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ANALISIS TEGASAN LITAR ELEKTRONIK BOLEH REGANG 

 

ABSTRAK 

 

 Litar elektronik boleh regang (SEC) adalah produk elektronik yang telah 

dibangunkan baru-baru ini untuk memberi keselesaan kepada manusia dalam 

pelbagai aplikasi seperti sensor. Ia telah dimulakan dengan memperkenalkan litar 

dengan konsep saling hubungan menggunakan bahan logam dengan mengawal saiz 

dan reka bentuk saling hubungan yang dimasukkan ke dalam substrat yang fleksibel. 

Sambungan telah dikembangkan secara berterusan dengan mengawal jenis bahan 

yang digunakan dan reka bentuk litar untuk meningkatkan ketegasannya. Kajian ini 

membentangkan tingkah laku tegasan SEC menggunakan bahan polidimetilsiloksana 

(PDMS) sebagai substrat dan campuran rumusan baru serpihan Ag dan PDMS 

sebagai bahan litar dalam bentuk cecair yang dikenali sebagai dakwat konduktif Ag-

PDMS. Tingkah laku mekanik substrat dan dakwat konduktif dicirikan menggunakan 

ujian tegangan. Data ujian tegangan digunakan untuk mencirikan sifat-sifat bahan 

menggunakan model Neo-Hookean dan plastik multilinear untuk dakwat substrat dan 

konduktif masing-masing mewakili tingkah laku litar dalam perisian Analisis Unsur 

Terhingga (FEA). Beberapa reka bentuk asas SEC seperti bentuk segi empat tepat, 

siku-sika dan ladam telah dimodelkan menggunakan Solidwork dan dieksport ke 

ANSYS Workbench untuk analisis struktur awal. Analisis telah dijalankan untuk 

menentukan tingkah laku tegasan terikan litar di bawah geometri dan arah beban 

yang berbeza. Selain itu, analisis struktur juga dijalankan pada prototaip sebenar 

sebagai aplikasi litar sensor haba. Tingkah laku ubah bentuk litar diselidik untuk 

menilai struktur integriti litar di bawah geometri, pemuatan dan bahan yang berbeza. 
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Dapat dilihat bahawa kawasan kritikal untuk tumpuan tegasan bergantung pada arah 

pemuatan sama ada selari atau tegak lurus dengan percetakan litar. Selain itu, ia 

menunjukkan tegasan yang tinggi tertumpu di bahagian dalaman kawasan puncak 

untuk kedua-dua rekaan kekuda dan siku-sika. Tegasan alah bagi dakwat konduktif 

adalah 0.20 MPa. Manakala, keputusan tegasan terikan untuk keseluruhan litar 

mudah menunjukkan nilai tertinggi tegasan setara masih di bawah tegasan alah had 

hingga 10 % terikan yang digunakan iaitu pada 0.19 MPa. Walaubagaimanapun, 

keputusan tegasan setara tertinggi untuk litar sensor haba telah melebihi tegasan alah 

untuk pemuatan menegak dan dwipaksi masing-masing pada 66.66 % dan kurang 

daripada 10 % ubah bentuk plastik. Pemuatan mendatar tidak menghasilkan terikan 

ubah bentuk plastik pada 0.16 MPa tegasan setara tertinggi.   
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STRESS ANALYSIS OF STRETCHABLE ELECTRONIC CIRCUIT 

 

ABSTRACT 

 

 Stretchable electronic circuit (SEC) is an electronic product that has been 

developed recently in serving human comfort in various applications such as sensor. 

It was started by introducing a circuit with interconnection concept using metallic 

material by controlling the size and the design of the interconnection embedded into 

a flexible substrate. The interconnection has been developed continuously by 

controlling types of material used and the design of the circuit to enhance its 

stretchability. This study presents the stress behaviour of the SEC using a polymer 

material of polydimethylsiloxane (PDMS) as the substrate and a new formulated 

mixed Silver flakes and PDMS as the circuit material in the form of liquid known as 

Ag-PDMS conductive ink. The mechanical behaviour of the substrate and conductive 

ink was characterized using tensile testing. Tensile test data were used in 

characterizing the material properties using a Neo-Hookean model and a multilinear 

plastic model for substrate and conductive ink respectively to represents the circuit’s 

behaviour in Finite Element Analysis (FEA) software. Several basic designs of SEC 

such as rectangular, zigzag and horseshoe shape were modelled using Solidwork and 

was exported to ANSYS Workbench for preliminary structural analysis. The analysis 

was conducted to determine the stress-strain behaviour of the circuit under different 

geometry and loading condition. Besides, the structural analyses were also conducted 

on a real prototype of thermal sensor circuit application. The deformation behaviour 

of the circuit was investigated to assess the structural integrity of the circuit under 

different geometry, loading and material. It can be seen that the critical area for the 
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stress concentration depended on the loading direction either parallel or 

perpendicular to the circuit printing. Besides, it showed high stress concentrated at 

the inner side of crest area for both horseshoe and zigzag design. The yield stress for 

the conductive ink was 0.20 MPa. Meanwhile, the stress-strain results of the entire 

model showed that the maximum equivalent stress was below the yield stress for 

simple circuit limited to 10 % strain applied at 0.19 MPa. However, the maximum 

equivalent stresses for thermal sensor circuit is exceeding the yield stress for uniaxial 

vertical and biaxial loading at 66.66 % and below than 10 % plastic deformation 

respectively. The horizontal loading give no plastic deformation for thermal sensor 

circuit at maximum equivalent stress is 0.16 MPa. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Research Background 

Stretchable electronic circuit (SEC) is a technology which has been improved 

from rigid printed circuit board (PCB’s) to be bendable, twistable and stretchable 

(Bossuyt et al., 2013; Rogers et al., 2010). The SEC mainly consists of flexible or 

stretchable substrates (i.e. PDMS and Walopur TPU), flexible or stretchable 

conductive ink as a circuit (i.e. Ag, Cu, Ag-PDMS) and electronic components (i.e. 

LED, transistor, resistor, capacitor and integrated circuit). The advantages of SEC are 

flexible for human body application and improves reliability of the devices subjected 

to strain (Adrega and Lacour, 2010; Gonzalez et al., 2009; Kim and Rogers, 2008). 

The applications are mostly for sensor like strain sensor, robotic skins and wearable 

displays (Hu et al., 2016; Sekitani and Someya, 2010; Wang et al., 2011).  

 

1.2 Problem Statement 

Recently, researchers have shown interests in the development of the 

stretchable circuit and substrate since both elements are the key aspect to control the 

stretchability of the SEC. The stretchability is controlled by changing two parameter 

which are the stretchable material and stretchable design used for both the substrate 

and conductor (Rogers et al., 2010; Wang et al., 2011). Previous study shows lack of 

information regarding the stretchability control by design for the material which 

related to our study which is silver nanoparticles and nanocomposites. Besides, these 

materials are widely used to print the integrated circuit and previous research show 

interest on its conductivity only which said still can be improved (Ding et al., 2016). 



2 
 

The stretchability controlled by design shows the stretchable conductor were studied 

in terms of (1) geometry by controlling the width and thickness and (2) different 

printing shape of the circuit by introducing horseshoe shape as the best design to 

reduce the plastic strain. Besides, the substrate design was studied by (Amjadi et al., 

2014) which has introduced (3) sandwich structure of substrate material that covers 

the whole part of the conductor to extend the failure limits of the conductor. Thus, 

fundamental studies were done in this project to know the limitation of the SEC in 

application as a basic circuit geometry and thermal sensor circuit using both 

experimental and finite element analysis. 

 

1.3.1 Objective 

Objectives of the research are: 

i. To characterize the material properties of the stretchable circuit material. 

ii. To evaluate the stress-strain behavior of the three different geometries of 

stretchable circuit under different loading condition. 

iii. To assess the stress-strain behaviour of stretchable circuits in application as 

thermal sensor circuit under different loading and material. 

 

1.3.2 Scope of work 

The research is limit to the analysis for PDMS substrate as the substrate 

material and Ag-PDMS conductive ink as the conductor material. The preliminary 

study is on controlling the stretchability by design using Ag-PDMS conductive ink as 

the circuit material and PDMS substrate for the substrate material using FEA. 

Several material models in combination with universal tensile test have been selected 

to define the material properties of the Ag-PDMS conductive ink and PDMS 
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substrate material. FEA was conducted to study the stress-strain performance of 

stretchable circuit in thermal sensor circuit application to assess suitable circuit 

design for future application. All the works in the thesis were conducted at room 

temperature and the material was characterized using constant tensile load. In 

addition, the simulation is conducted using static structural analysis. 

 

1.5 Thesis Organization 

The thesis is presented in five chapters. In chapter one, a brief presentation of 

background study, problem statement, objectives and scope of research are 

introduced. Chapter two consist of three major sections which are on previous testing 

used to characterize the stress-strain curve of thin film polymer, material model used 

in finite element analysis which relate to the material properties used for substrate 

and conductor and the last section shows several analyses involved for SEC 

experimentally and theoretically. Methodology shows the specimen preparation and 

tensile testing for experimental part and also modelling and analysis for simulation 

part. In chapter four, effects of geometry, loading direction and material were 

presented for simple model and customized SEC model. Finally, conclusion and 

recommendations for future work is pointed out in chapter five. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

This chapter will review three key topics related to the stress analysis of 

substrate and conductive ink for SEC application. The topics are the mechanical 

testing for thin film specimen, suitable material models for rubber and structural 

analysis of SEC. The first part of this chapter will cover the characterization of 

mechanical properties of substrate and conductive ink which require a review on the 

suitable mechanical testing for thin film specimen. Secondly, the review will focus 

on the general material models which have been used by the previous researcher for 

the substrate and conductive ink material. The third part of this chapter will review 

on the general stress-strain analysis of the substrate and conductive ink in terms of 

the materials and structural analysis parameter which has been studied before.  

 

2.1 Mechanical testing for thin film specimen of SEC 

The aim of the mechanical testing is to characterize the stress-strain curve of 

the material. Several testing has been introduced for the mechanical properties 

characterization of stretchable electronic circuit as a thin film material such as 

uniaxial tensile, biaxial tensile, bulge test and nanoindentation test (Eric A Roe B . S 

. 2010; Merle 2013; Lee et al. 2015). Several researchers have introduced two ways 

in classifying the testing technique for thin film specimen called testing of free-

standing films and supported films (Figure 2.1). Both specimens configuration for 

thin film testing have theirs advantage and disadvantage where the freestanding films 

can directly measure the stress-strain result but challenging in sample preparation at 

microscale and nanoscale. In contrast, the supported films have simpler sample 
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preparation where the coating can be directly printed onto the substrates but the 

result evaluation is very crucial due to the effect of substrates (Eric A Roe B . S ., 

2010; Gibson, 2014; Merle, 2013; Midturi, 2010; Whiteside et al., 2016).  

 

 

Figure 2.1 Two different specimen configuration for thin film testing  

(Eric 2010) 

 

The advantage and disadvantage of each of the listing method is reviewed in 

term of the specimen preparation, experimental setup and data evaluation. Biaxial 

test is multiaxial tests that consist of two techniques which are wafer curvature 

measurement and point deflection technique. Wafer curvature measurement is useful 

for calculating the stress present in the film using mathematical equation. The stress-

strain diagram of wafer curvature technique is obtained by heating up the specimen 

to have a set of strain value with respect to the elongation after heating. This method 

is suitable to study the thermo-mechanical fatigue life of thin films but the stress-

strain curve is highly affected by the temperature. Point deflection technique is a 

technique which combines the advantage of bulge and nano-indentation test in order 

to have the material properties of the thin film. However much of the testing using 



6 
 

this technique was conducted using finite element analysis and little experimental 

work has been carried out (Merle, 2013). On the other hand, the biaxial test is 

challenging on the experimental setup (Melzer et al., 2011). 

Nanoindenter test is useful to have the hardness and modulus of specimen at 

microscale and nanoscale. It does not require specific specimen size and thickness 

unless the specimen can be locate on its 2.5 mm diameter test section. However, this 

technique is extremely sensitive to the surface finish of specimen that can contribute 

to inaccurate result. In addition, the result involves complex conversion process from 

load-depth curve to stress-strain curve. The load-depth conversion technique of 

nanoindentation test is different for different specimen configuration such as 

freestanding and coating specimen where coating specimen need to consider the 

effect of substrate (Martínez et al., 2003; Miguel et al., 2015; Sun et al., 2007; Wu et 

al., 2009). 

Bulge test is an indirect method that requires complex equation. The 

specimen can be prepared in three shapes (circular, square and rectangular) that 

relates to the stress-strain formula used for data evaluation. The result is measure in 

terms of residual stress-strain where it classified as indirect testing which conversion 

is needed to obtain the engineering stress-strain curve. The review on the strengths 

and weaknesses on several testing used for thin film material is summarized in Table 

2.1 (Eric A Roe B . S . 2010; Merle 2013). 
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Table 2.1 Testing technique to characterize mechanical properties for thin film 

polymer 

Testing 
Specimen 

preparation 

Experiment

al setup 
Data evaluation 

Uniaxial 

Tensile 

Challenging 

for micro size 

sample 

preparation 

- 

Give data directly and need 

simple calculation to have 

the stress-strain curve 

Biaxial 

Tensile 
- 

Challenging 

for 

experimental 

setup 

- 

Nanoindenter 

Require no 

specific 

specimen size 

preparation 

- 

Need complex calculation 

in converting the load-depth 

curve to stress-strain curve 

Bulge 

Challenging 

sample 

preparation 

Challenging 

experimental 

setup 

Challenging result 

interpretation 

 

Uniaxial testing is widely used and most developed by people as a direct 

testing. The major attraction is on the ease of data interpretation. The stress-strain 

curve is directly measured involving simple equation and curve fitting.  Larmagnac 

et al, (2014) has reported their research in characterization of conductive ink use for 

the application of SEC based on Ag-PDMS composites using bulk specimen of large 

dumbbell specimen with no specific gauge length and width.  

Several studies have been reported as a guideline in selecting the commonly 

used specimen testing geometry for rubber material. There were two type of 

specimen used either large dumbbell or small strip. The ASTM standard used for the 

rubber test is mostly not stated. In 2008, British standard was used to test soft 

polymer specimen with 5 mm specimen width at 100N load cell. In 2012, ASTM 

D412 was modified to test natural rubber at very small gauge length 10 mm and 

loading rate 10 mm/min with 500 N load cell. In 2014, large dumbbell specimen was 

used to test rubber with Ag fillers at lower loading rate 6 mm/min. In 2015, the 
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