SYNTHESIS OF ACTIVATED CARBON VIA MICROWAVE HEATING FOR DYES REMOVAL

SITI RUQAYYAH BINTI AB HAMID

UNIVERSITI SAINS MALAYSIA

2018

SYNTHESIS OF ACTIVATED CARBON VIA MICROWAVE HEATING FOR DYES REMOVAL

by

SITI RUQAYYAH BINTI AB HAMID

Thesis submitted in fulfilment of the requirement for the degree of Master of Science

ACKNOWLEDGEMENT

In the name of Allah, the Most Beneficent and the Most Merciful. All praises to Allah the Almighty for blessing me with the opportunity to start this beautiful journey and motivation to complete the dissertation. I would like to express my deepest gratitude to both of my beloved parents, Abdul Hamid Awang Suri and Marilah Abdullah, my beloved husband, Wan Mohd Radhi Wan Mohd Raimi as well as my other family members for their continuous love and support. My appreciation goes to my supervisor, Professor Dr. Mohd Azmier Ahmad who had lending me great research experience along my study. His understanding, vast knowledge and personal guidance have provided me with good basis in carrying out the experiment and writing this thesis.

I would like to thank all the technicians and postgraduate students of School of Chemical Engineering especially Mohd Firdaus Yusop for their kindness assistance, professional advice and guidance along completing my thesis. I would like to express gratitude to Ministry of Higher Education for MyBrain 15 and Universiti Sains Malaysia under grant schemes (Grant no. 1001/CKT/870023 and 1002/PJKIMIA/910313) for research associated with the Solid Waste Management Cluster and Delivering Excellence, respectively for funding this project. Last but not least, those who have directly and indirectly contributed to the accomplishment of this project. Thank you very much.

Siti Ruqayyah binti Ab Hamid

September 2018

TABLE OF CONTENTS

		Page
ACKNOV	VLEDGEMENT	ii
TABLE O	OF CONTENTS	iii
LIST OF	TABLES	vii
LIST OF	FIGURES	x
LIST OF	ABBREVIATIONS	xiv
LIST OF	SYMBOLS	xv
ABSTRA	K	xvii
ABSTRA	CT	xix
СНАРТЕ	ER ONE INTRODUCTION	
1.1	Dyes	1
1.2	Agrowaste based activated carbon	3
1.3	Problem statement	5
1.4	Research objectives	6
1.5	Scopes of study	7
1.6	Organization of thesis	8
CHAPTE	ER TWO LITERATURE REVIEW	
2.1	Dye removal methods	9
2.2	Adsorption process	11
2.3	Activated carbon	13
2.4	AC production	15
2.5	Microwave irradiation	17
2.6	Adsorption isotherm	18
	2.6.1 Langmuir isotherm	22

		2.6.2	Freundlich isotherm	23
		2.6.3	Temkin isotherm	24
		2.6.4	Dubinin-Radushkevich isotherm	25
	2.7	Adsorpt	ion kinetics	26
		2.7.1	Pseudo-first order kinetic model	26
		2.7.2	Pseudo-second order kinetic model	27
	2.8	Adsorpt	ion diffusion mechanism	28
		2.8.1	Intraparticle diffusion mechanism model	29
		2.8.2	Boyd plot diffusion mechanism model	30
	2.9	Adsorpt	ion thermodynamic parameters	30
CHA	PTE	R THRE	E MATERIALS AND METHOD	
	3.1	Experim	nental activities	33
	3.2	Material	ls	34
		3.2.1	AC preparation	36
		3.2.2	Batch adsorption and analysis system	37
		3.2.3	Characterization system	38
	3.3	Experim	nental procedure	38
		3.3.1	Preparation of AC	39
		3.3.2	Preparation of adsorbate solution	40
		3.3.3	Sample analysis system	41
		3.3.4	Experimental design for AC preparation	41
		3.3.5	Development of regression model statistical analysis	43
		3.3.6	Batch adsorption equilibrium studies	44
			3.3.6 (a) Effect of contact time and initial dye concentration	46
			3.3.6 (b) Effect of solution temperature	46

		3.3.6 (c) Effect of solution pH	46
		3.3.6 (d) Adsorption isotherm model	47
	3.3.7	Batch adsorption kinetics and mechanism studies	47
	3.3.8	Adsorption thermodynamic studies	48
СНАРТЕ	R FOUR	RESULTS AND DISCUSSION	
4.1	Experim	nental design	49
	4.1.1	Regression model development on DSAC	49
	4.1.2	Three-dimensional response surface of DSAC	56
	4.1.3	Regression model development on JSAC	58
	4.1.4	Three-dimensional response surface of JSAC	64
	4.1.5	Optimization of operating parameters	66
4.2	Characte	erization of ACs	68
	4.2.1	Surface area and pore characteristics	68
	4.2.2	Proximate and elemental analysis	69
	4.2.3	Surface morphology	71
	4.2.4	Surface chemistry	73
4.3	Batch ac	dsorption studies	75
	4.3.1	Batch equilibrium studies	75
		4.3.1(a) Effect of contact time and MB dye initial	
		concentration	76
		4.3.1(b) Effect of contact time and MY dye initial	
		concentration	79
		4.3.1(c) Effect of solution temperature	85
		4.3.1(d) Effect of solution pH	87
	4.3.2	Isotherm studies	89

	4.3.2 (a) MB adsorption isotherms	89
	4.3.2 (b) MB adsorption isotherms	95
4.3.3	Kinetic studies	99
	4.3.3 (a) MB adsorption kinetic	99
	4.3.3 (b) MY adsorption kinetic	104
4.3.4	Mechanism studies	109
	4.3.4 (a) MB diffusion mechanism	109
	4.3.4 (b) MY diffusion mechanism	114
4.3.5	Thermodynamic studies	118
CHAPTER FIVE	CONCLUSIONS AND RECOMMENDATIONS	
5.1 Conclus	ions	120
5.2 Recomn	nendations	122
REFERENCES		123
APPENDICES		
Appendix A :Calibra	ation curve for MB and MY dyes	
Appendix B : Plots of	of adsorption uptakes versus time	
Appendix C: Plots o	f percentage removal versus time	
Appendix D : Amou	nt of dyes adsorbed and percent removal	
Appendix E : Param	eters of isotherms	
Appendix F : Plots of	of separation factor versus adsorbate initial concentration	
Appendix G : Kineti	c Parameters	
Appendix H: Paramo	eters of intraparticle diffusion	
Appendix I : Boyd p	lots	
Appendix J : Thermo	odynamic calculation	

LIST OF PUBLICATIONS

LIST OF TABLES

		Page
Table 2.1	Differences between physisorption and chemisorption	12
Table 2.2	Previous works of AC derived from agrowastes	13
Table 2.3	Types of physical form of AC (Hadi et al., 2015)	15
Table 2.4	Stages occur during carbonization process (Wilk et al., 2016)	16
Table 2.5	Summary of findings for previous works using microwave heating activation	19
Table 2.6	The differences between conventional furnace and microwave irradiation (Alslaibi et al., 2013)	21
Table 3.1	Properties of MB dye	34
Table 3.2	Properties of MY dye	35
Table 3.3	List of chemicals and gases	35
Table 3.4	Experimental design matrix for AC preparation	42
Table 4.1	Experimental design matrix for preparation of DSAC	51
Table 4.2	ANOVA results for MB removal by DSAC	54
Table 4.3	ANOVA results for MY removal by DSAC	55
Table 4.4	ANOVA results for DSAC's yield	55

Table 4.5	Experimental design matrix for preparation of JSAC	61
Table 4.6	ANOVA results for JSAC's yield	64
Table 4.7	Model validation for ACs prepared for MB removal	67
Table 4.8	Model validation for ACs prepared for MY removal	67
Table 4.9	Surface area and pore characteristics of the samples	69
Table 4.10	Proximate and elemental analysis for samples	70
Table 4.11	Amount of dyes adsorbed, q_t and percent removal of MB and MY on DSAC and JSAC at 30°C	84
Table 4.12	Parameters of isotherms for adsorption of MB dye by MB-DSAC and MY-JSAC at 30°C	94
Table 4.13	Parameters of isotherms for adsorption of MY dye by MY-DSAC and MY-JSAC at 30°C	98
Table 4.14	Kinetic parameters for MB-DSAC and MB-JSAC systems at 30°C	103
Table 4.15	Kinetic parameters for MY-DSAC and MY-JSAC systems at 30°C	108
Table 4.16	Intraparticle diffusion model constants for adsorption of MB onto MB-DSAC and MB-JSAC at 30°C	113

Table 4.17	Intraparticle diffusion model constants for adsorption of MY	117
	onto MY-DSAC and MY-JSAC at 30°C	
T 11 410		110

LIST OF FIGURES

		Page
Figure 1.1	The image of (a) durian seed and (b) jackfruit seed	5
Figure 2.1	Schematic diagram of adsorption process (Heibati et al., 2014)	11
Figure 2.2	Types of pore in AC	14
Figure 2.3	Thermal gradient development between (a) conventional heating and (b) microwave irradiation technique (Wu et al., 2014)	18
Figure 2.4	Three stages of adsorption mechanism involved in adsorption process (Weng et al., 2009)	29
Figure 3.1	Schematic flow diagram of experimental activities	33
Figure 3.2	Schematic diagram of char preparation unit	36
Figure 3.3	Schematic diagram of microwave irradiation experimental setup	37
Figure 3.4	Design layout for CCD (Halim, 2008)	43
Figure 4.1	Plot of predicted versus actual experimental values for (a) MB removal, (b) MY removal and (c) DSAC's yield	53
Figure 4.2	Three-dimensional response plot for (a) MB removal (effect of radiation power and IR, radiation time = 6min), (b) MY removal (effect of radiation power and IR, radiation time = 6min) and (c) DSAC's yield (effect of radiation power and radiation time, IR = 1.25)	56
Figure 4.3	Plot of predicted versus actual experimental values for (a) MB removal, (b) MY removal and (c) JSAC's yield	62

Figure 4.4	Three-dimensional response plot for (a) MB removal (effect of radiation power and IR, radiation time = 6min), (b) MY removal (effect of radiation power and IR, radiation time = 6min) and (c) JSAC's yield (effect of radiation power and radiation time, IR = 1.25)	65
Figure 4.5	SEM micrographs of (a) DS and (b) DSAC (magnification 500x)	72
Figure 4.6	SEM micrographs of (a) JS and (b) JSAC (magnification 500x)	73
Figure 4.7	FTIR spectrums for (a) DS and (b) DSAC	74
Figure 4.8	FTIR spectrums for (a) JS and (b) JSAC	75
Figure 4.9	MB adsorption uptake versus adsorption time at various initial concentrations on (a) DSAC and (b) JSAC at 30°C	77
Figure 4.10	MB percentage removal versus adsorption time at various initial concentrations on (a) DSAC and (b) JSAC at 30°C	78
Figure 4.11	MY adsorption uptake versus adsorption time at various initial concentrations on (a) DSAC and (b) JSAC at 30°C	81
Figure 4.12	MY percentage removal versus adsorption time at various initial concentrations on (a) DSAC and (b) JSAC at 30°C	82
Figure 4.13	Effect of solution temperature on MB adsorption capacity MB-DSAC and MB-JSAC systems	86
Figure 4.14	Effect of solution temperature on MY adsorption capacity MY-DSAC and MY-JSAC systems	86

Figure 4.15	Effect of initial solution pH on MB removal by MB-DSAC and MB-JSAC	88
Figure 4.16	Effect of initial solution pH on MB removal by MY-DSAC and MY-JSAC	88
Figure 4.17	Plots of (a) Langmuir, (b) Freundlich, (c) Temkin and (d) Dubinin- Radushkevich for MB adsorption onto MB-DSAC at 30, 45 and 60°C	92
Figure 4.18	Plots of (a) Langmuir, (b) Freundlich, (c) Temkin and (d) Dubinin-Radushkevich for MB adsorption onto MB-JSAC at 30, 45 and 60°C	93
Figure 4.19	Plots of separation factor, R_L versus MB initial concentration for MB-DSAC and MB-JSAC at 30°C	94
Figure 4.20	Plots of (a) Langmuir, (b) Freundlich, (c) Temkin and (d) Dubinin-Radushkevich for MY adsorption onto MY-DSAC at 30, 45 and 60°C	96
Figure 4.21	Plots of (a) Langmuir, (b) Freundlich, (c) Temkin and (d) Dubinin-Radushkevich for MY adsorption onto MY-JSAC at 30, 45 and 60°C	97
Figure 4.22	Plots of separation factor, R_L versus MB initial concentration for MB-DSAC and MB-JSAC at 30°C	99
Figure 4.23	Linearized plots of pseudo-first order kinetic model for (a) MB-DSAC and (b) MB-JSAC systems at 30°C	101
Figure 4.24	Linearized plots of pseudo-second order kinetic model for (a) MB-DSAC and (b) MB-ISAC systems at 30°C	102

Figure 4.25	Linearized plots of pseudo-first order kinetic model for (a) MY-DSAC and (b) MY-JSAC systems at 30°C	106
Figure 4.26	Linearized plots of pseudo-second order kinetic model for (a) MY-DSAC and (b) MY-JSAC systems at 30°C	107
Figure 4.27	Plots of intraparticle diffusion model for MB adsorption by (a) MB-DSAC and (b) MB-JSAC at 30°C	111
Figure 4.28	Boyd plots for MB adsorption onto (a) MB-DSAC and (b) MB-JSAC at 30°C	112
Figure 4.29	Plots of intraparticle diffusion model for MY adsorption by (a) MY-DSAC and (b) MY-JSAC	115
Figure 4.30	Boyd plots for MY adsorption onto (a) MY-DSAC and (b) MY-JSAC at 30°C	116

LIST OF ABBREVIATIONS

AC Activated Carbon

ANOVA Analysis of Variance

BET Brunauer–Emmett–Teller

CCD Central Composite Design

DS Durian seed

DSAC Durian seed based activated carbon

FTIR Fourier Transform Infrared

IR Imprenation ratio

IUPAC International Union of Pure and Applied Chemistry

JS Jackfruit seed

JSAC Jackfruit seed based activated carbon

MB Methylene blue

MY Metanil Yellow

rpm Rotation per minute

RSM Response surface methodology

SEM Scanning electron microscopy

STA Simultaneous thermogravimetric analyzer

LIST OF SYMBOLS

	Symbol	Unit
\boldsymbol{A}	Arrhenius factor	-
A_i	Measured absorbance for component i	-
A_T	Constant for Temkin isotherm	L/mg
b_c	Path length of the cell	cm
b_T	Constant for Temkin isotherm	L/mg
B_t	Constant for Boyd model	-
C	Solute/outlet concentration	mg/L
C_e	Concentration of adsorbate at equilibrium	mg/L
C_i	Constant for Intraparticle diffusion model	mg/g
C_t	Concentration of adsorbate at time, t	mg/L
C_o	Initial adsorbate concentration	mg/L
D_p	Average pore diameter	nm
E_a	Arrhenius activation energy of adsorption	kJ/mol
\boldsymbol{F}	Fraction of solute adsorbed for Boyd model	-
K_F	Adsorption or distribution coefficient for Freundlich isotherm	$mg/g (L/mg)^{1/n}$
K_L	Rate of adsorption for Langmuir isotherm	L/mg
k_{pi}	Adsorption rate constant for intraparticle diffusion model	$mg/g h^{1/2}$
k_1	Adsorption rate constant for pseudo-first-order	L/min
k_2	Adsorption rate constant for pseudo-second-order	g/mg h
M_1	Concentration of stock solution	mg/L
M_2	Concentration of desired adsorbate solution	mg/L
N	Total number of experiments required/data point	-
n_F	Constant for Freundlich isotherm	-
Q_o	Adsorption capacity for Langmuir isotherm	mg/g
Q_m	Maximum adsorption capacity of adsorbent	mg/g
Q_{DR}	Maximum adsorption capacity of adsorbent	mg/g
q_e	Amount of adsorbate adsorbed per unit mass of adsorbent at equilibrium	mg/g
q_t	Amount of adsorbate adsorbed per unit mass of adsorbent	mg/g

at time, t

λ

Wavelength

$q_{t,\;cal}$	Calculated adsorption uptake at time, t	mg/g
$q_{t,\;exp}$	Experimental adsorption uptake at time, t	mg/g
R	Universal gas constant	Jol/mol K
R_L	Separation factor	-
R^2	Correlation coefficient	-
S_{BET}	BET surface area	m^2/g
V	Volume of the solution	L
V_{meso}	Mesopore volume	cm^3/g
V_T	Total pore volume	cm^3/g
W	Mass of adsorbent	g
w_c	Dry weight of prepared activated carbon	g
W_{o}	Dry weight of precursor	g
X	Activated carbon preparation variable	-
Y	Predicted response	-
ΔG^{o}	Changes in standard free energy	kJ/mol
ΔH^{o}	Changes in standard enthalpy	kJ/mol
Δq_t	Normalized standard deviation	%
ΔS^{o}	Changes in standard entropy	kJ/mol
Greek letters		
\mathcal{E}_{λ}	Molar absorptivity coefficient of solute at wavelength	-

nm

SINTESIS KARBON TERAKTIF MENGGUNAKAN PEMANASAN GELOMBANG MIKRO UNTUK PENYINGKIRAN PENCELUP

ABSTRAK

Metilena biru (MB) sebagai pencelup bes dan metanil kuning (MY) sebagai pencelup acid larut di dalam air serta masing-masing menghasilkan ion positif dan ion negatif. Ion-ion ini tertarik kepada bahagian polar pada molekul air secara elektrostatik, lalu mengakibatkan pencelup-pencelup MB dan MY sukar untuk disingkirkan. Oleh itu, kajian ini berusaha untuk menghasilkan karbon teraktif (AC) berasaskan biji durian dan biji nangka untuk menyingkirkan MB dan MY daripada larutan akuas. Karbon teraktif ini dihasilkan melalui teknik pemanasan gelombang mikro bersama pengaktifan fizikimia menggunakan kalium hidroksida (KOH) dan penggasan karbon dioksida (CO₂). Kesan faktor-faktor penyediaan karbon teraktif (kuasa radiasi, masa radiasi dan nisbah impregnasi, (IR)), telah dioptimakan dengan menggunakan metodologi permukaan sambutan (RSM) untuk menghasilkan nilai respon yang maksimum (penyingkiran MB, penyingkiran MY dan hasilan karbon teraktif). Karbon teraktif yang di hasilkan didapati mengandungi luas permukaan Bruneaur-Emmet-Teller (BET) dan peratusan karbon tetap yang tinggi iaitu 852.30m²/g dan 78.51% untuk karbon teraktif daripada biji durian (DSAC) manakala untuk karbon teraktif daripada biji nangka (JSAC) ialah 715.29m²/g dan 73.94%. faktor-faktor penyediaan yang optimum ditentukan menjadi (330W, 4.49min dan 0.97 dengan 79.67% penyingkiran MB dan 23.60% hasilan), (355W, 4.15min dan 0.58 dengan 77.68% penyingkiran MB dan 24.40% hasilan), (340W, 4.44min dan 0.94 dengan 78.24% penyingkiran MY dan 23.51% hasilan) dan (370W, 4.10min dan 0.78 dengan 77.24% penyingkiran MY dan 23.67% hasilan) masing-masing untuk system-sistem MB-DSAC, MB-JSAC, MY-DSAC dan MY-JSAC. Kajian garis sesuhu mendapati semua sistem pencelup-penjerap yang dikaji mengikuti model Freundlich manakala kajian kinetik mendapati semua sistem mengikuti model kinetik pseudo-tertib kedua. Kajian mekanisme mendapati semua proses penjerapan dikawal oleh mekanisme resapan filem. Kajian termodinamik mendapati semua sistem penjerapan adalah eksotermik secara semulajadi, rawak dan dikawal oleh proses penjerapan fizikal.

SYNTHESIS OF ACTIVATED CARBON VIA MICROWAVE HEATING FOR DYES REMOVAL

ABSTRACT

Methylene blue, (MB) as basic dye and metanil yellow (MY) as acid dye dissolved in water to produce negative and positive ions respectively. These ions were electrostatically attracted to the polar side of water molecules, thus making MB and MY difficult to be removed. Therefore, an effort was made to produce activated carbon (AC) from durian seed and jackfruit seed for MB and MY dyes removal from aqueous solution. These ACs were produced by employing microwave irradiation technique as heat treatment and physicochemical activation via potassium hydroxide (KOH) chemical treatment and carbon dioxide (CO₂) gasification treatment. The preparation conditions of these ACs (radiation power, radiation time and impregnation ratio, (IR)) were optimized with the help of response surface methodology (RSM) in order to produce maximum value of responses (MB removal, MY removal, and AC's yield). Durian seed based AC (DSAC) and jackfruit based AC (JSAC) prepared were found to pose relatively high Bruneaur-Emmet-Teller (BET) surface area and fixed carbon percentage which were (852.30m²/g and 78.51%) and $(715.29\text{m}^2/\text{g})$ and 73.94%) respectively. Optimum preparation conditions were determined to be (330W, 4.49min and 0.97 with 79.67% of MB removal and 23.60% of yield), (355W, 4.15min and 0.58 with 77.68% of MB removal and 24.40% of yield), (340W, 4.44min and 0.94 with 78.24% of MY removal and 23.51% of yield) and (370W, 4.10min and 0.78 with 77.24% of MY removal and 23.67% of yield) for MB-DSAC, MB-JSAC, MY-DSAC and MY-JSAC systems respectively. Isotherm studies revealed that all adsorbate-adsorbent systems were best described by Freundlich model whereas kinetic studies revealed that all systems followed pseudo-second order kinetic model. Mechanism studies conducted found that the rate limiting step in adsorption process of all systems were contributed by film diffusion. Thermodynamic studies confirmed that all adsorption systems were exothermic in nature, spontaneous and governed by physisorption.

CHAPTER ONE

INTRODUCTION

This chapter highlights the characteristics of dyes and their threat to the environment together with the importance to use agrowaste as precursor for activated carbon (AC) production. Problem statements, research objectives, scopes of study and organization of thesis are also presented.

1.1 Dyes

The advancement in textile industry is driven by remarkable demand for colourful fabrics. Although this is something positive to the development of economy for the country, a concern had arisen on the extensive use of chemicals in this industry especially synthetic dye. Other industries that utilize dyes in a large scale include rubber, paper, plastics, cosmetics, leather and food (Moreira et al., 2017). Synthetic dyes can be defined as substances that are produced to have two chemical groups attached to its molecule namely, chromopore and auxochromes. Chromopore provides the colour identity to the dyes while auxochromes play a role in influencing the dyes' binding properties onto fabrics. The amount of dyes that being produced yearly is 700,000 tons with more than 10,000 of dyes' variations (Daoud et al., 2017). Out of these, 30% are estimated to escape from conventional wastewater treatment system and enter the environment during the dyeing process.

Dyes that escaped into the environment are able to exist for a very long time due to their non-biodegradable property besides being highly stable towards heat, light and oxidizing agents (Kono, 2015). Besides prohibiting the sunlight from reaching the aquatic plants and prevent photosynthesis process to take place, dyes

exist in environment is also known to be very much associated with carcinogenic and toxic properties (Islam et al., 2017c). The existence of dyes even in slight amount is adverse because it can change the colour of water bodies. Dyes can easily be distinguished into two main groups of ionic dyes and non-ionic dyes. Under ionic dyes, further classification can be made in terms of cationic dyes and anionic dyes. Cationic dyes which consist of basic dye poses the property to dissolve in water to produce positive ions whereas anionic dyes which consist of acid, direct and reactive dyes pose the property to dissolve in water to produce negative ions. This characteristics increase their polar solubility in water thus making them more challenging to remove as compared to non-ionic dyes. This is the reason why most researchers are focussing on removing ionic dyes (Sangon et al., 2018, Silva et al., 2018a, Lam et al., 2017).

Methylene blue (MB) dye belongs to the basic group which is used to dye silk, wool, paper, polyacrylonitrile, modified nylon and polyesters whereas metanil yellow (MY) dye belongs in the group of acid dye and is useful to dye nylon, wool, silk, modificed acrylics, leather, paper and ink-jet printing (Ahmad et al., 2015). As basic dye, MB is popular in textile industry due to its bright colour. However, upon contact with humans and animals, MB can cause injury to the eyes and temporarily breathing difficulty. It was also reported that basic dye can cause more serious health problem including tissue necrosis, quadriplegia, methemoglobinemia and the worst of all, mental confusion (Kushwaha et al., 2014).

On the other hand, metanil yellow (MY) dye is preferred in the textile industry since it has sulfonate group (R-SO₃Na) in its molecule that enhances its binding properties with cellulose fibers. In terms of molecular structure, MY can be categorized as azo dye as well since it has stable azo bond (N=N) in its structure.

Among all dyes, azo dyes have the highest demand in textile industry which up to 60-70% of the total dyes that being consumed (Cheng et al., 2015). Upon contact with humans or living organism, acid azo dye such as MY can cause renal complications, abnormality in reproductive system and dermatological diseases (Yagub et al., 2014).

1.2 Agrowaste based activated carbon

One of the most promising dyes treatment method is adsorption process using commercial coal based activated carbon (AC) as the adsorbent. Unfortunately, high cost of raw materials, depleted sources of raw materials and non-renewable of raw materials are several factors that limit the production of AC. Therefore, researchers nowadays are making an effort to produce AC from agrowaste as an alternative to the common raw materials such as coal and petroleum coke. Some examples of agrowastes that are successfully converted into AC include date (Norouzi et al., 2018), rice straw (Sangon et al., 2018), reed (Zhou et al., 2017), corncob (Tharaneedhar et al., 2017), rattan (Islam et al., 2017a), cattail (Yu et al., 2017), karanj fruit hull (Islam et al., 2017c) and orange peel (Lam et al., 2017).

Durian seed and jackfruit seed are selected in this study to be converted into AC to treat MB and MY dyes in aqueous solution. The scientific name for durian is *Duriozibethinus L*. and is referred by the local residents as "king of fruits" (Ahmad et al., 2015). Durian is a seasonal tropical tree that belongs in the family and genus of Bombacaceae and Durio respectively. This fruit is typically ovoid in shape and famous due to its distinctive, strong and penetrating smell. The edible part of this fruit is contained inside the shell which is yellowish brown in colour and having sharply pointed pyramidal formidable thorns (Subhadrabandhu and Kesta, 2001).