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SINTESIS DAN SIFAT-SIFAT BAGI POLISILOKSANA PAUTAN  
SILANG SANGAT TINGGI UNTUK PENGKAPSULAN LED 

 

ABSTRAK 

 

Kajian ini memfokuskan pada dua siri sintesis polisiloksana. Siri pertama (S1) adalah 

hidrosilil dengan penamat polidimetilsiloksana (HTP) dimatangkan dengan 2,4,6,8-

tetrametil-2,4,6,8-tetravinil siklotetrasiloksana (D4V) dan siri kedua (S2) adalah 

menggabungkan oktafenilsiklotetrasiloksana (P4) ke dalam siri pertama. Kedua-dua 

siri polimer menjalani pematangan terma. Pematangan UV telah dilakukan pada siri 

pertama untuk mengurangkan masa pematangan serta membandingkan sifat-sifat 

mereka. Produk polisiloksana adalah  berbentuk gel yang jelas. Ciri elastomer siri S1 

adalah bergantung kepada kepekatan terminal rantai iaitu 1,1,3,3-

tetrametildisiklosana manakala siri S2 adalah bergantung kepada jumlah kumpulan 

fenil daripada oktafenilsiklotetrasiloksana (P4) dalam sintesis. Struktur kimia polimer 

telah dibuktikan oleh FTIR dan analisis NMR manakala taburan berat molekulnya 

ditentukan oleh GPC. Sifat-sifat terma ditentukan oleh TGA dan DSC manakala ciri-

ciri optik polimer ini ditentukan dengan ukuran indeks biasan dan serapan UV. 

Ketumpatan pautan silang ditentukan dengan ujian pembengkakan dan kekerasan 

polimer pula ditentu oleh Shore durometer A. Sampel S1-30% dalam siri pertama 

telah didapati memberi kesan keliatan optimum. Polimer berasaskan siloksana ini 

mempunyai Tg dalam julat -110 °C sampai -120 °C dan mempunyai kestabilan terma 

yang sangat baik dengan suhu penguraian 600 °C. Bahan tersebut juga memaparkan 

indeks biasan yang sangat tinggi and sesuai untuk kegunaan sebagai penglitup LED. 

Ciri-ciri optik, sifat-sifat terma dan mekanikal adalah berkait rapat dengan 

ketumpatan pautan silang. Kesan nisbah isipadu bebas dan 'penumpatan' rangkaian 

telah dijelaskan dan didapati menyumbang kepada pergantungan ini. Model Lorentz-

Lorenz telah digunakan untuk menyokong pemerhatian ini. 
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SYNTHESIS AND PROPERTIES OF HIGHLY CROSS-LINKED 
POLYSILOXANE FOR LED ENCAPSULANT  

 

ABSTRACT 

 

The research focuses on the synthesis of  two series of polysiloxane. The first series 

(S1) is hydrosilyl-terminated polydimethylsiloxane (HTP) that was cured with 

2,4,6,8-tetramethyl-2,4,6,8-tetravinyl cyclotetrasiloxane (D4V) and second series (S2) 

is the incorporation of octaphenylcyclotetrasiloxane (P4) into first series. The 

polymers of both series underwent thermal curing. UV curing was performed on the 

first series to improve the curing time as well as comparing their properties. The 

polysiloxanes product was a water clear gel form. The elastomeric feature of series 

S1 was dependent on the end-capper concentration, 1,1,3,3- tetramethyldisiloxane 

while series S2 was dependent on the amount of phenyl group of 

octaphenylcyclotetrasiloxane (P4) employed during its synthesis. FTIR and NMR 

was used to confirm the functional group of HTP and completion of the 

hydrosilylation reaction. TGA was used to measure the residue mass of samples S1 

and S2, while DSC was used to find the Tg of cross-linked samples. UV 

transmittance analysis was used to measure the transparency of the samples. Atago 

refractometer was used to measure the refractive index of the samples. Lastly, the 

swelling test was used to estimated crosslink density of samples and Shore A 

durometer was used to measure the hardness of samples. End-capper concentration 

of 30% (v/w) in first series was found to affect the optimum toughness of the product. 

The siloxane-based polymer displayed Tg in the range of -110 ºC to -120 ºC and with 

excellent thermal stability where decomposition temperature was around 600 ºC. The 

materials also displayed refractive index of 1.4 – 1.5 which is within an acceptable 

range of application as electronic devices encapsulant. Series 2 shows higher optical, 

thermal and mechanical properties compared to series 1. These optical, thermal and 

mechanical properties were closely related to the cross-link density. The effect of 

fractional free volume and ‘densification’ of the network was elucidated and found to 

contribute to this dependency. Lorentz-Lorenz model was used to support these 

observations.  
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CHAPTER 1  

INTRODUCTION  

 

1.1 Introduction 

 Light Emitting Diodes (LEDs) have been extensively investigated as the 

potential next generation technology for flat panel display and lighting to replace 

incandescent, fluorescent, and neon lamps (Mott et al., 1990). This is due to their 

ability to produce high luminosity at low voltages, longer service life, lower cost, 

flexible displays and their compatibility with silicon-integrated circuits (Skal and 

Shklovskii, 1975; Kumar et al., 2006). Currently, due to the tremendous development 

in optoelectronic market, continuous improvement and enhancement of the light-

emitting efficiency of LEDs demand to meet the high brightness challenge. Basically, 

LEDs are solid-state semi-conductor devices that convert electrical energy directly 

into light. LED generation of light leads to high efficacy because most of the energy 

radiates within the visible spectrum (Tarsa and Thibeault, 2002). LEDs can be 

extremely small and durable. They also provide longer lamp life than other sources.  

The LED encapsulant and the lead frame occupy most of the volume of the whole 

electronic. The light generating chip is quite small, typically 0.25 millimeters square. 

LED chip is a solid crystal material. Light is generated inside the LED chip when 

current flows across the junctions of different materials (Dasgupta et al., 2003).  

 Typically,  LED encapsulant is made from a thin film to cover and protect the 

semiconductor substrate, cathode and anode from moisture, adverse environmental 

conditions and physical damage (Li et al., 2008). Nevertheless, the encapsulant must 

be homogenous, high optical transparency leading to the generation of sufficient 

light emission. 
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Figure 1.1: Schematic diagram of a 5 mm indicator LED (Segler, 2005). 
 
 
 In the recent years, many studies and researches have been performed on the 

thermal and optical improvement of LED encapsulant. In order to meet the 

demanding requirement for the production of LED encapsulant, many materials have 

been utilized especially polymer. Polymers have provided the opportunity for low 

cost and low or room temperature processing. A variety of polymer systems have 

been investigated with varying degrees of success (Hsu et al., 2012; Kim et al., 2012). 

One of those polymers is polysiloxanes. 

 Polysiloxanes have many desired properties when being considered for use in 

optoelectronic device applications. These is due to this material display high 

refractive index, transparency, good environmental stability, excellent thermal 

stability and moisture repelling capability (Li et al., 2008; Tai et al., 2001). 

 The refractive index can vary from 1.38 to 1.53 in commercially available 

materials, depending on the type of substituent groups. An epoxy-modified 

polysiloxane can be fabricated through the incorporation of epoxy group at the 

terminal of the polymer chain as an epoxy pendant groups (Jang and Crivello, 2003). 

This hybrid polymer combined the advantages of both epoxy and siloxane polymer. 
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The crosslink density depends on the number of epoxy groups in the polymer and 

this will account for the mechanical and hardness performance of the polymer. 

Besides that , epoxy-modified polysiloxane is also noted for its excellent thermal 

stability and their onset of thermal decomposition appeared at 300-350°C (Morita, 

2005). This thermal stability can reduce the effect of thermal discoloration.  

1.2 Problem Statement 

 The development in LED technology not only just involves miniaturization 

but also the need for high brightness. Conventional epoxy LED encapsulants are 

unable to fulfill the requirements as they are relatively brittle and tend to degrade or 

discolor in the exposure of radiation or high temperature. The discoloration of epoxy 

encapsulant becomes the one of the primary concern because it decreases the light 

output during LED operation.  

 Polysiloxanes provide several advantages over epoxy encapsulant as LED 

encapsulant, since polysiloxanes possesses many outstanding mechanical, thermal, 

and electro-optical properties, which have led to their wide use in various 

applications. A refractive index close to 1.70 is desirable in order to be compatible 

with the LED dies (Edwards and Zhou, 2001).  

 The issue of refractive index and transparency has been a major concern in 

the research involving polysiloxanes as LED encapsulant. Houghman et al. (1996) 

states that a reduction in free volume induced an increased in refractive index. Two 

factors affect the refractive index namely group polarizability and free volume. 

Aromatic structure displays a high group polarizability hence introducing a phenyl 

ring significantly affects an increase in refractive index. Free volume can be affected 

by inducing densification through cross-link network. By increasing cross-link 
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network, densification effect can be enhanced thus controlled the refractive index of 

material.   

1.3 Research Objectives 

This study is concerned with the refractive index of the LED encapsulant based on 

polysiloxane network. The objectives of the present study were: 

 To prepare 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane (D4V) to 

tailor made a highly cross-link polysiloxane network.  

 To study the effect of cross-link network on physical, optical, thermal and 

mechanical properties of the synthesized polysiloxane. .  

 To study and compare phenyl incorporate polysiloxane and UV curing on 

cross-link polysiloxane network. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Light Emitting Diode  

2.1.1 Introduction  

 Light emitting diode (LED) technology has rapidly changed for over 35 years 

old. Improvements in the LED technology have stimulated new device applications. 

The worldwide production of LEDs is now around 4 billion units a month. Ten years 

ago, Japan was the principal LED producer, and Taiwan's output was a little over 10% 

of the world's demand. According to the ITIS (Industrial Technology Information 

Service) of Taiwan, Taiwan now produces around half the world's demand from its 

more than 30 LED manufacturers; Japan and the USA are recorded as the next most 

productive LED manufacturers. A LED device (Figure 1.1) consists of a 

semiconductor device encapsulated by a transparent and uniform thickness material 

to provide a uniform light emission (Lowery, 1999). The encapsulant is configured in 

a dome shape and acting as a lens for the emitted light (Mottier, 2010).  

2.1.1.1  LED Encapsulants 

 LED encapsulants are transparent materials which provide optimal protection 

of LEDs. Materials of LED encapsulants are designed to endure higher operating 

temperatures, resist yellowing, and transmit more light than competing technologies. 

Besides that, they need to give better clarity at higher temperatures. LED lightings 

have to keep brighter over time and provide optimal LED protection. However, the 

encapsulants must be soft or resilient enough in the vicinity of the LED chip, so that 

mechanical stress does not damage the LED chip or the wire leads compromised 
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during thermal excursions or normal operating environments (Carey et al., 2001a). 

The desired criteria of LED encapsulants are: 

• Enhance light transmittance to increase the efficient traversing of light 

through LED encapsulants.  

• Resist heat induced yellowing to reduce the degradation of heat and thermal 

cycle. Raise the performance and increase lifetime of LED encapsulants. 

• Optically clear enough to let the light pass through the LED encapsulants 

without dispersion.  

• UV-visible light cure in seconds to reduce cut process costs, decrease 

pollution and save energy. 

 Traditionally, materials used for LED encapsulants are made from epoxy, 

polymethylmethacrylate (PMMA), glass polycarbonate, optical nylon, polyurethane, 

UV doming resins or polybutadiene. However, these materials suffer from the 

drawback that their optical transmissive characterization degrade over time (Carey et 

al., 2001b). Nowadays, LED encapsulants are well developed to replace the 

conventional materials for example, epoxy incorporate with polysiloxane. 

Polysiloxanes have been selected as the encapsulants due to their high reliability 

under qualification stresses, non-yellowing, low ionic impurity, crack resistant, and 

the refractive index materials can customize up to 1.6 give excellent transparency 

into high frequency ranges. The LED dies is encapsulated with one or more silicone 

compounds, including a hard outer shell, an interior gel or resilient layer, or both. 

The silicone material is stable over temperature and humidity ranges, and over 

exposure to ambient UV radiation (Carey et al., 2001b).   
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2.2 Silicone Polymers  

 Silicone polymers are semi-inorganic materials and very important to 

electronic industry (Ravve, 2000). They are stable from -70 to 260 °C temperatures 

and outstanding mechanical, thermal, and electro-optical properties. Silicone 

polymers usually used as lubricants, adhesives, coatings, synthetic rubber and 

electronic devices, such as LED encapsulants, transistors, integrated circuits and 

computer chip (Mittal and Pizzi, 2009).  Silicone polymers are divided into three 

major categories: fluids, resins, and elastomers (Frank et al., 2005). Figure 2.1 shows 

the representative structure of three major categories of silicone polymers.   

 

Figure 2.1: Representative structure of three major categories of silicone polymers         

(Frank et al., 2005). 

 Although silicone polymers are expensive, using the standard set by organic 

polymer had a remarkable commercial success. They are widely used as a host of the 

different industries for a broad variety of applications (Lane and Burns, 1996). Their 

popularity is due to (Brook, 2000) : 

i. Their properties, which cannot be matched by organic replacements; and  

ii. The fact that only small amounts of material are frequently required to 

achieve the desired result 
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2.2.1 Polysiloxanes 

  Polysiloxanes are heterochain polymers which have a backbone of alternating 

silicon and oxygen atoms, which are mixed inorganic-organic polymers with the two 

remaining valences of the silicon atoms linked to organic side groups (Muzafarov, 

2010; Fried, 2003). Figure 2.2 shows the formation of polysiloxane linkages from 

hydrolysis of the halides, where R can be methyl, ethyl, or phenyl group. The 

products of hydrolysed silanols, are unstable and self condensed (Ravve, 2000). 

 

Figure 2.2: A schematic representation of polysiloxanes linkages from hydrolysis of 
chloride (Ravve, 2000). 

 

 Silicones can be synthesized with a wide variety of properties and 

compositions by varying the -Si-O- chain lengths, side groups, and cross-linking. 

This is illustrated in Figure 2.3. They can vary in consistency from liquid to gel to 

rubber and finally to hard plastic.  

 

Figure 2.3: Four common functional groups of polysiloxanes (M. Bogdan and Julian, 
1995).  
 

http://en.wikipedia.org/wiki/Cross-link�
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Table 2.1 shows the structural unit of polysiloxanes. Monofuctional silanes 

such as R3SiO form only disiloxane. In the mixtures R2SiO2, RSiO3 and SiO4, they 

also can work as terminators to end a chain. Bifunctional compounds such as R2SiO2 

alone form chains and also cyclic siloxanes. The symbol “R” is alkyl group.  

Table 2.1: Structural unit of polysiloxanes (Noll, 1968). 

* The symbols of M, D, T, and Q are used to represent mono, di, tri, and quadra 

functional siloxane monomers and polymers, respectively.  

2.2.2 Nomenclature and Properties of Polysiloxanes 

 The silicone atom in polysiloxanes can be combined with one, two, or three 

organic groups and the remaining valences will be taken up by oxygen. By 

substituting a methyl group with -O-R into Si(CH3)4 as an example. It can assemble 
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polysiloxanes to form four types of structural units as shown in Table 2.1 (Noll, 1968; 

Chandrasekhar, 2005). Therefore, the structure of linear, branched, and cross-linked 

can be easily formed by polysiloxanes. Figure 2.4 shows the nomenclature of 

silicones.                 

 

Figure 2.4: The nomenclature of siloxanes (Chandrasekhar, 2005). 

 Polysiloxane have many unique properties due to the free rotation of 

molecules along the Si–O and Si–C bond axes and the flexible nature of the siloxane 

backbone shown in Figure 2.5 (Frank et al., 2005). 

 

Figure 2.5: The hybrid nature of the silicone polymer (Frank et al., 2005). 
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 Polysiloxanes have great flexibility chains due to the very low barrier free 

rotation of molecules along the Si–O and Si–C bond axes at 2.5 kJ mol-1 and the 

barrier of linearization of the Si-O-Si bond angle at 1.3 kJ mol-1, which is shown in 

Figure 2.5 (Frank et al., 2005; Jones et al., 2001). The Si-O-Si bond has very large 

bond angle (145°) and low bending force constant (Ragheb and Riffle, 2010; Archer, 

2001). As a result, the chains are very flexible and occupy a rather large volume, 

resulting in a high free volume in the material (Jaeger and Gleria, 2007). Larger 

intermolecular distance improves by the freedom of segmental chain motion and 

lowers down the intermolecular forces. This results in polysiloxanes having low 

modulus, high permeability, low glass transition temperatures (Tg) in the range of -70 

to -150°C. The Tg of polysiloxanes depend on the substituent groups pendent to the 

main Si-O backbone chains (Dvornic, 2000; Flory et al., 1964). The Tg’s of 

polysiloxane, which reflect the ease of segmental motion along the chain, are very 

low, typically less than -120°C (Archer, 2001).  

 The high thermal and oxidative stability of polysiloxanes are due to the high 

Si-O bond strength as well as the partial ionic character of the Si-O bond (Voronkov 

et al., 1978). Such polymers are durable and resistant against temperatures up to 

500°C  (Put, 1998). Besides that, polysiloxanes are also transparent to visible and UV 

light as well as high resistance to ozone and corona discharge due to its stable  

polymer backbone (Noll, 1968; Voronkov et al., 1978). Polysiloxanes are known to 

possess exceptional hydrophobicity. This is due to two phenomena: (1) The methyl 

groups provide hydrophobic characteristics to the polymer; and (2) the flexibility of 

the silicone polymer backbone such that methyl groups may orient themselves at the 

interface (Owen et al., 1990). Table 2.2 shows the properties of polysiloxanes. 
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Table 2.2 : Properties of polysiloxanes (Harmon et al., 1992; Lotters et al., 1997). 

Properties Values 

Refractive Index 1.5 – 1.7 

Glass Transition Temperature  -150°C – -70°C 

Hardness, Shore A 10 – 90 

 

2.2.3  Synthesis of Polysiloxanes 

 There are two ways to synthesize linear polysiloxanes from silicone 

monomers, which are hydrolysis and polycondensation. The first step is a hydrolysis 

of the bifunctional silane precursor. However, the linear and cyclic oligomers 

obtained by hydrolysis process have too short chains for most applications (Jones et 

al., 2001). The second step is a transformation of oligomers into high molecular 

weight polymers either by a polycondensation of hydroxyl-ended, short chain 

polysiloxanes or by a ring opening polymerisation of the cyclic oligomers. With 

dimethyldichlorosilane, the hydrolysis reaction occurs according to general equation 

as shown in Figure 2.6.  

 

Figure 2.6: Hydrolysis of dimethyldichlorosilane (Jones et al., 2001) 
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 The resulting dimethylsiloxane can be used as an end-capper for 

polymerization reactions to control the final molecular weight of the polysiloxane. 

The process may be performed either to give mainly cyclic siloxanes or linear 

hydroxyl-ended polydimethylsiloxane as shown in Figure 2.7 (Noll, 1968).  

OH Si O Si O Si OH

CH3

CH3

CH3

CH3

CH3

CH3

n
 

Si O
CH3

CH3

n
 

(CH3)2SiCl2

(n = 3, 4, 5, ...)

H2O

-HCl

 

Figure 2.7: Hydrolysis of dimethyldichlorosilane yields linear and cyclic siloxanes 
(Chojnowski et al., 1987). 

 

The condensation of silanols to form polymeric products is performed by 

both acid and base catalysts (Saunders, 1973). Acid catalysts are more efficient when 

the silanol carries electron-donating groups, whereas base catalysts when it carries 

electron-withdrawing groups. Some catalysts can induce redistribution by attacking 

the polymer chains with the formation of cyclic siloxanes (Jones et al., 2001). Figure 

2.8 shows the example of acid-condensation and base-condensation reactions.  

Si O H Si O H

H

Si O
H

Si O H

H
Si O Si

H

Si O Si

+ H+
+

+ + + H2O

+ H+

 

(a) Acid-catalyzed condensation: 
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(a) Base-catalyzed condensation: 

Figure 2.8 : The condensation of silanos to polymeric products is catalysed by both 
acids and bases (Saunders, 1973).  
 

2.3  Ring Opening Polymerization  

Ring opening polymerization of cyclic siloxanes is a transformation process 

of the cyclosiloxane monomers into linear siloxane polymer through the cleavage of 

the Si-O-Si bond in the monomer ring and the subsequent reformation of the bond in 

the polymer chain as shown in Figure 2.9 (Jaeger and Gleria, 2007). This process has 

important advantages over the alternative polycondensation method, creating better 

conditions for the control of reactive end groups, hence a better control of molar 

mass (Dragan, 2006). 

 

Figure 2.9: General ring opening polymerization equation (Jones, 2000). 

 Ring-opening polymerization can be carried out in either cationically or 

anionically condition. Both types of polymerization will be discussed, but only 

cationic ring opening polymerization was considered carried out in this project.  

2.3.1  Anionic Ring Opening Polymerization  

 In anionic ring opening polymerization (AROP), strong inorganic, organic or 

organometallic bases are used as the initiators. Rings containing heteroatoms, 
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particularly oxygen, may be polymerized using anionic initiators. Alkali metal 

hydroxides such as KOH, tertiary ammonium and phosphonium and silanolates 

derived from them are common catalyst (Jones et al., 2001). 

The reaction mechanism of (AROP) involved into three stages: initiation, 

propagation and termination (Warson and Finch, 2001). In initiation step, silanolate 

anion is formed. It acts as the active propagation centre which is capable of 

extending the polysiloxane chain by addition of monomers (Dubois et al., 2009). The 

propagation of reaction is continuous with monomers added to the polysiloxane 

backbone chain.  

There will be no termination of AROP if there is no any protonic impurities 

and end-capper added to the system (Dubois et al., 2009). Thus, the reaction must be 

quenched to deactivate the silanolate centre and end the polymerization. Figure 2.10 

shows the reaction mechanism during initiation, propagation, chain transfer and 

termination using end-capper (Jones, 2000).  

The size of the counterion of catalyst is directly related to polymerization rate 

by increasing strongly in the series: Li+ < Na+ < K+ < Rb+ < Cs+ (Jones et al., 2001). 

Litium and sodium silanolates are not very powerful catalysts for cyclosiloxane 

polymerization unless used in conjunction with a solvent such as tetrahydrofuran 

(THF) or dimethyl sulfoxide (DMSO) (Patai et al., 2001). Cyclotrisiloxane has the 

highest reactivity due to its ring strain. As the size of monomer increases, the 

reactivity towards the silanolate ions increases too (Chojnowski, 1991). Figure 2.10 

shows reaction mechanism during initiation, propagation and chain transfer in AROP.  
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Figure 2.10: Reaction mechanism during initiation, propagation and chain transfer in 
anionic ring opening polymerization (Dubois et al., 2009). 

 

2.3.2  Cationic Ring Opening Polymerization 

 Cationic ring opening polymerization (CROP) uses Bronsted and Lewis acid 

as catalysts. This includes strong protonic acid such as sulphuric acid, sulfonic acids,  

perchloric acid and a variety of Lewis acids such as ferric chloride, stannum chloride. 
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They are the common initiators for cationic polymerization of cyclosiloxanes (Jones 

et al., 2001). The advantage of this process is the relative insensitivity to acids of 

functional groups.  

Compared to AROP, the reaction mechanism of the CROP of cyclosiloxane 

is very complex as shown in Figure 2.11. The tertiary siloxonium ions act as the 

active propagation centre to initiate the polymerization. The initiation step of CROP 

involves the splitting or acidolysis of the siloxane bond in a cyclic monomer to form 

reactive end groups. The reactive chain end will attack the siloxane bond in the 

cyclosiloxane monomers and then extending the polymer by adding monomers to the 

backbone chain in propagation step (Chandrasekhar, 2005; Brook, 2000). 

Termination step will be two types of condensation reaction. The first is the 

condensation of different reactive chain ends to form catalyst again, and the second 

type is the condensation of similar chain ends giving water as sub-product 

(Chojnowski and Cypryk, 2000).  

The presence of contaminants such as water and silanols will affect the 

reaction rate. At higher water and silanol concentration, the polymerization is 

completely inhibited. From monomer aspect, the reactivity of the siloxane bond in 

cyclic siloxane oligomers varies with the size of ring and the type of substituent 

groups on silicon atom (Brook, 2000).  

Compared to AROP, the molecular weight distribution (MWD) of polymer 

by CROP is relatively broad (1.6 to 2). It is because of the continuous initiation along 

the polymerization and also affect by the side reactions (condensation, back-biting 

and chain transfer). The contaminants such as water and alcohol are able to cleave 

the siloxane bond which is responsible for decreasing polymer molecular weight 

(Jones et al., 2001). 
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Figure 2.11: General reaction mechanism during initiation, propagation and 
termination of cationic ring opening polymerization (Jones et al., 2001). 

 

2.4  Cross-linking of Polysiloxanes 

 Silicone fluids are valuable materials. However, many applications required 

the materials that do not flow. Thus, to form resins, coatings, and elastomers, it is 

necessary to cross-link the silicones. There are several possible routes to cross-

linking that could be envisaged. However, the routes most commonly involve: (1) the 

incorporation of tri– or tetrafunctional silanes that can react in ionic conditions; or (2) 

the use of organic residues on the silicone polymers (methyl, vinyl, H groups) to 

form a network (Plueddemann, 1991). There are three different types of cross-linking: 

moisture cure (RTV), transition metal catalyzed hydrosilylation (typically platinum) 

or addition cure and UV cure.  
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2.4.1  Moisture Cure  

 Moisture curing (Figure 2.12) for single component systems is viscous 

adhesives that typically consist of non-volatile silicone prepolymers. These systems 

require moisture to trigger the curing reaction. Cured adhesives range from hard and 

rigid to soft and flexible depending on formulation. A major application for moisture 

curing silicone is the installation of windshields in automobiles. Recently, single 

component moisture curing polysiloxanes hot melts have been developed that 

combine the initial strength of hot melts with the improved heat resistance of 

moisture cured adhesives (Majumdar et al., 2011; Ren and Frazier, 2012). Cure is 

accomplished at room temperature via a reaction with moisture in air. Cure speed 

varies according to temperature and humidity and skin times range from 3 to 10 

minutes.   

 

Figure 2.12: General reaction of moisture cure (Jones et al., 2001). 

2.4.2  Hydrosilylation (Additional Cure)  

 Hydrosilylation is an addition reaction of hydrosilanes (Si-H) compounds to 

unsaturated bond, vinyl, CH2=CH, or allyl, CH2=CHCH2, groups. Hydrosilylation of  

Si-H group with olefins, especially allyl derivatives, leads to a wide variety of 

functional silicones with a special organic reactivity (Patai et al., 2001). This reaction 

is one of the most efficient processes for making the silicon-carbon bond after the 

http://www.adhesives.org/AdhesivesSealants/AdhesiveTechnologies/ChemicallyCuring/UrethaneAdhesives.aspx�
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direct process. It is also one of the methods of introduction of functionalized silanes 

(Si-Cl, Si-OR) or alkylsilanes to organic molecules in high yield (Marciniec, 2008).  

It allows for the functionalization of polysiloxanes with either hydride or vinyl-

containing siloxane repeat units (Ragheb and Riffle, 2010).   

 The cross-linking complementary polymers that must be used are the silicone 

containing Si-H groups and the silicone is usually in a two-part system with the 

catalyst contained in the vinyl-polymer part (Marciniec, 2008). The reaction occurs 

rapidly and under very mild conditions (Figure 2.13). The onset temperature for 

hydrosilylation (ambient to 100oC) can be affected by changing the nature of catalyst 

and addition of specific inhibitors. There are no by products produced in the process, 

although residual platinum that remains trapped in the gel can turn the elastomer 

somewhat yellowish. The polymer can be cured via hydrosilylation reaction 

affording  the desired cross-linking (Speier, 1979).  

 

Figure 2.13:  General reaction mechanism of hydrosilylation (Jones et al., 2001). 

2.4.3 UV cure 

 Silicones do not readily undergo photodegradation. However, when under 

highly energetic radiations such as electron beam, gamma irradiation and intense UV, 

cross-linking can occur. When the silicone is simultaneously exposed to irradiation 
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in the presence of and oxygen, then the oxidation processes are accelerated, leading 

first to carbon oxidation, Si-C cleavage to give silanols, and silanol condensation to 

give cross-linking (Noll, 1968).  

2.5 Catalysts 

 Catalysts are generally necessary to effect polymerization via equilibration 

(Chojnowski et al., 1987). Strong acids and bases catalyze both condensation and 

cleavage redistribution. Bronsted acids such as sulfuric acid, acid clay and triflic acid 

are frequently used as acidic catalysts. Although Lewis acids (TiCl4, Me3SiOSO2CF3) 

will also initiate the polymerization, in the most cases a proton, formed from 

adventitious water by hydrolysis, is the active catalyst (Obriot et al., 1987). 

Hydroxide bases such as KOH, R4NOH, and R4POH efficiently catalyze 

polymerization under equilibrating conditions (Gilbert and Kantor, 1959).  

 Platinum catalyst is an efficient hydrosilylation catalyst (Speier, 1979). Under 

optimal conditions, catalyst concentrations of less than 1 ppm (part per million) are 

sufficient for complete a reaction. The reaction can be done in tetrahydrofuran, 

chloroform, and other chlorinated solvents, benzene, toluene and silicones (Ojima et 

al., 1998).  

2.6  Lorentz-Lorenz Relationship 

2.6.1  Mechanism of light interaction with particles 

 The Lorentz–Lorenz equation relates the refractive index of a substance to its 

polarizability (Born et al., 2000). The most general form of the Lorentz–Lorenz 

equation is 

απ N
n
n

3
4

2
12

=
+
−                                                       (2.1) 

http://en.wikipedia.org/wiki/Refractive_index�
http://en.wikipedia.org/wiki/Polarizability�
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where n is the refractive index, N is the number of molecules per unit volume, and α 

is the mean polarizability. It was independently formulated by Danish mathematician 

Ludvig Lorenz and Dutch physicist Hendrik Lorentz in 1878. The derivation of this 

equation involved the mechanism of interaction of electromagnetic radiation with 

particles which characteristically make up a material.  

An electromagnetic wave is produced by a vibrating electric charge 

(Waldman, 2002) As the wave moves through the vacuum of empty space, it travels 

at a speed of c (3 x 108 m/s). Atoms are makeup of electrons which vibrate at its 

natural or resonant frequency. When the wave impinges upon a particle of matter, the 

energy is absorbed and sets electrons within the atoms into vibration motion. If the 

frequency of the electromagnetic wave does not match the resonant frequency of 

vibration of the electron, there is a forced vibration with a small amount of energy 

being absorb. Then the energy is reemitted in the form of an electromagnetic wave 

travelling at a new frequency. The newly emitted light wave continues to move 

through the interatomic space until it impinges upon a neighboring particle. The 

energy is absorbed by this new particle and sets the electrons of its atoms into 

vibration motion. And once more, if there is no match between the frequency of the 

electromagnetic wave and the resonant frequency of the electron, the energy is 

reemitted in the form of a new electromagnetic wave. This behavior corresponds to 

molecular scattering. The cycle of absorption and reemission continues as the energy 

is transported from particle to particle through the bulk of a medium. There will be a 

speed delay involved from c in the process of being absorbed and reemitted by the 

atoms of the material. An almost complete absorption will occur if the radiation 

frequency is equal to the resonant frequency. Subsequently, the net speed of an 

electromagnetic wave in any medium is somewhat less than its speed in a vacuum. 

http://en.wikipedia.org/wiki/Refractive_index�
http://en.wikipedia.org/wiki/Polarizability�
http://en.wikipedia.org/wiki/Ludvig_Lorenz�
http://en.wikipedia.org/wiki/Hendrik_Lorentz�
http://www.physicsclassroom.com/class/light/u12l2c.cfm�
http://www.physicsclassroom.com/class/light/u12l2c.cfm�
http://www.physicsclassroom.com/class/light/u12l2c.cfm�
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The index of refraction is the ratio of the speed of light in a vacuum (c) to the speed 

of light in the medium (v) (Waldman, 2002):   

v
cn =                                                            (2.2) 

The governing factor affecting this change in speed is the electronic polarizability 

(Minges and Committee, 1989).  

2.6.2  Lorentz-Lorenz Law 

 The basis of Lorentz–Lorenz equation is derived from the Clausius–Mossotti 

relation and Maxwell's formula which originate from the electronic behavior called 

electronic polarizability. In a unit volume, polarizability is given as  

NmP =                                                           (2.3) 

where N is number of dipoles per unit volume and m is dipole moment. Since 

polarization P is proportional to dipole moment m, the latter must be proportional to 

the electric field strength or m = αE. Polarizability (symbol α) is a proportionality 

constant and is called polarizability. α is equal to the dipole moment induced in an 

atom or a molecule by an electric field of unit intensity and this value is typical of 

each different type of atom or molecules (Indulkar and Thiruvengadam, 2008). To a 

good approximation,  

ENNmP α==                                                    (2.4) 

The relation between polarizability with the permittivity of the dielectric material can 

be shown as: 

o

N
ε
αε +=1                                                        (2.5) 

where εo is permittivity at vacuum.  When a dielectric is placed in between two plate 

capacitor, the additional quantity of charged displaced per unit area is given by  

PDD o +=                                                        (2.6) 

http://en.wikipedia.org/wiki/Clausius%E2%80%93Mossotti_relation�
http://en.wikipedia.org/wiki/Clausius%E2%80%93Mossotti_relation�
http://en.wikipedia.org/wiki/James_Clerk_Maxwell�
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                                                      PED o += ε                                                       (2.7) 

where Do is the initial charged displaced. From Equation 2.4, 

)( αε NED o +=                                                 (2.8) 

Rearrangement will gives  

ED roεε=                                                         (2.9) 

εr is the new permittivity. In gaseous state there is effectively no interaction between 

atoms. However in solid and liquids, there is interaction between atoms which give 

rise to the generation of local electric field known as Lorentz field, Ei. This field is 

not equal to the applied external field. So, the local dipole moment is given as 

Eim α=                                                         (2.10) 

If there are N dipoles per m3 then molar polarizability is given by  

EiNNmP α==                                                   (2.11) 

Total charge in this system is equal to  

EiNED o αε +=                                                   (2.12) 

Equating this equation with that of Equation 2.9 will give 

E
EiNE

o

o
r ε

αεε +
=                                                 (2.13) 

E
EiN

o
r ε

αε +=1                                                  (2.14) 

In order to determine permittivity of the dielectric material, εr, then Ei must be 

known. By taking approximation, μ  

PEE
o

i ε
µ

+=                                                    (2.15) 

where μ is a constant with the value of 1/3 for isotropic material. So 

o
i

PEE
ε3

+=                                                 (2.16) 
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