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Kawalan Model Ramalan Berasaskan Wiener Dipermudah bagi 

Turus Penyulingan 

 

ABSTRAK 

 

Proses turus penyulingan memerlukan sejumlah tenaga yang besar, oleh itu 

mengawal turus ini dengan cekap boleh meminimumkan kos operasi. Kawalan 

model ramalan tak lelurus (NMPC) merupakan salah satu strategi kawalan terbaik 

sedia ada untuk mengawal turus tersebut. Dalam pelaksanaan NMPC, teknik 

pelelurusan kerap digunakan untuk menjamin penyelesaian optimum sejagat dan 

untuk mengurangkan beban pengiraan. Salah satu skim kawalan yang menggunakan 

teknik pelelurusan adalah skim kawalan lelurus berasaskan Wiener (WLC) yang 

menggunakan songsang blok tak lelurus, dan ia tidak memerlukan hasil bezaan 

model. Walau bagaimanapun, skim WLC memerlukan sama ada blok tak lelurus atau 

blok songsang untuk disongsangkan, sehingga menghadkan jenis model yang boleh 

digunakan untuk mewakili kedua-dua blok. 

Dalam kerja ini, sebuah skim kawalan berasaskan Wiener yang tidak 

memerlukan blok-blok boleh songsang telah dibangunkan. Skim kawalan ini, yang 

dinamakan sebagai skim kawalan lelurus berasaskan Wiener yang dipermudah 

(SWLC), hanya menggunakan blok lurus dan blok songsang. Skim SWLC dengan 

algoritma pengoptimuman mudah (SO) yang telah diterbitkan dari penyelesaian tak 

terkekang bagi masalah pengoptimuman kawalan model ramalan, telah dilaksanakan 

dalam turus penyulingan. Turus ini, yang diselakukan dalam perisian Aspen 

Dynamics dan MATLAB simulink, mempunyai 33 dulang dan mengandungi sebuah 

campuran n-butana, n-pentana, n-heksana, dan n-oktana. Hasil pengesahan 
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menunjukkan bahawa hasil penyelakuan adalah setara dengan literatur pada ralat 

purata 0.63% (Errico et al., 2009). 

Tiga pendekatan pengenalpastian Wiener iaitu pendekatan N-L, L-N, dan 

serentak, telah dibandingkan dalam pengenalpastian blok lelurus dan blok songsang. 

Pembandingan ini telah dilakukan untuk sistem satu masukan satu keluaran (SISO), 

dan hasil-hasil menunjukkan bahwa pendekatan L-N merupakan pedekatan 

pengenalpastian terbaik. Algoritma pengenalpastian untuk sistem berbilang masukan 

berbilang keluaran (MIMO) kemudian dibangunkan berasaskan pendekatan L-N. 

Blok linear dan blok songsang yang telah dikenalpasti digunakan untuk 

membangunkan pengawal MPC berasaskan skim SWLC. Pengawal MPC yang 

dihasilkan dan algoritma SO dibandingkan dengan pengawal MPC berasaskan skim 

WLC dan algoritma pengoptimuman pengaturcaraan kuadratik (QP). Pengawal 

berkadaran-kamiran-bezaan (PID) juga telah digunakan untuk pembandingan 

prestasi. 

Hasil-hasil bagi kes SISO menunjukkan bahwa prestasi PID dan semua MPC 

dalam menjejaki titik set adalah setara. Walau bagaimanapun, prestasi PID merosot 

bila kawasan kendali mendekati kekangan. Sebaliknya, PID lebih baik sedikit dalam 

menolak gangguan, sementara MPC lebih kukuh bila ketidaktentuan parameter 

berlaku. Untuk kes MIMO, pengawal-pengawal MPC menghasilkan prestasi lebih 

baik daripada PID dalam menjejaki titik-titik set. MPC juga lebih kukuh daripada 

PID bila ketakpadanan model wujud. Sementara itu, pengawal MPC dan PID 

menunjukkan prestasi yang setara dalam menolak gangguan. Di antara semua 

pengawal MPC dicadangkan, SWLC-SO menghasilkan prestasi yang serupa dengan 

MPC yang lain tetapi dapat memendekkan masa pengiraan dengan ketara. 
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A Simplified Wiener Based Model Predictive Control for Distillation 

Column 

 

ABSTRACT 

 

The distillation column process requires a large amount of energy, thus 

efficiently controlling the column can significantly minimize the operational costs. 

Nonlinear model predictive control (NMPC) is one of the best control strategies 

available to control such a column. In the NMPC implementation, the linearization 

technique is often used to guarantee the global optimum solution and to reduce the 

computational burden. One of the promising control schemes that uses the 

linearization technique is the Wiener based Linear Control (WLC) scheme which 

uses the inverse of the nonlinear block, and does not require the derivative of the 

model. However, the WLC scheme requires either the nonlinear block or the inverse 

block to be inverted thus limiting the type of model that can be used to represent both 

blocks. 

In this work, a Wiener based control scheme which does not require 

invertible blocks was developed. The developed control scheme, which was called 

the simplified Wiener based linear control (SWLC) scheme, only used the linear 

block and the inverse block. The SWLC scheme with simple optimization (SO) 

algorithm that was derived from the unconstrained solution of the model predictive 

control (MPC) optimization problem was implemented in the distillation column 

control. The column, which was simulated using Aspen Dynamics and MATLAB 

simulink software, had 33 trays and contained a mixture of n-butane, n-pentane, n-

hexane, and n-octane. The validation results showed that the simulation produced a 
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comparable result with the literature with the average error of 0.63% (Errico et al., 

2009). 

Three Wiener identification approaches i.e. N-L approach, L-N approach, and 

simultaneous approach were compared in the identification of the linear and inverse 

blocks. The comparison was performed for the single input single output (SISO) 

system, and the results indicated that the L-N approach was the best identification 

approach. The identification algorithm for the multi input multi output (MIMO) 

system was then developed based on the L-N approach. The identified linear and 

inverse blocks were used to develop the MPC controller based on the SWLC scheme. 

The resulting MPC controller and SO algorithm were compared with the MPC 

controller based on the WLC scheme and the quadratic programming (QP) 

optimization algorithm. Proportional integral derivative (PID) controller was also 

implemented for performance comparison. 

The results for the SISO case show that the performance of the PID and all 

MPCs are comparable in set-point tracking. However, the PID performance 

deteriorated when the operating region is near constraint. On the other hand, the PID 

is slightly better in rejecting disturbance while the MPC is more robust when 

parameter uncertainty occurs. In the MIMO case, the MPC controllers produce better 

performance than the PID in tracking the set-points. The MPC is also more robust 

than the PID when model mismatch exists. Meanwhile, the MPC and the PID 

controller show comparable performance in rejecting the disturbance. Among all the 

MPC controllers proposed, the SWLC-SO produces a similar performance with other 

MPCs but significantly shortens the calculation time. 
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CHAPTER 1: INTRODUCTION 

1.1 Distillation column 

Distillation is a separation technique based on different boiling points of the 

components in a mixture. In the distillation process, components with lower boiling 

points are vaporized by introducing heat to the mixture while majority of the 

components with higher boiling points remain as liquids. The vaporized components 

are then condensed by removing the heat. A Distillation column is a column where 

the distillation process takes place. The simple distillation column contains a column, 

a reboiler where the heat is added, and a condenser where the heat is removed. The 

column is the place where heat is added to the liquid and removed from the vapor 

simultaneously. Mass transfer inside the column is done by contacting the vapor 

phase and liquid phase. Depending on the contents of the column, the contact can 

occur in either the tray or bed of pack. If a reaction occurs simultaneously with the 

distillation process, then this is called reactive distillation.  

1.2 Distillation column control 

The distillation column process is the most common separation technique 

which involves a large amount of heat addition and removal. A distillation column 

can consume up to 50% of the total plant operational costs (Cheremisinoff, 2000). 

Improper control of the distillation column can waste high amounts of heat (energy) 

and increases unnecessary heat consumption which leads to plant profit reduction. 

The distillation column is usually located at the end of the process sequence which 

determines the final product quality specification. To cope with market demand, the 

distillation column control should easily shift the distillation product from one 
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product specification to another in order to maximize profits. An effective control 

should be able to perform the specification shifting at minimum energy costs, even in 

the presence of other regulations such as environmental and safety regulations. 

In the direct control of the product specification, the composition 

measurement device must be available. Often, the composition measurement rate of 

such a device is very slow which leads to the slow response rate of the controller. If 

disturbances occur when the composition is still being measured, then the controller 

cannot take any action since the new measurement is not available. A slower 

controller will result in an off-spec product which is unwanted from the economic 

point of view. To provide a more feasible controller, it is common to indirectly 

control the product specification by controlling the tray temperature since the 

composition can thermodynamically relate to the temperature. 

In the traditional way, a distillation column is controlled by a proportional-

integral-derivative (PID) controller. However, the PID controller, which is a single 

input and single output (SISO) controller, performs very poorly, when constraint is 

involved. In a multi input multi output (MIMO) case, it is also difficult to directly 

use two PID controllers when two variables need to be controlled, for example the 

top and bottom product specifications, due to the interaction between the 

manipulated variables. Skogestad et al. (1988) found that for distillation columns 

with a high purity of top and bottom compositions, the interaction was so high until it 

was nearly impossible to implement two SISO PID controllers. When the operation 

reached constraint, the PID controllers might suffer integral wind-up i.e. a condition 

where the integral action of the PID controller keeps integrating and increasing the 

control value even though it is already at its saturation. This condition causes the 
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poor performance of the PID controller since the manipulated variable cannot move 

from the saturation irrespective of the type of signal given by the PID controller. 

Decoupling is one technique developed to overcome the limitation of the PID 

controller which can be employed to reduce the interaction between the variables 

before implementing the PID controller. However, decoupling a high sensitive 

column is not feasible (Weischedel & McAvoy, 1980). An anti wind-up algorithm 

can be applied to the PID controller to improve its performance when the operating 

region is close to the saturation. 

The most promising approach to control a distillation column is by 

implementing model based advanced control strategies such as internal model 

control (IMC) (Wassick & Tummala, 1989), model predictive control (MPC) 

(Norquay, Palazoglu, & Romagnoli, 1999) and general model control (GMC) 

(Karacan, Hapoglu, & Alpbaz, 2007). Among those advanced control strategies, 

MPC is the only advanced controller that explicitly incorporates constraint handling 

inside its algorithm. In the MPC, variable interaction is also taken into account 

without requiring the decoupling technique. However, the majority of industrial 

MPCs are a linear model based MPCs (LMPC) which only gives a satisfactory 

performance on the linear to mildly nonlinear process and processes with narrow 

operating regions where the linear model is acceptable. Due to this reason, the 

development of a nonlinear model based MPC (NMPC) that can handle moderate to 

highly nonlinear processes and a wider operating condition has been intensively 

studied. 

1.2.1 Nonlinear model based MPC 

There are three general nonlinear models that can be used within a NMPC. 

These nonlinear models are the white-box model, the grey-box model and the black-
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box model. The in-depth review about the applications of those models in the NMPC 

for the distillation column control is provided in the next chapter. Concisely, the 

nonlinear white-box or grey-box model based NMPC for a distillation column is 

heavily computational demanding due to the large number of ordinary differential 

equations (ODE) and differential algebraic equations (DAE). The white-box model 

or first-principle model for the distillation column is derived from the energy 

balance, equilibrium relationship and mass balance for each component and tray 

which results in a large number of ODEs and DAEs. The simplifications and 

assumptions in the grey-box model usually reduce the number of ODEs but increase 

the number of the DAEs. As an example, Zongzhou et al. (2010) used a grey-box 

model which reduced the number of ODEs in the white-box model of a distillation 

column from 180 ODEs to 10 ODEs. However, the number of DAEs increased from 

137 to 299. Due to this reason, the nonlinear the black-box model can be used to 

overcome this problem. The significantly simpler structure of black-box model, even 

for a complex process such as a distillation process, leads to a faster NMPC 

controller. Even though the black-box model successfully reduces the calculation 

complexity and computational burden, it still possesses the same non-convex 

optimization problem as in the white-box and grey-box models. 

1.2.2 Linearization strategy in NMPC 

Without any treatment, all nonlinear model based MPCs naturally, have a 

non-convex optimization problem which exhibits the possibility of the local optimum 

solution besides the global optimum solution. The presence of the local optimum 

solution can deceive the optimization algorithm from the global optimum solution. 

To tackle such a problem, a linearization technique can be applied to the nonlinear 

model. The linearization technique is commonly applied by means of the first order 
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of the Taylor series expansion. Several examples of this technique in the NMPC for a 

distillation column can be seen in Ławryńczuk (2011b) and Shaw and Doyle (1997). 

One class of black-box model offers the possibility to perform the linearization 

technique without requiring the first order nonlinear model derivative. This class of 

the black-box model, which is called the block-oriented model, embeds the nonlinear 

characteristic to a linear dynamic model by either transforming the input, or the 

output, or the input and output using a static nonlinear function. Therefore, the 

nonlinearity of the block-oriented model can be removed easily by the inverse of the 

static nonlinear function (inverse block). Fruzzetti et al. (1997) used the polynomial 

model as the static nonlinear model and used its root as the inverse block to cancel 

the nonlinearity. Among the sub-classes of block-oriented models (Wiener and the 

Hammerstein model), the Wiener model has a structural advantage in the modeling 

nonlinear behavior over the Hammerstein model (Pearson & Pottmann, 2000). The 

unique and relatively simpler way to transform the nonlinear control problem into a 

linear control problem in a block-oriented model based controller offers an 

interesting option to realize effective control in a distillation column. 

1.3 Problem statement 

The linearization of the Wiener model via the inverse block (function) is 

called the Wiener based Linear Control (WLC) scheme. Until now, the application of 

the WLC scheme requires an invertible nonlinear block. Bloemen et al. (2001) and 

Norquay et al. (1999) used the polynomial model as the nonlinear block which can 

be inverted by its root. Such a requirement limits the number of models that can be 

used in the block-oriented model. It also prevents the application of models that are 

known to have good flexibility and accuracy but difficult to be inverted directly such 
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as the neural network model. Therefore, it is very important to develop a strategy to 

remove the limitation which exists in the block-oriented model. 

The linearization technique also successfully reduces the optimization 

difficulty. When no linearization technique is applied to the model, the sequential 

quadratic programming (SQP) is often used to solve the nonlinear optimization 

algorithm (nonlinear programming). If the nonlinear model is linearized, solving the 

optimization problem only requires a quadratic programming (QP) algorithm. 

However, even though the QP is simpler than the SQP, its algorithms are still 

iterative algorithms. Calculating the optimum solution without considering the 

constraints considerably reduces the computational time especially in the QP 

optimization problem whose unconstrained solution can be calculated using a non 

iterative Least Square Estimate (LSE) algorithm. The constrained solution is usually 

better than the unconstrained solution. 

The aim of this study is to develop a simple and fast Wiener based MPC for 

the distillation column. The proposed NMPC strategy includes the Simplified version 

of the WLC (SWLC) scheme which is a Wiener based linearization technique 

without requiring an invertible nonlinear block and a suitable unconstrained 

optimization algorithm that can increase the calculation speed, which is called the 

Simple Optimization (SO) algorithm. The controller is implemented on the 

petroleum distillation column which has been known involves multiple component in 

its feed. 

1.4 Research objectives 

The objectives of this study are: 

1. To compare several Wiener model based identification approaches in 

terms of model accuracy, data requirement, and calculation time. 



7 

 

2. To develop and validate Aspen dynamic model for the distillation column 

case study. 

3. To develop a Wiener based MPC controller with SWLC scheme and SO 

algorithm (SWLC-SO) for the distillation block column. 

4. To compare and evaluate the performance of the SWLC-SO controller 

with the Wiener based MPC using a SWLC scheme and a QP algorithm 

(SWLC-QP), the Wiener based MPC using a WLC scheme and a QP 

algorithm (WLC-QP), and the PID controller in controlling the distillation 

column. 

1.5 Scope of work 

This study focuses on the development of a simplified Wiener based MPC 

strategy (SWLC-SO) for a multicomponent distillation column. The SWLC-SO 

control strategy consists of a SWLC scheme and a SO algorithm. The application of 

the SWLC scheme will linearize the Wiener model without inverting the nonlinear 

block or the inverse block. 

The white-box model of the continuous multi-component (four components) 

distillation column with trays as the contact medium is used as the nonlinear process 

throughout the study. The Aspen dynamic software is used to solve and simulate the 

white-box model which is rigorously developed using the Aspen plus software. The 

Aspen dynamic software is then connected with the MATLAB simulink environment 

for data generation and close loop performance evaluation. The result of the Aspen 

dynamic simulation is then compared with data available in the literature. 

The identification algorithm and the process to obtain the block parameters of 

the Wiener model which are required for the development of the proposed control 

strategy are performed in the MATLAB environment. The blocks of the Wiener 
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model are identified from the data which is generated from the open-loop simulation 

of the distillation process. The input and output of the model are the manipulated and 

controlled variables respectively. 

The fast, unconstrained SO algorithm is also developed using MATLAB 

software, which is also used to solve the constrained optimization problem. Only the 

manipulated variable constraint is considered in this study since it is the constraint 

that exists naturally in the control problem. The objective function of the 

optimization problem is formulated by the sum of the quadratic error between the 

controlled variables and their set-point along the prediction horizon plus the sum of 

quadrate of the controlled variable changes along the controlled horizon. The NMPC 

controller is used to control the top and bottom tray temperature of the distillation 

column by manipulating the reboiler duty and the reflux mass flowrate. The pair of 

controlled variable and manipulated variable is determined using the singular value 

decomposition (SVD) analysis. All the control simulations are performed using a 

personal computer with 2.00 GHz dual core CPU speed and 3.00 GB RAM. To 

evaluate the control performance, set-point tracking and disturbance rejection with 

feed mass flowrate as the disturbance variable are conducted. An additional 

robustness test is also carried out by reducing the tray efficiency in the column. 

1.6 Organization of the thesis 

This thesis is divided into five chapters. Chapter 1 provides a brief 

introduction on the distillation process, the need to control the distillation column 

effectively and the available controllers to perform effective control on distillation 

column. The problem statement of this study is also provided. Then, the objectives 

and the scope of this study are highlighted. Finally, the organization of this thesis is 

given at the end of the chapter. 
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Chapter 2 consists of the literature review related to this study. In this 

chapter, the details of the MPC are explained. Various types of nonlinear models that 

can be embedded in the MPC with their respective advantages and disadvantages are 

explained. Then, various control schemes based on the Wiener model that are 

available in the literature are reviewed. In the last part of the chapter, the summary of 

the Wiener model identification available in the literature is given. 

Chapter 3 explains the methodology adopted in this study. At the beginning 

of Chapter 3, the multicomponent distillation process under consideration and the 

approach to simulate the column are explained. Steps taken in the development of a 

SWLC-SO control strategy are then explained. Next, the procedures to tune the PID 

controller and to develop the NMPC with a WLC scheme are provided. The MPC 

tuning procedure is then explained. Finally, the control performance studies, the 

robustness tests and the criteria to measure the performance of the controller used are 

explained. 

Chapter 4 consists of the results and discussion of this study. The first part of 

this chapter reports and discusses the simulation results from the Aspen dynamic 

software. The second part provides the results of the tray selection test. The effects of 

reflux mass flowrate, reboiler duty, and feed mass flowrate on the control variables 

are discussed in the third part of this chapter. Then, the identification and validation 

results of the linear block, the inverse of the nonlinear block and the linear dynamic 

model is provided. Next, the performance of the SWLC-SO and other controllers 

used for the SISO and MIMO are evaluated. Finally, the robustness evaluation of all 

the controllers is provided. 
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Chapter 5 summarizes all the important findings in the work. Some suggested 

future studies are also proposed. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Model predictive control 

The model predictive control is a model based controller that utilizes a 

process model to predict the future output of the process. It also utilizes an 

optimization algorithm to find the future process input that minimizes a specified 

objective function which normally relates the predicted process output and the set-

point. The MPC is the most applied advanced controller in industry and its 

application has increased in the recent decade (Tatjewski, 2007). The application of 

the MPC started over 30 years ago when the first Identification and Command 

(IDCOM) and Dynamic Matrix Control (DMC) appeared. The MPC was originally 

applied in the refining and petrochemical industry before its application expanded 

into a significantly broader range of industries (Qin & Badgwell, 2003). 

Figure 2.1 illustrates the general MPC procedures as explained below: 

1. Select a set of future control trajectory over a control horizon  

                     . 

2. Calculate the quadratic error along prediction horizon   between the future set-

point       
        

          
    and the predicted future output 

                        , and the quadratic of the future input changes 

                         from the selected future control trajectory to obtain 

the value of the MPC objective function. The calculation is performed using the 

available measurements until the current sampling point. 

3. Update the set of future control trajectory using the MPC optimization algorithm 

and repeat steps 1 and 2 until the future control trajectory that produces the 

optimum value of the MPC objective function is obtained. 
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4. Implement the first part of the future control trajectory to the process. 

5. Move to the next sampling point and repeat all the steps beginning with step 1. 

 

 

 

 

Based on the general procedures explained, it can be concluded that there are 

two core components of the MPC controller, i.e. the model of the process to predict 

the future output of the process and the optimization algorithm to find the optimum 

control trajectory. 

In the MPC controller, the model should be able to approximate the process 

with adequate accuracy and should also have the simplest structure possible. Most of 

the optimization algorithms are iterative algorithms that involve repetitive 

calculations of the model equation thus, the computational effort of the MPC 

Control horizon 

Prediction 

horizon 

     
  

 

       

      

   -1  -2  +1  +2  +3  +M  +P         

Past Future 

Figure 2.1:  General MPC procedures (Seborg, Edgar, & Mellichamp, 2011) 
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controller will increase as the complexity of the model increases. On the other hand, 

models with poor accuracy will lead to the wrong optimum solution of the process. 

Processes are naturally nonlinear but some processes have low degrees of 

nonlinearity thus, the linear model is enough to approximate such processes. 

However, when the process nonlinearity is high, a nonlinear model is required to get 

a good approximation of the process. A MPC with a linear model is known as a 

linear MPC and a MPC with a nonlinear model is known as a nonlinear MPC. 

In the MPC, the optimization algorithm should have a reasonable 

computational demand that can provide the optimum solution during the sampling 

interval. Based on the objective function and the constraint addressed, two general 

optimization algorithms are available i.e. the linear optimization algorithm or linear 

programming (LP) and the nonlinear optimization algorithm or nonlinear 

programming (NLP). The optimization problem in the MPC is a nonlinear 

optimization problem since the MPC objective function is usually represented in 

quadratic form even though the constraints are usually linear. Therefore, the 

optimization algorithm in the MPC is a NLP algorithm.  

The following paragraphs are the brief explanations about NLPs (Edgar, 

Himmelblau, & Lasdon, 2001). 

1) Quadratic programming.  

Quadratic programming solves a specific form of objective function subject 

to several linear constraints thus, its algorithm is specific and simple. The objective 

function   of QP problem is: 

             
      (2.1)  

where   and   is a vector and a symmetric matrix with a constant coefficient. The 

objective function is convex if   is positive semidefinite and since the constraint is 
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linear, the overall NLP problem is convex. Therefore, the local optimum solution 

does not exist and the solution of the NLP problem is the global optimum solution 

when matrix   is positive semidefinite. The gradient of the QP objective function is 

linear and since the gradient at the optimum solution is zero, solving the first order 

derivative of the QP problem to find the optimum solution can be done using an LP 

algorithm. Solving the QP problem with   variables and   constraints requires 

almost the same computational burden when solving the LP with       number of 

rows. For the unconstrained case, the QP problem is solved by calculating the 

solution of the objective function which is a linear equation. The optimization 

problem in the LMPC is naturally posed as the QP problem. On the other hand, if the 

future output is predicted using a nonlinear model, the resulting objective function 

cannot be arranged as the QP objective function hence an optimization algorithm that 

can handle more general optimization problems must be used. 

2) Penalty and barrier method.  

These two methods are among the NLPs that can handle more general 

optimization problems. The penalty and barrier methods transform the constrained 

problem into an easier, unconstrained problem by reformulating the objective 

function. In the penalty method, the new objective is defined as the sum of the 

original objective function, the quadratic equality constraint and the maximum 

function of the inequality constraint. Each constraint in the new objective function is 

multiplied by a positive penalty factor which penalizes the violation of the constraint. 

However, the quadratic form of the equality constraint in the new objective function 

is not effective since it makes the effect of small violations smaller. Thus, the 

absolute form of the equality constraint can be used to replace the quadratic form. In 

the barrier method, the inequality constraint is included in its logarithmic form which 
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creates a barrier effect when it approaches zero. The logarithmic inequality constraint 

is also multiplied by a positive parameter which is called the barrier parameter. In 

contrast with the penalty parameter, the solution of the barrier method converges into 

its true value as the barrier parameter reaches zero. However, the equality constraint 

cannot be applied directly in the barrier method. The barrier method must be 

combined with the penalty method for the equality constraint handling. These 

methods are not quite popular because the absolute of the equality constraint and the 

maximum function of the inequality constraint produce discontinuity on the gradient 

of the objective function which cannot be solved by the gradient based optimization 

algorithm. Moreover, the distance between the calculated optimum solution and its 

true value depends on the barrier and penalty method parameters, which affect the 

degree of optimization difficulty significantly. 

3) Successive linear programming (SLP).  

The SLP method is based on the successive linearization of the objective 

function and constraints using the first term of Taylor expansion. The resulting 

linearized optimization problem is then solved using linear programming. Since the 

first term of the Taylor expansion is only accurate for the neighborhood of the initial 

point, additional step constraint must be supplied. SLP is very efficient when the 

optimum solution is located on the constraint vertex since the LP algorithm searches 

for the optimum solution on the vertices of the optimization region. When the 

optimum solution is not located in the vertex, the rate of SLP convergence is 

significantly low. Besides, the solution for the sub LP problem oscillates around the 

optimum solution and will never convergence if the step constraint is not reduced. 

4) Successive quadratic programming  
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Successive quadratic programming searches for the optimum solution of an 

optimization problem by sequentially solving a QP problem. In SQP, at each 

iteration the gradient and the hessian of the objective function at the current point are 

calculated to form the QP problem. The resulted QP problem is then solved to obtain 

the direction to the next point. The optimum step size to the calculated search 

direction is then obtained using line search algorithm or trust region algorithm. The 

next point can be calculated from the optimum step size and the search direction. 

These steps are repeated for other points. The SQP algorithm usually reaches the 

optimum solution in smaller amounts of iteration than the SLP but the time spent at 

each iteration is longer since solving the QP problem is usually slower than solving 

the LP problem. 

5) Generalized reduced gradient (GRG).  

GRG is the extended version of the basic descent algorithm for the 

constrained problem. The steps of the general descent algorithm are generally similar 

with the steps of SQP except the search direction is calculated from the gradient of 

the objective function at each point as well as from the previous point. The equality 

constraint is handled by substituting it into the objective function before calculating 

the gradient, which is called the reduced gradient. Meanwhile, the inequality 

constraint is handled by introducing slack variables to convert it into the equality 

constraint. In comparison with the SLP and the SQP algorithm, the number of 

iteration in the GRG is usually larger than the number of iterations in SLP or SQP. 

The equality constraint must also be fulfilled when solving the optimization problem 

using the GRG. However, the requirement to fulfill the equality constraint makes the 

GRG more robust than SLP and SQP. The SLP and SQP could produce negative 

values while violating the equality constraint which cannot be evaluated when a log 
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function is involved. Both SLP and SQP will also produce the imaginary value when 

the fractional power function is involved. 

2.2 Nonlinear model based MPC application in distillation column 

The nonlinear models that ae used in the NMPC algorithm can be generally 

divided into three groups based on its complexity and the prior knowledge used to 

develop those models. These three groups are known as the white-box model, the 

grey-box model and the black-box model. 

2.2.1 White-box model 

The white-box model, which is also called the first principle model or 

fundamental model, is built entirely from the prior knowledge of the process. The 

equation of the white-box model is derived from the mass balance, energy balance, 

equilibrium relationship, etc. Therefore, the white-box model has a very high 

accuracy and is valid in almost all ranges of operating conditions. However, the 

white-box model is very complex and large if it is used to approximate complicated 

processes.  

The white-box model of the distillation column consists of a large amount of 

DAEs and ODEs, since the mass balance, energy balance, and vapor-liquid 

equilibrium equations are derived for each tray, reboiler and condenser in the 

distillation column. The number of equations also increases as the number of 

components involved in the process increases. 

Two strategies can be applied in the optimization of an objective function 

with the DAE and the ODE equation (Kawathekar & Riggs, 2007). 

1) Sequential solution and optimization algorithm.  

In this strategy, optimization is carried out in two steps. First, the differential 

equation is solved for a given future control trajectory in order to obtain the future 
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output profile and to calculate the objective function. Secondly, the optimization 

algorithm is employed to update the control trajectory. Both steps are repeated until 

the optimum control trajectory is achieved. This is a relatively simple strategy but the 

time required to solve the optimization problem is very large since all the differential 

equations are integrated at every iteration. About 85% of the total calculation time is 

used only for integrating the model equations (Jones & Finch, 1984). 

2) Simultaneous solution and optimization algorithm.  

This strategy fuses the solution of the differential equations of the model 

inside the optimization algorithm by applying it as the equality constraint. Thus, the 

model equation and the optimization algorithm can be solved simultaneously. 

However, the complexity of the optimization algorithm is significantly increased. For 

a small model with a short prediction horizon, the sequential solution and 

optimization algorithm is faster while for a large scale model, the simultaneous 

solution and the optimization algorithm is more feasible (Meadows & Rawlings, 

1997). 

Since the number of DAEs and ODEs for the white-box distillation column 

model is large, the simultaneous approach is preferred. The following literature is 

related to the application of a white-box based MPC in the distillation column. 

Diehl et al. (2002) implemented a simultaneous solution and optimization 

approach by using a direct multiple-shooting algorithm to solve the DAE and ODE 

equations of a binary distillation process. For real-time implementation, the SQP was 

used with the model states and parameters in order to provide a fast feedback 

response. The proposed control strategy was successfully implemented to control the 

top and bottom tray temperatures by manipulating the reflux flowrate and the 

reboiler duty. 



19 

 

Kawathekar and Riggs (2007) developed a first principle model of a reactive 

tray distillation column to produce methyl acetate and water from acetic acid and 

ethanol. The resulting model was implemented in the NMPC framework using the 

simultaneous solution and optimization algorithm strategy. SNOPT software was 

used to solve the nonlinear optimization problem and the simulation results showed 

that the proposed NMPC controller performed better than the PI controller. 

K Nagy et al. (2007) reported the successful application of a NMPC using a 

simultaneous solution and optimization algorithm to control a reactive distillation 

column with four components mixture. The multiple-shooting algorithm was used to 

solve the white-box model, and the resulting nonlinear optimization problem was 

solved using OptCon optimization software. The proposed control strategy was 

compared with a coupled PID controller and an LMPC controller. Their results 

showed that the proposed NMPC outperformed the other controllers. 

Schäfer et al. (2007) improved the real-time algorithm proposed by Diehl et 

al. (2002) by applying the modified SQP algorithm which was called Reduced SQP 

(RSQP). The proposed control strategy was tested by using a fundamental model of a 

ternary distillation column which was developed by Lang (1991). The results showed 

that the application of the RSQP algorithm successfully reduced the time needed to 

complete the optimization. 

Kühl et al. (2011) extended the application of the real-time optimization 

algorithm proposed by Diehl et al. (2002) to the state and parameter estimation in the 

moving horizon estimation (MHE) problem. The real-time optimization algorithm 

was used together with the numerically efficient algorithm to update the arrival cost. 

The proposed state-estimation strategy was compared with the extended kalman filter 

algorithm and was applied in a distillation column for the separation of methanol, 
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ethanol and 1-propanol, and the Tennessee Eastman process. The simulation results 

showed that the proposed strategy was capable of delivering better estimates either at 

the same or shorter calculation time than an extended kalman filter. 

The white-box model of a distillation process is computationally demanding 

and the optimization algorithm is usually involves an iterative algorithm which 

increases the calculation burden. As a result, earlier works which implemented the 

white-box model of the distillation column in their NMPCs are mainly focused on 

the modification of the optimization algorithm that can reduce the calculation 

burden. Even though the modification on the optimization method and the strategy 

successfully reduced the computational burden, the application of the white-box 

model in the NMPC is still impractical due to following reasons: 

1. The White-box model is difficult to develop for most industrial cases 

(Sivakumar, Manic, Nerthiga, Akila, & Balu, 2010). Most industrial 

multicomponent distillation columns separate mixtures which often contain 

components with no thermodynamic, vapor liquid equilibrium, physical property 

and other essential data for the development of the White-box model (Ravi 

Sriniwas, Arkun, Chien, & Ogunnaike, 1995). 

2. The White-box model usually consists of large amounts of ODEs and DAEs 

which are not only computationally demanding but also lead to numerical 

problems (Ławryńczuk, 2009). 

 

2.2.2 Grey-box model 

For practical implementation, the complexity and the number of equations of 

the white-box model can be reduced by replacing some equations using empirical 

relationships or assumptions. The model which combines prior knowledge as in the 
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white-box model with empirical relationships is classified as the grey-box model or 

the hybrid model. The application of empirical relationship in the grey-box model 

reduces the accuracy of the white-box model but at the same time it reduces its 

complexity thus reducing computational burden and becomes more practical. The 

following are some literature that implemented the hybrid model as the process 

predictor in the NMPC optimization algorithm. 

Maiti et al. (1995) combined the steady-state part of the fundamental model 

with a first order dynamic model for each controlled variable to form an overall 

dynamic nonlinear model. The proposed hybrid-model was used in the NMPC to 

control the top and bottom product composition in a pilot plant of an ethanol-water 

distillation column. However, the details of the optimization aspect were not 

reported. 

Due to the memory limitations in practical implementation, Patwardhan and 

Edgar (1993) simplified the white-box model of a packed distillation column by 

replacing the energy balances around the sump and reboiler with vapor-liquid 

equilibrium relationship. The simplified model was then used to formulate the 

NMPC objective function with only one control horizon. The NMPC optimization 

problem was also combined with the state and parameter estimation problem which 

was then solved using GRG2 software which was based on the GRG algorithm. The 

proposed model and the NMPC control strategy were implemented successfully in a 

packed distillation column to separate cyclohexane and n-heptane. 

Zhongzhou et al. (2010) developed a NMPC based on a hybrid model for a 

distillation column. The hybrid model, which was known as the compartmental 

model, was derived by dividing the distillation column into several subsections 

called compartments. The dynamics of each compartment was developed by 
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combining the balances for each stage inside the compartment with the overall 

balances of the compartment. The dynamics of the compartment was significantly 

slower than the dynamics of the individual stages within the compartment if the 

number of stage inside the compartment was large and the liquid holdup was similar. 

Therefore, the ODEs for each stage within the compartment can be reduced into 

Algebraic Equations (AE) while the dynamics of the compartment was represented 

by one of the stages whose liquid hold up was equal to the total liquid hold up in the 

compartment. Even though the number of AEs was increased, this approach has 

successfully reduced the ODEs which is more preferable in the NMPC application. 

The simultaneous solution and the optimization strategy were used to solve the 

resulting compartmental model based MPC which was performed using the AMPL 

software. 

Although the grey-box model successfully reduced the complexity of the 

white-box model, the complexity of the optimization algorithm remained the same. 

The ODEs still have to be solved at each optimization which led to high 

computational burden and calculation time. 

2.2.3 Black-box model 

Another way to model the nonlinear process is by directly approximating the 

relation between the output variables and the input variables with nonlinear empirical 

relationships. The parameters of the nonlinear empirical relationships are obtained 

from the process data through model identification. In comparison with the white-

box and grey-box models, this model which is known as the black-box model has a 

simpler structure with less accuracy. However, in most cases the accuracy of the 

black-box model is sufficient to produce excellent control performance (Fruzzetti, et 
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al., 1997; Ravi Sriniwas, et al., 1995). This fact stimulates the development of the 

NMPC based on the black-box model in the distillation process. 

One type of black-box model is called the neural network model which is 

known as the universal approximator (Hornik, Stinchcombe, & White, 1989). The 

neural network model can provide high accuracy if it is trained with sufficient 

amounts of good identification data and time. Shaw and Doyle (1997) applied the 

Recurrent Dynamic Neural Network (RDNN) model to approximate the ethanol-

methanol distillation process with reflux ratio and boil-up rate as the input while the 

overhead and the bottom methanol purity were the output. Two RDNN based NMPC 

strategies were proposed i.e. linear and nonlinear strategies. In the linear strategy, the 

RDNN model was linearized at every sampling time to obtain the Finite Impulse 

Response (FIR) model coefficient. The optimum control trajectory in the first 

strategy was calculated using the Quadratic Dynamic Matrix Control (QDMC) 

method where the FIR model was used to formulate the objective function in QP 

form. The unconstrained solution of the QP problem was then calculated using the 

least-square method. In the nonlinear strategy, the RDNN model was used directly to 

calculate the objective function. The resulting optimization problem was then solved 

using the SQP algorithm. It was found that the nonlinear strategy was better than the 

linear strategy. 

Jazayeri-Rad (2004) proposed the multiple Multi Input Single Output (MISO) 

neural network model to approximate a MIMO system nonlinear process with time 

delays. The multiple-MISO neural model developed was then incorporated inside the 

MPC algorithm to control a ternary distillation column. The controlled variables 

chosen were the top and bottom tray temperature and the manipulated variables were 

the percentage of the reflux flow valve and the steam flow valve. However, no 
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constraint was considered when minimizing the nonlinear objective function. The 

steepest-descent method was used to solve the unconstrained multivariable nonlinear 

optimization problem.  

Chu et al. (2004) included the disturbance effect inside the neural network 

model to develop a feedforward NMPC controller. The advantages of the 

feedforward NMPC controller were analyzed by comparing it with the common 

feedback NMPC controller. Both controllers were implemented in the pH process 

and the bench-scale ethanol-water distillation column. The results showed that the 

feedforward neural network based MPC controller performed better than the 

feedback MPC. 

Ławryńczuk (2011a) evaluated the performance of full nonlinear 

optimization and the suboptimal optimization in a neural network based MPC. Both 

optimization techniques were compared by controlling two nonlinear cases i.e. the 

polymerization reactor and the distillation column. The simulation result showed that 

the suboptimal strategy managed to produce very close close-loop performance with 

the nonlinear optimization strategy. The reduction of the nonlinear optimization 

problem into the linear optimization problem also guaranteed the existence of the 

global optimum solution and decreased the computational effort. However, the 

suboptimal strategy of the neural network based NMPC was relatively complex since 

the linearization was calculated by performing the Taylor series expansion on the 

neural network model. The optimization problem in the neural network based MPC 

with and without the linearization strategy was solved using the QP and SQP routine, 

respectively. 

Later, Ławryńczuk (2011b) improved his work by changing the 1
st
 step of the 

proposed suboptimal neural based NMPC optimization strategy. Instead of 
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