding and mapping features from an input 

pattern, and then transforming the input features using some selected functions so 

as to provide informative measurements for the input pattern. 

o Pattern Classification:  Procedure for categorizing measurements that are taken 

from the extracted features, and then subsequently assigning the input pattern to 

one of the target classes by applying some forms of decision rule. 

 

As part of the pattern recognition approaches, FDD methods based on intelligent 

learning systems have been investigated owing to their fast and robust 

implementation, their performance in learning arbitrary nonlinear mappings, and 

their ability for pattern recognition and association (Maki & Loparo, 1997).  The 

focus of this research is to extract and classify faults in IMs using intelligent learning 

systems.  In order to analyse and interpret the acquired signals from IMs, feature 

extraction is an important step in a pattern recognition task (Pittner & Kamarthi, 

1999).  One of the earliest approaches was statistical methods (Fisher, 1936; Rao, 

1948).  However, one of the weaknesses of statistical approaches is inefficiency in 

handling contextual or structural information in patterns (Pal & Pal, 2002).  Hopcroft 

and Ullman (1979) turned to the theory of formal languages due to this weakness, 

and explained the usage of syntactic approaches for pattern classification.  Classified 

patterns in the syntactic approaches are not represented as arrays of numbers; rather 
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they are described in simple sub-elements, called primitives.  For an idealized 

pattern, this approach works well, but is inefficient in handling noisy and distorted 

patterns (Pal & Pal, 2002). 

 

Another useful approach to pattern recognition is intelligent systems based on 

Computational Intelligence (CI). CI is an interdisciplinary emerging field that is 

useful for designing and developing intelligent systems (Jain et al., 2008).  In the 

following sections, an introduction to CI is first given.  This is followed by the 

motivations for developing CI systems, as undertaken in this research.  The research 

objectives and scope are then explained, which is followed by the research 

methodology.  Finally, an overview of the organization of this thesis is presented. 

 

 

1.2   Computational Intelligence 

CI is a term used to describe an attempt to achieve smart solutions, with the aid 

of computers, in complex situations, imperfect domains, or practical problems that 

are hard or impossible to solve effectively (Dounias & Linkens, 2004).  Unlike 

computers, humans learn naturally on what needs to be done, and how to get it done.  

The information-processing ability of the human brain emerges primarily from the 

interactions of networks of neurons (Kolman & Margaliot, 2009).  The field of CI 

has evolved with the objective for developing machines that can think like humans, 

such as microwave ovens and washing machines that decide on their own what 

settings to use in order to perform their tasks optimally (Chen, 2010).   
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One of the earliest definitions of CI is given by Bezdek (1994), as: 

“A system is computationally intelligent when it: deals with only 

numerical (low-level) data, has pattern recognition components, 

does not use knowledge in the AI sense; and additionally when it 

(begins to) exhibits i) computational adaptivity, ii) computational 

fault tolerance, iii) speed approaching human-like turnaround and 

iv) error rates that approximate human performance.” 

 

Besides, Fogel (1995) explained CI as: 

“… these technologies of neural, fuzzy, and evolutionary systems 

were brought together under the rubric of computational 

intelligence, a relatively new trend offered to generally describe 

methods of computation that can be used to adapt solutions to new 

problems and do not rely on explicit human knowledge”. 

 

Based on Fogel (1995), one can see that various CI models, i.e., ANNs and 

Fuzzy Systems (FSs), can be combined to form integrated systems.  An introduction 

to individual CI models (i.e., ANNs and FSs), is first provided.  This is followed by 

an explanation on CI models.   

 

McCulloch and Pitts (1943) sought to understand the organizing principles of 

the mind.  They initiated mathematical modelling of neurons, which aimed to imitate 

this structure using ANNs.  ANNs can be viewed as a mathematical representation, 

loosely inspired by the massively connected set of neurons that form the biological 

ANNs in the brain (Chen, 2010).  The ability of ANNs to learn and generalize from 
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examples can be developed using suitable training algorithms (Kolman & Margaliot, 

2009).  Some of the popular ANN models include the Multi-Layered Perceptron 

(MLP) network (Rumelhart & Zipser, 1986; Bishop, 1995), Hopfield network 

(Hopfield, 1982; 1984), and Radial Basis Function (RBF) network (Broomhead & 

Lowe, 1988; Moody & Darken, 1989). 

 

FSs, on the other hand, process information in a different form.  FSs are based 

on a set of If-Then rules stated using natural language (Kolman & Margaliot, 2009).  

Zadeh (1965) introduced fuzzy sets with an attempt to reconcile mathematical 

modelling and human knowledge in the engineering sciences.  Fuzzy logic provides a 

framework to model the perception process, uncertainty, human way of thinking, and 

reasoning (Abraham, 2005).  The main attribute of fuzzy logic is the robustness of its 

interpolative reasoning mechanism.  A fuzzy expert system, commonly used to 

reason about data, uses a collection of fuzzy membership functions and rules instead 

of Boolean logic. 

 

Further advancement has resulted in the development of integrated CI models, 

and this area has evolved in recent years.  While each CI paradigm has its own 

advantages and disadvantages, integrating CI models exploit the advantages of 

different CI paradigms and, at the same time, avoid their shortcomings (Jain et al., 

2008).  The integration of different models aims to overcome the limitations of 

individual techniques, which can be resolved by fusion of various techniques.  Based 

on the background of CI in this section, the next section focuses on problems and 

motivations of this research. 
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1.3   Problems and Motivations 

IMs are widely used worldwide and often in critical applications where the 

motors reliability must be at high standards (Ghate & Dudul, 2010).  As an example, 

three-phase IMs make up 87% of the total AC motors used in Europe (Frost & 

Sullivan, 2003; Almeida, 2006; Commission EC, 2009).  These IMs are exposed to a 

wide variety of environments, and coupled with the natural aging process of any 

machine; make these motors subject to various faults. These faults, which can occur 

in different parts of the motor, contribute to the degradation and eventual failure of 

the motors, if left undetected (Ghate & Dudul, 2010).  As shown in Figure 1.1, a 

comprehensive list of IM faults includes bearing, stator, rotor and other related faults, 

as reported by Electric Power Research Institute (IAS Motor, 1985; Rodríguez et al., 

2008). 

 

 

 

Figure 1.1. Failure Surveys by Electric Power Research Institute  

(Source: Rodríguez et al., 2008) 

 

 

Researchers have used different monitoring techniques with various types of 

ANNs to detect and diagnose these faults.  In faults relating to bearing and 

eccentricity, Adaptive Neuro-Fuzzy Inference Systems (ANFIS) has been used by 

Lei et al. (2008) and Zhang et al. (2010), ANN with Back Propagation (BP) by 

Hwang et al. (2009) and Taplak et al. (2006).  Other ANNs used are the RBF (Önel 

Stator related, 

38% 

Rotor related, 

10% 

Bearing 

related, 40% 
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et al., 2009), fuzzy ARTMAP (Xu et al., 2009), Support Vector Machine (SVM) 

(Widodo & Yang, 2008; Samanta & Nataraj, 2009) and Adaptive Resonance Theory 

(ART)-Kohonen (Han et al., 2007).  Multil-Layered Perceptron with BP (Bouzid et 

al., 2008) has been used for stator-related faults.  For rotor-related faults, MLP 

(Sadeghian et al., 2009; Arabacı & Bilgin, 2010), multiple discriminant analysis 

(Ayhan et al., 2005), fuzzy wavelet ANN (Guo et al., 2008), and Kalman algorithm 

(Ondel et al., 2008) have been used.  ANFIS (Ballal et al., 2007) and RBF (Ghate & 

Dudul, 2010) were used for detection of both bearing and stator faults.  For 

combination of both bearing and rotor faults, MLP was used by Su and Chong (2007) 

and Lee et al. (2010), SVM by Nguyen et al. (2008), a CART-ANFIS model by Tran 

et al. (2009) and fuzzy system by Liu et al. (2009). 

 

Majority of these investigations only focus on a single fault or two faults, out of 

the four main faults (further details on the various condition monitoring techniques 

with ANN types is described in Chapter 2, Section 2.4).  In this research, the major 

faults: bearing-related, stator-related, rotor-related and others, as shown in Figure 1.1 

are taken into account.  In addition, the FDD system should be able to function as a 

single-source condition monitoring technique in a non-invasive manner, with the 

ability of online learning and capability of rule extraction.  This forms the 

motivations of this research. 

 

In this research, ANNs are explored as an alternative to model-based techniques 

that use mathematical models of an IM, in order to avoid the requirement of a 

detailed knowledge pertaining to motor components (Aydin et al., 2007).  ANN 

techniques require no detailed analysis of the fault mechanism, nor is any modeling 
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of the system required (Filippetti et al., 2000).  ANNs are commonly used to solve 

pattern recognition and classification problems, as they are capable of handling non-

linear as well as noise-corrupted data from real environments.  However, some ANN 

models such as RBF and MLP suffer from catastrophic forgetting (Polikar et al., 

2000; 2001).  This occurs when the ANN models fail to remember previously 

learned information while attempting to learn new information incrementally 

(Polikar et al., 2000; 2001).  This catastrophic forgetting phenomenon is also known 

as the stability-plasticity dilemma, i.e., how a learning system is able to retain the 

stored memory while learning new information (Carpenter & Grossberg, 1987; 

1988).  Indeed, in real world environments, data samples increase with time, and it is 

crucial for an ANN to be able to learn these samples in an incremental and 

autonomous manner. 

 

Simpson proposed two different ANNs; one for pattern classification (Simpson, 

1992) and another for pattern clustering (Simpson, 1993).  The pattern classification 

Fuzzy Min-Max (FMM) network is a supervised learning model, while the pattern 

clustering FMM network is an unsupervised learning model.  Simpson (1992) 

explained that the supervised FMM network possesses some useful and important 

properties in handling pattern recognition and classification problems, which include 

online learning, nonlinear separability, no overlapping between classes, and quick 

training time.  (The properties of FMM are further detailed in Section 3.2.1) 

 

Owing to the advantages of the supervised FMM network (hereafter simplified 

as FMM), it has been chosen in this research.  However, FMM is not free from 

limitations.  One criticism of FMM (as well as other ANN models), which is 
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especially crucial for FDD tasks, is the inability to explain its predictions.  Most 

ANNs, which include FMM, are known as black-boxes (Benitez et al., 1997; Kolman 

& Margaliot, 2005).  In order to explain the predictions, various ANN rule extraction 

techniques have been introduced.  Two important properties that a rule extraction 

method should possess is prediction accuracy and rule comprehensibility (Taylor & 

Darrah, 2005).  Based on various rule extraction approaches, one commonly used 

approach is to build a decision tree from the training samples, and extract rules from 

it (Pal & Chakraborty, 2001).  An important feature of decision trees is their 

capability to break down a complex decision-making process into a collection of 

simpler decisions, therefore providing an easily interpretable solution (Mitra et al., 

2002). 

 

The concept of decision trees has become popular by the introduction of 

Iterative Dichotomizer 3 (ID3) (Quinlan, 1986).  However, ID3 is not suitable in 

problems with numerical values.  As many real world problems deal with numeric 

and continuous data samples, these samples have to be discretized prior to attribute 

selection when ID3 is used (Mitra et al., 2002).  On the other hand, Classification and 

Regression Trees (CART) (Breiman et al., 1984) does not require a priori 

partitioning or discretization of data samples.   CART is a classification method that 

uses historical data to construct decision trees.  A tree is formed of nodes and 

branches, after the feature space is partitioned.  Each node has either no child nodes 

(called a leaf node) or has one and more child nodes.  Some of the useful properties 

of CART include the ability to effectively handle large data sets and noisy data 

(Breiman et al., 1984; Steinberg & Colla, 1995).  (The properties of CART are 

further detailed in Section 3.3.1) 
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Owing to the advantages of CART, it has been selected in this research for rule 

extraction purposes.  In order for both FMM and CART to work efficiently, 

modifications to both models are introduced in this research.  The resulting FMM-

CART model is able to overcome the limitations of individual FMM and CART 

models, and, at the same time, to produce an intelligent learning system with online 

learning and rule explanation capability.  In the next section, the research objectives 

and scope are explained. 

 

1.4   Research Objectives and Scope 

The main aim of this research is to design and develop a CI model that 

capitalises the advantages of both FMM and CART for FDD of IMs.  FMM has the 

advantage of one-pass training with online learning capabilities while CART 

provides rule extraction capability in an easy to understand manner.  They form ideal 

candidates for designing an effective FDD system.  The research objectives are as 

follows: 

1) to design a computational model combining FMM and the CART with the 

capabilities of online learning and rule extraction, and to evaluate its performance 

using benchmark data; 

2) to develop an FDD system based on FMM-CART with the capabilities of 

handling comprehensive IM faults from a single source of input in a non-invasive 

manner; 

3) to evaluate the effectiveness of the FDD system based on simulated data and 

laboratory experiments, and to implement an online FDD system for IMs. 
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In this research, IMs represent one of the research scopes.  IMs are of focus, 

being workhorses of many complex systems.  The next scope takes into account the 

usage of model-free methods with CI models.  Usage of model-free methods speeds 

up the development work, when compared to model-based methods, as complicated 

mathematical models are not needed. 

 

1.5   Research Overview and Research Methodology 

An overview of the research is shown in Figure 1.2, and is explained as follows.  

First, the motivation of this research lies on popularity of IMs in various complex 

systems, and it is important to perform FDD for IMs, in order to reduce unnecessary 

financial losses due to process/instrument downtimes.  Next, the research problem 

addresses the need to have a cost-effective FDD system.  Based on the literature 

review, many researchers have used various methods to detect individual or a few IM 

faults.  In this research, a single source, non-invasive monitoring technique for FDD 

of comprehensive IM faults is proposed.  Then, a framework is put in place to 

develop a CI model capable of both online learning and rule extraction.  The CI 

model capitalises the advantages of both FMM and the CART.  In order not to 

confine to a specific type of IM, various IM sizes (i.e., 0.5 Hp, 1 Hp, and 2 Hp) are 

evaluated in this research.  The main objective is to design and develop the FMM-

CART model for FDD of IMs.  Simulated and laboratory experiments on IMs with 

various faults are conducted, with the results analysed.  Finally, the research goal is 

to have an online FDD system for IMs with cost-effective and non-invasive 

operation.  In this aspect, an online system for data acquisition and FDD (hereafter 

simplified as OFDDS) of IMs is designed and implemented.  The Online Fault 

Detection and Diagnosis System (OFDDS) comprises two parts, i.e., a self-designed 
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Data Acquisition Board (DAB) for data acquisition of IMs, and the Motor Diagnostic 

Software (MDS) to process the acquired data samples, and to monitor incipient faults 

of two IMs simultaneously. 

 
 

Figure 1.2. Research relationships 

 

A summary of the research methodology is shown in Figure 1.3.  In the process 

of developing FMM-CART model for FDD of IMs, the following steps are 

performed. 

o Step 1: Developing a FMM and CART model.  Modified FMM is used to enable 

confidence measure and centroid computation of each hyperbox.  In CART, each 

class of the decision tree is given the confidence factor, based on FMM hyperbox 

centroids. 

o Step 2: Benchmarking the FMM-CART model with available data sets.  The 

results are analysed and compared with those from other methods in the 

literature.  This is necessary to benchmark the performance and effectiveness of 

the FMM-CART model. 

Goal: An online FDD system with cost-effective  
and non-invasive operation 

Objectives: Design and develop FMM-CART 
model for FDD of IMs 

Framework: Develop a CI model capable of   
both online learning and rule extraction 

Research Problems: A cost-effective FDD 
system is required 

Motivation: The need to reduce downtimes        
of IMs 
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o Step 3: Simulating IM faults based on a real motor.  A total of four common 

faults (broken rotor bars, supply unbalanced, stator winding faults, and 

eccentricity problems) are created and simulated using Finite Element Method 

(FEM).  The results are analysed using the bootstrap method to quantify the 

performances of FMM-CART statistically. 

o Step 4: Conducting real experiments on IMs in a laboratory environment.  The 

faults created in the motors are similar to those in IM simulations.  Again, the 

results are analysed and quantified using the bootstrap method. 

o Step 5: Applying the FMM-CART model for online FDD of IMs.  An OFDDS, 

consisting of a DAB is designed and used for data acquisition of two IMs, and an 

MDS is used to provide simultaneous prediction on the health state of the IMs.    

 

 
 

Figure 1.3. Research methodology 

 

1.6   Thesis Outline 

This thesis is organised in accordance with the objectives outlined in Section 

1.4.  A review on IMs and CI systems is presented in Chapter 2.  The review first 

covers various condition monitoring techniques for FDD of IMs.  Then, using the 

quantitative approach, condition monitoring techniques for single and multiple faults, 

Step 5: Online FDD of IM 

Step 4: IM Experiments 

Step 3: IM Simulation 

Step 2: Benchmark FMM-CART 

Step 1: Develop FMM-CART 
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with single and multiple sources are reviewed.  Intelligent systems with rules are also 

reviewed. 

 

The FMM-CART model is introduced in Chapter 3. First, the dynamics of FMM 

and CART are presented.  This is then followed by a detailed description of the 

modifications of both models.  Several experiments are conducted using benchmark 

data, which include data sets of motor bearings from Case Western Reserve 

University (CWRU) and Center for Intelligent Maintenance Systems (CIMS), and 

the results are compared with those from other methods.  In addition, the results from 

the University of California, Irvine (UCI) machine learning data sets (i.e., Iris, Wine, 

Ionosphere, and Thyroid) are analysed and compared with those from General Fuzzy 

Min-Max (GFMN) and FMM classifier with Compensatory Neurons (FMCN) (i.e., 

variants of FMM). 

 

Chapter 4 presents the results from simulations of IMs.  An introduction to the 

motor, its specification, and the simulation process is first provided.  Then, the 

feature extraction process is described.  The results from experiments with individual 

faults (i.e., broken rotor bars, supply unbalanced, stator winding faults, and 

eccentricity problems) and from experiments with all faults combined are presented 

and discussed.  Finally, a noise-induced simulation is conducted, with the results 

analysed and discussed. 

 

Laboratory experiments of IMs are presented in Chapter 5.  The IM 

specifications and test setup are detailed.  Individual faults along with the methods of 

creating the faults, are described.  Similar to Chapter 4, the experimental results on 
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individual faults and with the faults combined are presented and discussed.  A noise-

induced experiment is also conducted, again, with the results analysed and discussed. 

 

An online system for data acquisition and FDD of IMs is detailed in Chapter 6.  

The OFDDS comprises two parts, i.e., a self-designed DAB for data acquisition, and 

an MDS to process the acquired data samples and to perform FDD of two IMs 

simultaneously.  The OFDDS features the ability to remotely monitor the motor 

condition and to turn off the IMs if faults are detected. 

 

Finally, conclusions are drawn in Chapter 7.  Contributions of this research are 

presented and a number of areas to be pursued as further work are suggested. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1   Introduction 

As explained in Chapter 1, this research focuses on the design and development 

of CI models for FDD of IMs.  As such, a total of nine condition monitoring methods 

available for FDD of IMs are first reviewed.  Next, quantitative methods for FDD of 

single and multiple IM faults from single and multiple sources are surveyed.  

Besides, intelligent systems with rule extraction capabilities are reviewed.  A 

summary is given at the end of this chapter. 

 

2.2   Condition Monitoring Methods for Induction Motors 

Although IM are reliable, they are subjected to some undesirable stresses, which 

could lead to some faults and subsequently result in failures (Siddique et al., 2005).  

The faults can occur in different parts of the motor, with the various parts shown in 

Figure 2.1 and Figure 2.2.  IM condition monitoring methods are performed either 

online or offline.  Offline tests require interruption of motor operations or even 

shutdown of motors, while online methods offer advance warning of the imminent 

failures with minimum downtime.  Online condition monitoring methods allow the 

users to acquire the replacement parts on time before the machine malfunctions, 

thereby reducing outage times (Mehrjou et al., 2011). 
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Figure 2.1. Cutaway view of IM rotor 

(Source: Siemens, 2011) 

 

 

 
 

Figure 2.2. Front view of an opened IM 

(Source: Siemens, 2011) 

 

Prior to selecting a suitable IM condition monitoring method for this research, a 

literature review is first conducted.  A number of researchers have used various 

condition monitoring methods for IMs using different machine variables.  In the 

following section, a total of nine condition monitoring methods for FDD are 

reviewed.  This is followed by a summary at end of the section. 

 

(i)  Electromagnetic Field 

In the normal operation of an IM, the air gap flux varies sinusoidally, in time 

and space, and any asymmetries in the rotor or stator may cause differences of the 



 

 

 

20 

 

sinusoidal variation (Thorsen & Dalva, 1999).  Attaching a search coil around the 

motor shaft enables measurements of any distortion in the air gap flux density due to 

stator defects (Cameron et al., 1986).  For detection of broken rotor bars, Elkasabgy 

et al. (1992) conducted an analysis using search coils placed internally and 

externally, in which the induced voltage in the external search coil is adequate for 

fault detection.  The benefit of external stray flux sensors is the sensor can be easily 

connected to the motor.  Sensing air-gap flux can be accomplished by sensing the 

voltage across two properly located motor coils.  The signal can be acquired by 

subtracting the two voltages, independent of stator IR-drop and almost independent 

of motor leakage reactance drop (Perman et al., 1986; Dorrell et al., 1997).  To locate 

the shorted turn location, four search coils can be placed on the axis, symmetrically 

to the drive shaft (Penman et al., 1994).  The use of internal search coils is a highly 

invasive condition monitoring technique, and is deemed to be neither economical nor 

practical for FDD purposes. 

 

(ii)  Vibration 

In an ideal IM, minimal vibration is generated during operation.  Any 

malfunction in the internal parts may cause an intensive vibration.  Kral et al. (2003) 

emphasized that monitoring vibration signals is a reliable and important technique to 

detect bearings failures.  Vibration can be measured either radially and/or axially 

with transducers placed on bearings.  It is commonly used for mechanical fault 

diagnosis, i.e., bearing problems, mass unbalance, rotor misalignment, and gear mesh 

defects (Wang & Gao, 2000; Kral et al., 2003).  A main cause of noise production in 

electrical machines is the resonance between the exciting electromagnetic force and 
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the stator (Singal et al., 1987).  Li and Mechefske (2006) concluded that vibration 

monitoring is best for bearing faults. 

 

(iii)  Acoustic Emission 

Acoustic Emission (AE) is the phenomenon of transient elastic-wave generation 

owing to rapid release of strain energy.  It is caused by events such as structural 

alteration in a solid material (Tandon & Choudhury, 1999).  In general, AE is used 

for bearing fault detection.  It can be used for rotor fault detection too.  In IMs, the 

noise spectrum is dominated by electromagnetic, ventilation, and acoustic noise.  

Doubling the motor speed gives up to 12 dB rise in electromagnetic noise (Singal et 

al., 1987).  Interrogation on the ground wall insulation can be conducted by 

launching an ultrasonic wave into a stator bar, using the conductor as a waveguide 

(Lee et al., 1994).  However, accuracy of broken rotor bars detection is reduced using 

acoustic measurement in a noisy background, when other machines are operating 

nearby (Li & Mechefske, 2006). 

 

(iv)  Instantaneous Angular Speed 

Instantaneous Angular Speed (IAS), a less known condition monitoring 

technique, refers to variation of the angular speed that occurs within a single shaft 

revolution (Sasi et al., 2006).  The pulsating torque owing to rotor faults modulates 

or alters the rotor speed, and can be used in rotor fault detection (Sasi et al., 2006).  

Asymmetry faults in IMs can be detected using IAS to monitor the stator core 

vibration.  Vibration signals in an unbalanced supply and stator winding faults 

contain a significant component, with twice the supply frequency (Siddique et al., 

2005).  Gaydon (1979) and Feldman and Seibold (1999) used the IAS monitoring 
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technique to detect the location and size of rotor defects.  However, a major obstacle 

is the motors are assumed to be rotating at a constant speed, while they normally 

rotate with varying speed. 

 

(v)  Air Gap Torque 

The air gap torque is produced by currents and flux linkage of a rotating IM.  

Unbalanced supply in IMs generates harmonics at special frequencies in the air gap 

torque (Mehrjou et al., 2011).  Hsu et al. (1992) showed that the shape of the air gap 

torque is different between cracked rotor bars and unbalanced stator windings.  

However, one limitation of air gap torque measurement is that it cannot be performed 

accurately and directly (Mehrjou et al., 2011).  The measured pulsating torque on 

IMs obtained with torque sensors can be different from the actual value of the air gap 

torque.  This is because the rotor, shaft, and frame of the IM have their own natural 

frequency.  Kral et al. (2005) used the Vienna monitoring method (a method for 

estimating electromagnetic torque) for inverter-fed IMs using both voltage and 

current sensors.  However, this method is not cost-effective as it requires two 

different sensors. 

 

(vi)  Motor Current Signature Analysis 

Motor Current Signature Analysis (MCSA) is a process of sensing stator 

currents.  It uses the results from its spectral analysis to indicate an existing or 

incipient failure in an IM (Siddique et al., 2005).  The stator current is commonly 

sensed during the normal operation of the IM, with the current drawn having a single 

component at the supply.  Methods for detecting mechanical faults in the IM using 

MCSA generally ignore the load effects (Benbouzid et al., 1999; Thomson & Fenger, 
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2001), or assume that the load is known (Kim et al., 2003).  As a rotor bar cracks, it 

restricts the current from flowing through, which results in no magnetic flux around 

the rotor bar.  Any asymmetry in the rotor leads to a non-zero backward rotating 

field, which induces harmonics in the stator winding currents (Mehrjou et al., 2011).  

Siau et al. (2004) explored practicality of equations in determining the number of 

broken rotor bars using the stator current.  It is found that the sideband component 

amplitude is dependent on both the load and the number of broken rotor bars. 

 

(vii)  Induced Voltage 

Voltage induced along the motor shaft is an indication of the winding or stator 

core degradation.  When an IM supply is disconnected, the stator currents rapidly 

drop to zero.  The induced voltage in the stator is caused by currents in the rotor 

(Elkasabgy et al., 1992).  In a healthy motor, the MMF produced by rotor bar 

currents when disconnected is predominantly sinusoidal.  The voltages induced in the 

stator windings are directly influenced by broken rotor bars.  One requirement is 

baseline data samples are required when the motor is operating with the normal 

condition, and the method is sensitive to changes in load, rotor temperature, system 

inertia, and supply voltage (Supangat et al., 2007).  This method is also not practical 

for continuous condition monitoring as it is difficult to measure faults in a reliable 

way and it requires significant damage to the core or winding for detecting the fault 

(Mehrjou et al., 2011). 

 

(viii)  Surge Test 

A surge comparison test is used for diagnosing winding faults (Kohler et al., 

1999).  During the test, two identical high voltages, high-frequency pulses are 
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simultaneously imposed with the third phase of the motor winding grounded 

(Thorsen & Dalva, 1997).  An oscilloscope is used to compare reflected pulses, 

which indicate the insulation faults between coils and windings (Thorsen & Dalva, 

1997).  Huang et al. (2007b) introduced a method using the surge test to detect rotor 

eccentricity, which causes an asymmetrical air gap.  This leads to a surge waveform 

shape that changes per revolution, and can be used as an indication of the air gap 

problem. 

 

(ix)  Motor Circuit Analysis 

Motor Circuit Analysis (MCA) seeks variations in the motor and identifies 

defects by measuring the motor electromagnetic properties.  In MCA, low amounts 

of energy are applied, and the amplified responses are used to evaluate the winding 

and rotor conditions through comparative readings (Penrose & Jette, 2000; Penrose, 

2001).  Penrose and Jette (2000) used MCA, based on electromagnetic property 

measurements in the IM, to determine the presence of variation.  The technique uses 

simple testing methods of inductance and resistance, which are taken on a de-

energized IM.  It is noted that the combination of resistance, impedance, phase angle, 

and inductance measurements provide a highly accurate view of the IM condition 

(Penrose & Jette, 2000). 

 

(x)  Summary of Induction Motor Condition Monitoring Methods 

Based on nine different IM condition monitoring methods surveyed, a summary 

is given in Table 2.1.   

 

 

 

 


