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ANALISIS DAN KAJIAN TERHADAP PENUKAR TENAGA OMBAK 

“POINT-ABSORBER” DENGAN MENGGUNAKAN FLOW-3D 

 

ABSTRAK 

 

Tenaga ombak telah menjadi salah satu sumber tenaga yang paling berpotensi 

dan dengan itu ia telah menarik perhatian pihak kerajaan dan syarikat-syarikat 

tenaga. Dalam usaha untuk memenuhi permintaan tenaga global yang semakin 

meningkat, penciptaan alat mengekstrak tenaga bagi generasi akan datang perlu lebih 

cekap dari segi kos operasi yang lebih rendah dan kelasakan juga perlu diambil kira 

bagi alat penukar tenaga di luar laut. Oleh itu, reka bentuk awal alat penukar tenaga 

adalah sangat penting bagi ramalan sifat hidrodinamik. Dalam kajian ini, interaksi 

struktur ombak dengan alat mengekstrak tenaga dikaji dengan menggunakan Flow-

3D. Analisis pengiraan dinamik bendalir (CFD) berdasarkan persamaan Reynolds 

Purata Navier Stokes (RANS) digunakan untuk mengkaji interaksi antara ombak dan 

struktur, dan kesan lokasi antara alat. Kaedah berangka dengan kos pengiraan yang 

munasabah boleh menjadi satu alternatif kepada ujian eksperimen fizikal dalam 

bidang kejuruteraan luar laut. Latar belakang kajian ini diperkenalkan, termasuk 

kaedah yang digunakan dalam kajian ini, diikuti oleh kajian kes untuk menunjukkan 

kesesuaian model berangka. Ini termasuk pegesahan penjanaan ombak dan ramalan 

prestasi “point-absorber”. Ia telah menunjukkan bahawa model berangka mampu 

perambatan gelombang pemodelan dan interaksi dengan struktur termasuk kesan 

tidak linear dengan tahap ketepatan yang munasabah. Penukar tenaga “point-

absorber” telah dipilih sebagai objek dalam kajian ini. Pendekatan RANS dalam 

domain masa meningkatkan ketepatan apabila berbanding dengan potensi berasakan 



xvii 
 

kaedah teori. Pengaruh penukar “point-absorber” terhadap prestasi mereka 

kemudiannya disiasat di bawah keadaan ombak yang tidak sekata dalam usaha untuk 

meningkatkan prestasi keseluruhan. Kajian ini menghasilkan pemahaman yang lebih 

baik terhadap masalah struktur ombak dan telah melanjutkan pelbagai model RANS 

digunakan dalam penyelidikan tenaga ombak. Keputusan menunjukkan bahawa 

keadaan fasa optimum boya boleh diperolehi dengan melaraskan ketumpatan dan 

diameter “point-absorber”. Kajian mendapati bahawa boya “point-absorber” dengan 

ketumpatan 100kg/m
3
 dan 0.2m diameter adalah saiz optima bagi keadaan yang 

ditentukan dalam kajian ini dengan menghasilkan kuasa sebanyak 126.49N. 
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ANALYSIS AND PERFORMANCE STUDY OF POINT-ABSORBER WAVE 

ENERGY CONVERTERS USING FLOW-3D 

 

ABSTRACT 

 

Wave energy has become one of the most promising energy resources and 

hence has attracted more attention from the governments and energy companies. In 

order to meet the growing demands on global energy, the next generation of energy 

extracting devices need to be more efficient with less operation cost, and as an 

offshore structure, the survivability also needs to be taken into consideration. 

Therefore, it is vital that the hydrodynamic behaviour of the energy device can be 

predicted accurately at the initial design stage. In this research, the wave structure 

interaction with application to wave energy device is studied numerically using 

Flow-3D. The computational fluid dynamic (CFD) analysis based on the Reynolds 

Average Navier Stokes (RANS) equations is used to investigate the interaction 

between wave and structure, and array effects among devices. The numerical method 

with a reasonable computational cost can be an alternative to physical experimental 

test in offshore engineering. The background to this research is firstly introduced, 

including methodologies adopted in this study, followed by a series of case study to 

demonstrate the applicability of the numerical model. These include wave generation 

validation and the predication of the performance of wave point absorber. It has been 

shown that the numerical model is capable of modelling wave propagation and 

interaction with structure including nonlinear effect with a reasonable degree of 

accuracy. The wave point absorber energy device has been chosen as the object to 

study. The RANS approach in time domain improves the accuracy when compared 



xix 
 

with the potential theory based method. The influence of wave point absorber 

devices array on their performance is then investigated under the irregular wave 

conditions in order to improve the overall performance. The study yields an 

improved understanding of wave-structure problem and has extended the range of 

RANS model used in wave energy research. Results show that optimum phase 

condition of buoys can be obtained by adjusting the mass density and diameter. 

Studies found that cylinder buoy of mass density of 100kg/m
3
 with 0.2m diameter is 

the optimal size for the condition set in this research with the produced maximum 

force of 136.49N. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Introduction 

Global primary energy consumption kept increasing every year with a total of 

13276.3 million tonnes oil equivalent by the end of year 2016. Half of the energy 

consumption is mainly by China and United States. The primary energy consists of 

renewables, oil, hydroelectricity, natural gas, nuclear energy and coal. The demand 

for oil is the highest compare to other primary energy. Oil holds one third of global 

energy consumption with a total of 4418.2 million tonnes oil (British Petroleum, 

2017). Figure 1.1 below shows the present world energy supply in 2016. 

 

Figure 1.1: World total primary energy supply 2016 

 

 

From the chart above, 80% of the world energy supply is by fossil fuels. The 

lifespan of oil, natural gas and coal are predicted to last for 41, 64 and 155 years 

respectively with continuous production. Other than the issue of depletion, the usage 

of fossil fuels cause serious environmental issue especially global warming (REN21, 

2017). The concern towards the security of fossil fuel for future use increases with 
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the increment of demand of fossil fuel around the world. Hence, renewable energy 

(RE) are being researched and studied widely to replace the need for fossil fuel in 

near future.  The vast availability of renewables assured energy security towards 

future will reduce the dependence on fossil fuels. Besides that, RE are less polluting 

and labour intensive (Goldemberg, 2007). 

In Malaysia, the country is facing the growing threat of climate change and 

pollution. The government have invested in promoting the green technology in order 

to overcome this problem. Hence, RE has been a wide field to venture on which will 

provide a huge possibility for it to replace the needs of fossil fuel in the future (Oh, 

Pang & Chua, 2010). The following section will be discussing the research 

background, problem statement, research objectives and research scope. A short 

summary of the whole thesis will be presented in thesis outline. 

   

1.2 Research Background 

By the end of year 2016, renewables comprised an envisioned 30% of the 

world‟s power production. From 24.5% of the total global electricity, 16.6% of 

electricity is produced by hydropower (REN21, 2017). The wind and sun energy 

collection are growing over the years and are viable to produce over 20% of the total 

energy demand. There are countries taking the advantage of using these two energies 

for commercial and industrial usage instead of heavily depending on coal, oil and 

natural gas. The focus on the less advanced sustainable energy with huge potential is 

essential to increase the percentage of RE resources (Arent, Wise & Gelman, 2011).  

The ocean wave is among the most promising RE available. Galarraga stated 

that the ocean wave is feasible to generate up to 10TW energy with the highest 
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density around (Galarraga, González-Eguino & Markandya, 2011). The power 

density of wave energy is way better compared to wind and solar energy. Wave 

energy converters (WEC) can produce as much as 90% of the time in a day while 

solar and wind power systems can produce power around 30% of the time in a day. 

In 1799, Girard and his son gotten the first wave power patent (Lawrence et 

al., 2013). Due to the fact then, the attention on wave energy continues to increase 

and many ideas were proposed and evolved. Figure 1.2 below shows a map of mean 

wave power density (in kW/m) from January 2000 to December 2014. 

 

Figure 1.2: Map of the mean wave power density (in kW/m) corresponding to the 

15-year interval from January 2000 to December 2014 (Rusu & Onea, 2017) 

 

  Figure 1.2 illustrates the positions of 30 reference points, distributed along 

the coastal environments of America (A1–A9), Europe (E1–E6), Africa (AF1–AF4), 

Asia (AS1–AS6) and Australia (AU1–AU5), are also indicated (Rusu & Onea, 2017). 

The 40° and 60° range latitude lines (north and south) at Indian Ocean regions 

provides most stable and highest wave power of 127.7kW. Countries with the 

potential range of 70-80 kW/m wave power from southern part of Australia and some 
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regions in Europe are demonstrating extensive attention on wave energy harvesting. 

The first commercial wave energy plant is in Europe which is the Mutriku plant that 

successfully produce 296kW of power (REN21, 2017). 

Although the potential of developing wave power is promising, there is only a 

few full scale model remains at sea. The idea of commercializing wave farm is still 

in consideration due to the high operating cost compared to other RE sources. 

Besides the high operating cost, it is difficult to operate at the unpredictable large 

force and oscillating motions of the wave which is used to drive the generator with a 

sufficient quality output for utilization (Drew, Plummer & Sahinkaya, 2009). In the 

long run, the performance of wave energy devices in saltwater will deteriorate and 

higher cost is needed for the maintenance (Czech & Bauer, 2012).  

 Among the RE resources, wave energy has been overlooked to the extent of 

no commercial scale power plants. There are a few challenges that are needed to be 

considered before commercialising the wave energy harvesting to the global market. 

Effective wave energy collection device in a compact space is essential to maximize 

the output at any location at the sea. Efficiency of the devices can be improved if 

optimization had done according to location and wave condition (Drew et al., 2009).  

 

1.3 Problem Statement 

A commercial Computational Fluid Dynamic (CFD) code Flow-3D can be used 

for numerical modelling and the potential for the code to simulate free surface linear 

waves and wave structure interaction will be evaluated. In this work, CFD analysis based 

on Reynolds-Average Navier-Stokes (RANS) solver has been developed to study the 

WEC structures. Whilst compared to the current existing approach, the CFD technique 

improves the accuracy of the wave-structure simulation in order to obtain a better 
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