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PENCIRIAN POLIHIDROKSIALKANOAT SINTASE  

YANG SANGAT AKTIF 

 

ABSTRAK 

Polihidroksialkanoat (PHA) sintase dari Chromobacterium sp. USM2 

(PhaCCs) pencilan tempatan mempamerkan aktiviti pempolimeran yang tinggi dan 

pengkhususan substrat in vivo yang luas dengan keutamaan untuk monomer 

kepanjangan rantai pendek (SCL) [3-hidroksibutirat (3HB) dan 3-hidroksivalerat 

(3HV)] dan monomer kepanjangan rantai sederhana (MCL) [3-hidroksiheksanoat 

(3HHx)]. Untuk pencirian sintase secara lebih terperinci, PhaCCs yang mempunyai 

tag Strep2 dibina dalam kajian ini untuk ekspresi dan purifikasi dari Escherichia coli. 

Ujian enzim in vitro telah menunjukkan aktiviti sebanyak 253 ± 13 U/mg untuk 

pempolimeran 3-hidroksibutiril-koenzim A (3HB-CoA), yang lebih kurang 5 kali 

ganda lebih tinggi daripada aktiviti yang ditunjukkan oleh stren contoh dalam 

penghasilan PHA (39 ± 5 U/mg). Aktiviti pempolimeran 3-hidroksivaleril-koenzim 

A adalah dua kali ganda lebih tinggi berbanding dengan aktiviti pempolimeran 3HB-

CoA, dan aktiviti pempolimeran 3-hidroksiheksanoil menandingi aktiviti yang 

ditunjukkan oleh sintase SCL-MCL dari Aeromonas caviae. Penemuan ini telah 

mendorong kajian yang lebih mendalam dan aplikasi sintase yang beraktiviti tinggi 

ini untuk penghasilan PHA in vivo. Gen yang mengkod sintase PHA dari 

Chromobacterium sp. USM2 (phaCCs) telah digunakan untuk menggantikan gen 

sintase PHA asal dalam C. necator jenis liar melalui rekombinasi homolog. Stren 

hasilan ini menunjukkan peningkatan dalam penghasilan poli(3-hidroksibutirat-co-

3-hidroksiheksanoat) fleksibel dan pertumbuhan yang lebih baik daripada minyak 

kelapa sawit mentah. Pelbagai strategi seperti pengubahan parameter kultur, 



 xxi 

penambahan sebatian prekursor atau perencat dan manipulasi laluan biosintetik telah 

berjaya untuk meningkatkan fraksi monomer 3HHx yang menambahkan lagi 

fleksibiliti kopolimer. Faktor-faktor yang mempengaruhi fraksi 3HHx dan ciri-ciri 

polimer seperti aktiviti sintase, jisim molekul dan morfologi granul telah dikaji 

secara selari. Sintesis poli(3-hidroksibutirat-co-3-hidroksivalerat-co-3-

hidroksiheksanoat) dengan komposisi monomer yang pelbagai telah menghasilkan 

bahan yang berciri baru. Mutasi untuk menambahbaikkan spesifisiti terhadap 

komonomer boleh meningkatkan lagi versatiliti enzim yang wujud secara semulajadi 

ini. Mutagenesis titik penepuan di posisi 479 dalam PhaCCs telah dilakukan dan 

kesan daripada penggantian asid amino telah diuji menerusi ekspresi dalam E. coli 

LS5218 untuk biosintesis PHA daripada asid dodekanoik. Peningkatan dalam 

kandungan 3HHx dan/atau akumulasi PHA diperhatikan untuk beberapa mutan, 

mencapai tahap maksima yang lebih kurang 4 kali ganda dan 1.6 kali ganda, 

masing-masing, melebihi sintase jenis liar, menekankan lagi kepentingan posisi 

mutasi ini dalam mengubah suai ciri-ciri PhaCCs. Pemerhatian ini boleh 

dihubungkaitkan dengan penambahbaikkan aktiviti dan peningkatan dalam afiniti 

PhaCCs untuk monomer 3HHx. Konsistensi dalam afiniti sintase, sama ada jenis liar 

atau mutan, terhadap monomer 3HB dan 3HV atau 3HHx secara jelasnya 

menekankan batasan di antara monomer SCL dan MCL, mengukuhkan lagi dasar 

untuk pengkelasan PHA sintase. Secara keseluruhannya, keputusan kajian ini 

mengusulkan konsistensi dalam spesifisiti substrat PhaCCs in vivo dan in vitro. 
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CHARACTERIZATION OF A HIGHLY ACTIVE 

POLYHYDROXYALKANOATE SYNTHASE  

 

ABSTRACT 

Polyhydroxyalkanoate (PHA) synthase from a locally isolated 

Chromobacterium sp. USM2 (PhaCCs) exhibited superior polymerizing ability and 

broad in vivo substrate specificity with preferences for short chain length (SCL) [3-

hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV)] and medium chain length 

(MCL) [3-hydroxyhexanoate (3HHx)] monomers. For further characterization of the 

synthase, a Strep2-tagged PhaCCs for expression in and purification from 

Escherichia coli, was constructed in this study. In vitro enzymatic assay revealed an 

activity of 253 ± 13 U/mg for polymerization of 3-hydroxybutyryl-coenzyme A 

(3HB-CoA), which was approximately fivefold higher than that of model PHA-

producing strain Cupriavidus necator (39 ± 5 U/mg). Its activity for polymerization 

of 3-hydroxyvaleryl-coenzyme A was twice as great as that for 3HB-CoA, while 

corresponding activity for 3-hexanoyl-coenzyme A polymerization rivaled that of 

another SCL-MCL synthase, from Aeromonas caviae. This discovery prompted 

further characterization studies and application of the highly active synthase for in 

vivo PHA production. Here, the gene encoding the PHA synthase from 

Chromobacterium sp. USM2 (phaCCs) was used to replace the native PHA synthase 

gene in wild type C. necator by homologous recombination. The resultant strain 

showed improved productivity of flexible poly(3-hydroxybutyrate-co-3-

hydroxyhexanoate) from crude palm kernel oil with concomitant good growth. 

Various approaches such as alteration of culture parameters, addition of precursor or 

inhibitor compounds and manipulation of biosynthetic pathway successfully 
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increased the 3HHx monomer fraction, further enhancing flexibility of the 

copolymer. The factors affecting 3HHx fraction and those governing polymer 

properties, such as synthase activity, molecular weight and granule morphology, 

were studied in parallel. Successful synthesis of poly(3-hydroxybutyrate-co-3-

hydroxyvalerate-co-3-hydroxyhexanoate) with diverse monomeric composition 

yielded materials with novel properties. Mutations to enhance specificity of this 

naturally occurring enzyme towards comonomer can further improve its versatility. 

Hence, saturation point mutagenesis at position 479 in PhaCCs was carried out and 

the effect of the amino acid substitutions was examined by expression in E. coli 

LS5218 for PHA biosynthesis from dodecanoic acid. Increment in 3HHx content 

and/or PHA accumulation was observed of some mutant synthases, up to a 

maximum of approximately fourfold and 1.6-fold respectively, more than the wild 

type synthase, highlighting the significance of this mutation point in altering the 

properties of PhaCCs. These observations could be correlated with improved activity 

and increased preference of PhaCCs for 3HHx monomers. The consistency observed 

in the preference of synthases, wild-type and mutants alike, for either 3HB and 3HV 

or 3HHx monomer(s) clearly emphasizes the boundary between SCL and MCL 

monomers, substantiating the very basis on which PHA synthases are classified. 

Overall, results suggest consistency in in vivo and in vitro substrate specificities of 

PhaCCs. 
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1.0  INTRODUCTION 

 Biological organisms have evolved diverse systems for storing essential 

nutrients, such as carbon, nitrogen, and phosphorous. This storage frequently entails 

the accumulation of polymers, which can be depolymerized when the monomers are 

needed for synthesis of other metabolites or for energy generation. These polymers 

often form insoluble inclusions, which are beneficial because they do not influence 

reactions involving soluble substrates, and because the polymers do not contribute to 

the osmotic potential of the cell in which they are stored. Carbon storage molecules, 

in particular, are more widespread and have greater industrial importance. One such 

example is polyhydroxyalkanoates (PHAs). 

 PHAs are polyoxoesters synthesized by a wide range of bacteria as 

intracellular storage materials (Anderson and Dawes, 1990; Doi, 1990). The unique 

properties of PHA such as its thermoplastic capabilities and inherent degradability 

have made it a worthwhile alternative to conventional petrochemical plastics, 

overcoming the setbacks of this innovation in terms of the lack of degradability. 

PHAs vary substantially in their composition, resulting in a huge diversity of 

material properties (Steinbüchel and Lütke-Eversloh, 2003). A homopolymer of 3-

hydroxybutyrate [P(3HB)] has a high degree of crystallinity, giving rise to material 

that is strong but very stiff and brittle, which limits its commercial potential. PHA 

copolymers have more favorable properties, and a well-studied example is poly(3-

hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)], which is tougher and 

more flexible than P(3HB). A copolymer of 3-hydroxybutyrate (3HB) [C4] and 3-

hydroxyhexanoate (3HHx) [C6] as the minor constituent (~ 5 mol%) exhibited 

improved physical properties and thermal processability (Doi et al., 1995; Loo et al., 

2005; Matsusaki et al., 2000).  
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In vivo synthesis of a copolymer with such desirable properties would require 

a PHA synthase (PhaC) that is able to polymerize short chain length (C3 – C5, SCL-

PHA) or medium chain length (C6 – C14, MCL-PHA) monomers produced within 

the cell. PHA synthases are divided into four classes based on their primary amino 

acid sequences and substrate specificity (Potter and Steinbüchel, 2005; Rehm, 2003). 

For class I and class II enzymes, the active synthases are homodimers composed of a 

single subunit, while class III and class IV synthases require two subunits for full 

activity. Class I, III and IV synthases produce SCL-PHA, while class II synthases 

prefer MCL substrates. Some synthases are difficult to classify with this system as 

intriguingly, they are able to make SCL-MCL copolymers, such as the chosen 

subject for this study. The synthase in question, designated PhaCCs, originated from 

the violacein-producing Chromobacterium sp. USM2 which was isolated from a 

waterfall in Langkawi, Malaysia (Bhubalan et al., 2010b). Aside from this, only a 

few other bacteria such as Aeromonas caviae (Doi et al., 1995; Kobayashi et al., 

1994), Aeromonas hydrophila (Chen et al., 2001; Lee et al., 1999) and Rhodococcus 

ruber (Haywood et al., 1991) have been reported to possess synthases that exhibit 

specificity towards both SCL- and MCL-PHA monomers. 

While the broad substrate preference of these SCL-MCL synthases enables 

production of the practical copolymer, PhaCCs exhibited superior polymerization 

activity that provides the added advantage of increased production efficiency 

(Bhubalan et al., 2011). Sufficient understanding of enzyme properties is imperative 

for application of this versatile enzyme, hence, PhaCCs was purified in this study for 

further characterization and its specific activities for polymerization of various 

substrates were examined in vitro. 
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Besides substrate specificity of the PHA synthase, another important criterion 

for the design of PHAs using in vivo systems is the metabolic potential of the 

production organism to provide the required precursors. The well-studied 

Cupriavidus necator H16 is a promising candidate with the suitable metabolic 

pathway for provision of C4 – C6 substrates (Byrom, 1992; Pohlmann et al., 2006). 

This model PHA producer is able to accumulate large quantities of polymer when 

grown in nutrient limited conditions and in addition, preferentially utilizes plant oils 

as substrate (Fukui and Doi, 1998). Renewable feedstocks such as plant-based oils 

are ideal for cost-efficient mass production due to their high carbon content 

(Akiyama et al., 2003) and because metabolism of these compounds can influence 

monomer composition of the resultant polymer (Bhubalan et al., 2010b). C. necator 

H16, however, only produces SCL-PHA and is thus limited as an industrial PHA-

producing organism. 

In this study, PhaCCs was used to create a novel recombinant, with C. necator 

H16 as parental strain, to overcome limitations of its native and transformant strains 

in terms of monomer supply, PHA accumulation and growth ability (Bhubalan et al., 

2010a,b). The recombinant strain, designated H16CCs, was used to synthesize 

P(3HB-co-3HHx) from crude palm kernel oil as sole carbon substrate followed by 

preliminary up-scaling of copolymer production in a 10 L fermenter. As variation in 

3HHx content impacts change in copolymer properties (Asrar et al., 2002), the 

factors affecting 3HHx fraction was studied. Improvement of 3HHx monomer 

fraction was attempted by alteration of culture parameters and biosynthetic pathway 

manipulation. Given the high preference of PhaCCs for 3-hydroxyvalerate (3HV) 

monomers and the ability to vary this content (Bhubalan et al., 2010a), H16CCs was 

evaluated for potential production of a terpolymer comprising 3HB, 3HV and 3HHx 
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with new monomeric composition. Comparison of PhaCCs in various physiological 

environments was made to acquire further insights on the behavior of this synthase 

and to gain a more profound understanding on the various aspects of PHA 

biosynthesis in general. 

Ultimately, modification of the PHA synthase by means of evolutionary 

engineering is the best approach to attain polymers with novel composition and 

properties. Extensive efforts in this direction have yielded various mutant synthases 

with dramatic improvements in their activities for polymerization as well as novel 

substrate-binding properties (Nomura and Taguchi, 2007; Taguchi and Doi, 2004). 

As PhaCCs demonstrated unusually high polymerization activity and broader 

substrate specificity as compared to other synthases of the same class, mutations to 

enhance the preference of this naturally occurring synthase towards comonomer can 

further improve its versatility. Multiple sequence alignment of PhaCCs with other 

comprehensively studied synthases in this area revealed a highly conserved alanine 

residue among class I synthases, located at position 479 in PhaCCs. Functional 

implications of amino acid substitutions at the position based on previous studies 

include alterations in substrate specificity and in certain cases, variations in 

molecular weight of the resultant polymer were observed (Takase et al., 2003; Tsuge 

et al., 2004b; Tsuge et al., 2007a). This position was therefore selected for saturation 

mutagenesis of the PhaCCs-encoding gene (phaCCs) in this study, and the 

mutagenized fragments were introduced into an Escherichia coli mutant, 

individually, for evaluation of P(3HB-co-3HHx) production from dodecanoic acid. 

Aside from the acquisition of PhaCCs mutants with novel properties, the effects of 

these mutations will enable the identification of factors that are essential to the 

enzyme’s function and the interaction between these factors can be examined. 
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Therefore, the main objective of this study was to characterize the PHA 

synthase from Chromobacterium sp. USM2 in an effort to attain a more profound 

understanding on its substrate preference and to determine its specific activities for 

the polymerization of various substrates. With increased knowledge on PhaCCs, this 

study also aimed to further improve this synthase in terms of its ability to incorporate 

3HHx by various approaches in parallel to studying the factors influencing 3HHx 

incorporation. The means described above were employed to achieve these 

objectives. 
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2.0  LITERATURE REVIEW 

2.1  Polyhydroxyalkanoate (PHA): An overview  

In living organisms, polymers are synthesized to fulfil biological functions 

for survival. These storage polymers are synthesized in a non template-dependent 

manner, as opposed to deoxyribonucleic acid, ribonucleic acid, and proteins, whose 

synthesis is directed by information encoded in other biopolymers (Stubbe et al., 

2005). Nitrogen can be stored as cyanophycin (Mooibroek et al., 2007), while 

phosphorous can be stored in the form of polyphosphate (Kulaev and Kulakovskaya, 

2000). These compounds are of significant academic interest, particularly carbon 

storage molecules, as they have greater industrial importance. 

Bacteria have been found to store carbon in the form of glycogen (Preiss, 

1984), triacylglycerols (Alvarez and Steinbüchel, 2002), and polyhydroxyalkanoates 

(PHAs) (Anderson and Dawes, 1990). It has been shown that in environments with 

fluctuating carbon levels, PHA producers thrive better than rival species (Johnson et 

al., 2009). PHAs are polymers of hydroxyalkanoates, which are accumulated as an 

intracellular carbon and/or energy storage material under conditions of excess 

carbon source, but with the limitation of nutritional elements, such as nitrogen, 

phosphorus, sulfur, magnesium or oxygen (Anderson and Dawes,1990; Kranz et al., 

1997; Poirier et al., 1995). PHAs exist as discrete inclusions localized in the cell 

cytoplasm of the microorganisms, as discovered by Lemoigne in 1926 when 

granule-like inclusion bodies were observed in Bacillus megaterium (Lemoigne, 

1926). It has been shown that PHA accumulation can comprise almost 90 % of the 

bacterial dry cell weight, without causing significant effect to the osmotic pressure 

in the cell. Accumulation of intracellular granules in polymerized insoluble forms 
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neither affects the cell function nor cause leakage of the polymer out of the cell 

(Madison and Huisman, 1999; Verlinden et al., 2007). 

PHA granules stain specifically with Sudan black or light fluorescent stains 

such as Nile blue and Nile red (Gorenflo et al., 1999; Kitamura and Doi, 1994; Ostle 

and Holt, 1982; Spiekermann et al., 1999). PHA granules can be observed as light-

refracting granules under phase contrast light microscope, which are common 

methods adapted for qualitative determination of PHA-producing bacterial strains. 

Alternatively, ultrastructure observation of thin sections of cells containing PHA 

granules can be carried out under transmission electron microscope. 

In addition to the interest in the roles of PHAs in the environment, there have 

also been significant efforts to develop PHAs for commercial use. These polymers 

are gaining world wide attention and are currently being studied extensively due to 

similarities in terms of material and physical properties, compared with some 

petroleum-based synthetic plastics. PHAs extracted from bacterial cells show 

material properties that are similar to polypropylene (Braunegg et al., 1998). The 

chemical and physical properties of PHAs are influenced by the functionalized 

groups in the side chain of monomers such as, halogen, carboxyl, hydroxyl, epoxyl 

and phenoxy (Kessler et al., 2001; Kim and Lenz, 2001). The advantages of these 

materials over petrochemical plastics are that they are natural, renewable and 

biocompatible, and are degradable via enzymatic reactions by a wide range of 

microorganisms (Mergaert et al., 1993; Steinbüchel, 2001; Sudesh and Iwata, 2008). 

PHAs are known to be a hundred per cent biodegradable into carbon dioxide and 

water in aerobic conditions, and into methane in anaerobic conditions (Khanna and 

Srivastava, 2005). Nonetheless, the high cost of producing bioplastics far above the 
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price of conventional plastics led to bioplastics being ignored for a long time 

(Salehizadeh and Van Loosdrecht, 2004). 

 

2.2  The key enzyme in PHA biosynthesis: PHA synthase 

PHA synthases (PhaC), also referred to as PHA polymerases, are enzymes 

that catalyze the polymerization of hydroxyacyl-coenzyme A (HA-CoA), provided 

by precursor pathways, into water insoluble PHA with the concomitant release of 

CoA (Jendrossek, 2009; Rehm, 2003). Genes encoding these synthases have been 

identified in numerous species of bacteria (Rehm, 2003; Rehm and Steinbüchel, 

2001). PHA synthases are divided into four different classes based on their structure, 

substrate specificities and subunit composition, as summarized in Table 2.1.  

Class I and class II synthases are similar in that they are homodimers with a 

single subunit (PhaC), but differ their substrate specificities. Class I synthases 

polymerize only short chain length (SCL, 3 – 5 carbon atoms) substrates, while class 

II synthases prefer medium chain length (MCL, 6 – 14 carbon atoms) substrates. 

Class I and class II synthases are represented by Cupriavidus necator and 

Pseudomonas aeruginosa, respectively. Some unique synthases that make SCL-

MCL copolymers, such as the PhaC from Aeromonas caviae (Fukui and Doi, 1997) 

and Chromobacterium sp. USM2 (Bhubalan et al., 2010b), are difficult to classify 

with this system.  

Class III and class IV synthases require two subunits for full activity. In both 

cases, the PhaC subunit shows homology to the class I and class II synthases. The 

second subunit (PhaE for class III, PhaR for class IV) is required for full activity, 

however their roles remain unclear. Class III and class IV synthases are represented 

by Chromatium vinosum, previously known as Allochromatium vinosum
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Table 2.1: A summary of the different classes of PHA synthases and the 

representative species for each class. 

 

Class Gene structure Subunits Preferred 

substrate 

Representative 

species 

 

I 
 

~ 60 – 73 kDa SCL-HA-CoA Cupriavidus 

necator 

 

II 
 

~ 60 – 65 kDa MCL-HA-CoA Pseudomonas 

aeruginosa 

 

III 
 

PhaC ~ 40 kDa 

PhaE ~ 40 kDa 

SCL-HA-CoA; 

MCL-HA-CoA 

Chromatium 

vinosum 

 

IV 
 

PhaC ~ 40 kDa 

PhaR ~ 22 kDa 

SCL-HA-CoA Bacillus 

megaterium 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

phaCCn 

phaC2Pa phaC1Pa 

phaECv 

phaRBm phaCBm 

phaCCv 



10 

 

(Liebergesell et al., 1991; Yuan et al., 2001), and Bacillus megaterium (McCool and 

Cannon, 1999), respectively. 

PHA synthases were discovered to share similar structure and mechanism to 

bacterial lipases (Jia et al., 2000). These enzymes are part of the α/β hydrolase 

family, and act at the interface between an aqueous solution and a hydrophobic 

surface. Both lipases and PHA synthases contain a lipase box with the sequence of 

N-X-X-G-X-C/S-X-G-G which includes the key catalytic residue (serine for lipases, 

cysteine for PHA synthases). The roles of several catalytic residues in PHA 

synthases have been determined based on alignments of amino acid sequences of 

PHA synthases and three dimensional models of synthases. They are the cysteine, 

histidine, and aspartate residues (C319, H508, and D480) located in the active site of 

the PHA synthase from C. necator. Mutations to any of these residues was found to 

diminish synthase activity of the wild type synthase (Jia et al., 2000; Jia et al., 

2001). 

Experiments have been designed to elucidate the PHA synthase mechanism, 

many of which utilize synthases from C. necator and C. vinosum isolated from 

recombinant Escherichia coli. Initial efforts to study PHA synthases were hampered 

by variable lag phases exhibited by enzymes as well as difficulties in obtaining 

enzymes purified to homogeneity (Gerngross et al., 1994; Haywood et al., 1989). It 

was later discovered that the lag phase could be eliminated by priming PHA 

synthases with short polyhydroxybutyrate oligomers (Jia et al., 2000; Wodzinska et 

al., 1996), and advancements were made in the purification of the PHA synthase 

from C. necator, yielding pure enzymes with up to 90 % homogeneity (Gerngross et 

al., 1994), followed by successful purification of PHA synthase belonging to C. 

vinosum (Liebergesell et al., 1994). These discoveries and accomplishments allowed 
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for detailed examination of the substrate specificities of PHA synthases (Yuan et al., 

2001; Zhang et al., 2000).  

In the past, substrate specificities of PHA synthases have only been 

determined in their native environments or in heterologous physiological 

environments. These are indirect methods, however, and do not provide a good 

judgement of the substrate specificities due to limitations posed by metabolic 

pathways that supply monomer units in the particular environment. This is evident 

based on the differences in the monomer composition of PHA obtained by 

expression of PHA synthases in various physiological environments. An example is 

the different substrate range of the PHA synthase from Chromobacterium sp. 

USM2, which was manifested when the PhaC was expressed heterologously in a 

PHA-negative mutant of C. necator (Bhubalan et al., 2010b). 

Mechanistic studies of PHA synthases have been conducted using various 

substrates in a bid to understand the substrate specificity of PHA synthases and the 

formation of PHA copolymers. Doi and co-workers used nuclear magnetic 

resonance (NMR) to study the distributions of different diad and triad sequences of 

poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] synthesized by C. 

necator (Doi et al., 1986). They concluded that the addition of new monomer units 

to the polymer chain is independent of the unit at the end of the chain and that the 

reaction proceeds as an ideal random copolymerization. On the other hand, some 

groups used mutagenesis techniques to alter as well as study the substrate specificity 

of PHA synthases, notably those belonging to the class II pseudomonads 

(Matsumoto et al., 2006a,b; Takase et al., 2003). Mutations affected PHA synthase 

activity and expression, as well as monomer composition (Nomura and Taguchi, 

2007; Taguchi and Doi, 2004). However, the roles of individual residues and the 
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mechanism of substrate selectivity is still unclear in the absense of the crystal 

structure of the PHA synthase. 

Aside from that, results of studies in which the PHA synthase was incubated 

with various sulfhydryl inhibitors suggested that the PHA synthase is a sulfhydryl 

enzyme (Greibel et al., 1968). The active-site model of PHA synthase was proposed 

by Ballard and co-workers based on this, in which two thiol groups were suggested 

to be involved in locating the hydroxyalkanoate monomers (Ballard et al., 1987). 

Using the purified PHA synthase from C. necator, however, it was shown that only 

one thiol group is essential for catalysis (Gerngross et al., 1994).  Nevertheless, the 

most probable reaction mechanism of PHA synthase was postulated to include two 

thiol groups with the second thiol made available following posttranslational 

modification via a phophopantethine moiety. Another model proposed that PHA 

synthases consisting of only one subunit undergo dimerization to form a homodimer, 

the formation of which was suggested to be responsible for the observed lag phase 

(Gerngross and Martin, 1995; Gerngross et al., 1994; Liebergesell et al., 1994). On 

the other hand, PHA synthases consisting of two subunits would form a heterodimer 

whereby the second thiol is speculated to be provided by a conserved Cys-130 of 

PhaE subunit from C. vinosum. 

 

2.3 In vivo substrate provision for PHA synthases 

The generation of monomers for PHA synthesis in bacteria is linked with its 

central metabolism and catabolism of various carbon precursors. Different pathways 

are involved in the uptake and conversion of various carbon substrates ranging from 

inexpensive, complex waste effluents, to plant oils, and to alkanes as well as simple 

carbohydrates into HA-CoA that is subsequently polymerized into PHA (Sudesh et 
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al., 2000). Numerous important pathways such as amino acid metabolism, fatty acid 

β-oxidation, fatty acid de novo synthesis and tricarboxylic acid (TCA) cycle have 

been found to be associated with the production of PHA (Madison and Huisman, 

1999; Steinbüchel, 2001; Taguchi et al., 2002a). In most PHA producing bacteria, 

the synthesis of PHAs other than poly(3-hydroxybutyrate) [P(3HB)] occurs only 

from precursor substrates structurally related to the hydroxyalkanoate monomers 

that are to be incorporated into the polymer chains (Anderson and Dawes, 1990; 

Steinbüchel and Valentin, 1995). Naturally occurring metabolic pathway of PHA 

biosynthesis varies according to the genus of the bacterium. Three well known 

metabolic pathways responsible for the synthesis of PHA precursors are the P(3HB) 

biosynthetic pathway, the fatty acid β-oxidation biosynthetic pathway and the de 

novo fatty acid biosynthetic pathway (Aldor and Keasling, 2003; Sudesh and Doi, 

2000; Taguchi et al., 2002a). 

The model organism widely used for studies on PHA biosynthesis is C. 

necator H16, with the ability to accumulate high levels of P(3HB) when grown in 

media with plentiful carbon but limited in other essential nutrient. P(3HB) synthesis 

occurs when CoA thioesters are catalyzed by a PHA synthase, where the 

polymerization reaction is stereospecific as only (R)-3-hydroxyacyl-CoA molecules 

serve as substrates. P(3HB) biosynthesis pathway (Figure 2.1) is the simplest, which 

involves three enzymes and their encoding genes. The pathway involves three 

successive enzymatic reactions, in the order of β-ketoacyl-CoA thiolase (PhaA), 

NADPH-dependent acetoacetyl-CoA reductase (PhaB) and PHA synthase (PhaC) 

(Madison and Huisman, 1999).  

In C. necator, PHA biosynthesis is initiated through the metabolism of 

carbohydrates (Anderson and Dawes, 1990). This occurs through the condensation 
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Figure 2.1: P(3HB) biosynthesis pathway (Anderson and Dawes, 1990; Steinbüchel 

and Lütke-Eversloh, 2003).  
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of two acetyl-CoA molecules into acetoacetyl-CoA catalyzed by PhaA. Acetoacetyl-

CoA is subsequently reduced to (R)-3-hydroxybutyryl-CoA (3HB-CoA) by PhaB. In 

order to complete the process, the synthesized 3HB-CoA has to be polymerized into 

P(3HB) through a catalytic reaction by PhaC (Anderson and Dawes, 1990). 

Regulation of the P(3HB) biosynthetic pathway is a complex process which depends 

on metabolic or environmental conditions involved in the regulation of acetyl-CoA 

level in the cells (Steinbüchel, 1991; Steinbüchel and Schegel, 1991; Zinn et al., 

2001). 

 Apart from P(3HB), C. necator also synthesizes P(3HB-co-3HV) (Figure 

2.2). Incorporation of the 3-hydroxyvalerate (3HV) monomer into P(3HB) polymer 

chains is known to improve the properties of P(3HB). P(3HB-co-3HV) has lower 

crystallinity and melting temperature while exhibiting greater flexibility and 

toughness compared to P(3HB) (Doi et al., 1988). P(3HB-co-3HV) show 

isomorphic cocrystallization whereby the 3HB and 3HV units may cocrystallize in a 

crystalline lattice and the formation of crystal structures depends on the polymeric 

units containing different compositions of 3HB and 3HV (Bluhm et al., 1986). 

Isomorphic crystallization is a normal phenomenon which can be observed among 

some natural substances analogous in size and chemical structure such as sodium 

nitrate, calcium sulfate and barium sulfate. 

Supplementation of precursors such as alkanoic acids (Du et al., 2001; 

Khanna and Srivastava, 2007), alkanoates (Lee et al., 2008; Shang et al., 2004) and 

alcohols (Park and Damodaran, 1994) with the odd number of carbon atoms leads to 

the production of the 3HV monomer. If propionic acid is fed, the pathway involved 

is essentially identical to that for P(3HB) synthesis. In this pathway, propionic acid 

is initially converted to propionyl-CoA. A distinct 3-ketothiolase in C. necator
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Figure 2.2: Chemical structure of P(3HB-co-3HV).  

* p and q refers to the number of each repeating unit in the copolymer 
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(BktB) will then mediate the condensation of acetyl-CoA, generated from the TCA 

cycle, with propionyl-CoA to form 3-ketovaleryl-CoA. Alternatively, elimination of 

the carbonyl carbon of propionyl-CoA may occur to form acetyl-CoA, in which case 

it will condense with another acetyl-CoA to generate an acetoacetyl-CoA. The 3-

ketovaleryl-CoA and acetoacetyl-CoA are then reduced to (R)-3-hydroxyvaleryl-

CoA and (R)-3-hydroxybutyryl-CoA, respectively, to be polymerized into P(3HB-

co-3HV) by PhaC (Braunegg et al., 1998; Doi et al., 1987). The acetyl-CoA which 

is formed from propionyl-CoA can also be channeled into TCA cycle for cell 

metabolism.  

On the contrary, valeric acid can form valeryl-CoA which is then directly 

converted to (S)-3-hydroxyvaleryl-CoA via β-oxidation pathway without being 

broken down into a shorter chain. Subsequently, (S)-3-hydroxyvaleryl-CoA can be 

converted into 3-ketovaleryl-CoA which is reduced to (R)-3-hydroxyvaleryl-CoA 

and polymerized as described before. A small amount of converted 3-ketovaleryl-

CoA may be degraded into one propionyl-CoA and one acetyl-CoA.  Production of 

P(3HB-co-3HV) with high 3HV molar fractions using various microorganisms such 

as C. necator, Chromobacterium violaceum and Delftia acidovorans has been 

reported (Doi et al., 1988; Loo and Sudesh, 2007; Steinbüchel et al., 1993). 

 Precursors for the synthesis of MCL-PHA monomers, such as 3-

hydroxyhexanoate (3HHx), are provided via fatty acid β-oxidation. There has been 

substantial interest in species of the Aeromonas genus due to the inherent potential 

to produce flexible poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-

3HHx)]  (Figure 2.3) with 3HHx fraction ranging from 3 – 18 mol% (Chen et al., 

2001; Doi et al., 1995; Kobayashi et al., 1994; Lee et al., 1999). Fatty acids are 

initially activated by acyl-CoA synthetase into respective acyl-CoA thioesters before  
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Figure 2.3: Chemical structure of P(3HB-co-3HHx). 

* p and q refers to the number of each repeating unit in the copolymer 
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they enter the β-oxidation pathway. In the β-oxidation pathway, acyl-CoA is 

oxidized into enoyl-CoA by acyl-CoA dehydrogenase which is then converted into 

(S)-3-hydroxyacyl-CoA by enoyl-CoA hydratase. Oxidation of (S)-3-hydroxyacyl-

CoA by 3-hydroxyacyl-CoA dehydrogenase results in the formation of 3-ketoacyl-

CoA, which is cleaved by β-ketothiolase to form acetyl-CoA and acyl-CoA. 

However, this newly generated acyl-CoA is shorter by two carbon atoms as 

compared to the acyl-CoA that was present during the first cycle. In the case of fatty 

acids with even carbon number, further cycles go on until the original acyl-CoA is 

fully converted into acetyl-CoA (Potter and Steinbüchel, 2006; Steinbüchel and 

Lütke-Eversloh, 2003).  

The β-oxidation pathway intermediates including enoyl-CoA, (S)-3-

hydroxyacyl-CoA and 3-ketoacyl-CoA, can serve as precursors for MCL-PHA 

synthesis. However, none of these intermediates are present in the form accepted as 

substrate by the PHA synthase. Therefore, an additional step is required to convert 

these intermediates into (R)-3-hydroxyacyl-CoA, which can be polymerized by PHA 

synthase into corresponding monomers (Steinbüchel and Lütke-Eversloh, 2003; 

Suriyamongkol et al., 2007). Three different enzymes are responsible for the 

conversion; epimerase, (R)-specific enoyl-CoA hydratase and 3-ketoacyl-CoA 

reductase. Epimerase catalyzes the conversion of 3-hydroxyacyl-CoA of the (S)-

isomer into (R)-isomer. On the other hand, (R)-specific enoyl-CoA hydratase 

functions in converting enoyl-CoA into (R)-3-hydroxyacyl-CoA. The 3-ketoacyl-

CoA reductase reduces 3-ketoacyl-CoA to (R)-3-hydroxyacyl-CoA. Meanwhile, 

acetyl-CoA could be channeled either to the TCA cycle, for fatty acid synthesis or 

formation of P(3HB). A second route for MCL-PHA synthesis in microorganisms is 

through the use of intermediates of the de novo fatty acid biosynthesis pathway 
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(Steinbüchel and Lütke-Eversloh, 2003; Tsuge, 2002). Fatty acid synthesis and β-

oxidation display similar chemistries but are regulated by different enzymes (Figure 

2.4). 

Polymers with the physical and mechanical properties of both P(3HB-co-

3HV) and P(3HB-co-3HHx) copolymers, namely poly(3-hydroxybutyrate-co-3-

hydroxyvalerate-co-3-hydroxyhexanoate) [P(3HB-co-3HV-co-3HHx)] (Figure 2.5), 

have also been produced. Bacteria strains investigated for the production of this 

terpolymer include Rhodospirillum rubrum (Brandl et al., 1989), Rhodocyclus 

gelatinosus (Liebergesell et al., 1991) and Rhodococcus sp. (Anderson et al., 1990).  

P(3HB-co-3HV-co-3HHx) can be produced from even carbon numbered fatty acids 

as the main carbon source and valeric acid or propionic acid as 3HV precursors 

(Figure 2.6). 

 

2.4  Diversity in monomer constituents and properties of PHA 

PHAs are linear polyesters made up of 3-hydroxyalkanoates with an alkyl 

group positioned at C3 (Figure 2.7). The type of PHA is dependent on the R and x 

number in the chemical structure, as shown in Table 2.2. PHA that occurs naturally 

in microorganisms is P(3HB). 

PHA can be categorized into three classes, as such: (i) SCL-PHA consisting 

of monomers with carbon number in the range of 3 to 5, (ii) MCL-PHA consisting 

of monomers with carbon number in the range of 6 to 14, and (iii) SCL-MCL PHA 

containing monomers with carbon number in the range of 3 to 14. 
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Figure 2.4: β-oxidation and de novo fatty acid pathways for the biosynthesis of 

MCL-PHA (Sudesh et al., 2000; Suriyamongkol et al., 2007) and subsequent 

polymerization into P(3HB-co-3HHx). Enzymes: 1. acyl-CoA dehydrogenase; 2. 

enoyl-CoA hydratase; 3. 3-hydroxyacyl-CoA dehydrogenase; 4. 3-ketoacyl-CoA 

thiolase; 5. epimerase; 6. 3-ketoacyl-CoA reductase; 7. (R)-specific enoyl-CoA 

hydratase; 8. (R)-3-hydroxyacyl-ACP-CoA transferase; 9. PHA synthase. 

 

β-oxidation 

(S)-3-Hydroxyacyl-CoA 

3-Ketoacyl-CoA Enoyl-CoA 

Acyl-CoA 

Fatty acids with even 

carbon number 

7  

        

1 4 

3 2 

6 

5 

(R)-3-Hydroxyacyl-CoA 

Acetyl-CoA 

3HHx 

9 

 

P(3HB) 

biosynthesis 

pathway 

3HB 

P(3HB-co-3HHx) 

Fatty acid 

de novo 

synthesis 

(R)-3-Hydroxyacyl-ACP 

3-Ketoacyl-ACP Enoyl-ACP 

Sugar 

Acyl-ACP 

Malonyl-ACP 

Acetyl-CoA 

Malonyl-CoA 

8  

 



22 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2.5: Chemical structure of P(3HB-co-3HV-co-3HHx). 

* p, q and r refer to the number of each repeating unit in the terpolymer 
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dehydrogenase; 2. enoyl-CoA hydratase; 3. 3-hydroxyacyl-CoA dehydrogenase; 4. 3-ketoacyl-CoA thiolase; 5. epimerase; 6. β-

ketothiolase; 7. NADPH-dependent acetoacetyl-CoA reductase; 8. PHA synthase. 
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Figure 2.7: Chemical structure of PHA 

*n indicates the number of repeating units 

 

 

 

 

Table 2.2: Various types of hydroxyalkanoate monomer formed with different R and 

x values. 

 

X R side chain Type of monomer 

1 Methyl 

ethyl 

propyl 

3-hydroxybutyrate; 3HB 

3-hydroxyvalerate; 3HV 

3-hydroxyhexanoate; 3HHx 

2 Hydrogen 4-hydroxybutyrate; 4HB 

3 Hydrogen 5-hydroxyvalerate; 5HV 

 

* R and x determine the type of hydroxyalkanoate monomer unit formed 
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