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FSI SIMULASI SISTEM AEROELASTIK DENGAN KETIDAKSAMAAN 

AERODINAMIK 

ABSTRAK 

  Tesis ini membentangkan kajian sistem aeroelastik sebuah model NACA0012 

rigid yang dipasang secara elastik dengan ketidaksamaan aerodinamik. Tingkah laku 

aeroelastik dari sayap dua dimensi berayun diperiksa dengan cara simulasi numerik. 

Simulasi NACA0012 dipelajari secara numerik melalui simulasi aeroelastic dua 

dimensi menggunakan ANSYS Fluent 16.1 untuk menilai tindak balas getaran 

aeroelastic pada paksi elastik yang berlainan dengan ketidaksamaan aerodinamik dan 

mendapati fenomena ketidaksamaan aerodinamik terhasil daripada pemisahan lapisan 

sempadan, pemisahan dan aliran lampiran semula di sekitar aerofoil. Simulasi 

menggunakan model RANS (SST) k-ω dengan pembetulan nombor Reynolds yang 

rendah untuk menangkap aliran fizikal di sekitar aerofoil. Interaksi struktur bendalir 

dinamik (FSI) dicapai melalui gabungan persamaan struktur gerakan dengan 

penyelesai bendalir dalaman melalui utiliti fungsi (UDF) yang ditentukan oleh Fluent. 

Simulasi numerik dijalankan pada tiga kedudukan paksi elastik (EA) yang berbeza, 

0% (titik depan), 18.6% dan 35% dari titik depan. Simulasi dijalankan pada julat 

kelajuan angin dari 4 m/s hingga 14 m/s. Hasilnya menunjukkan dua amplitud ayunan 

yang berlainan daripada tindak balas dinamik yang dihasilkan oleh sistem aeroelastik, 

di EA dari 0% (titik depan) dan 18.6% menghasilkan ayunan amplitud kecil (SAO) 

sementara pada paksi elastik 35% menghasilkan ayunan besar amplitud (LAO). 

Pengesahan simulasi numerik menunjukkan kecenderungan yang sama dengan hasil 

eksperimen dan didapati menghasilkan amplitud had ayunan kitaran (LCO) yang boleh 

dibandingkan. Dari aspek aliran aerodinamik, pemisahan lapisan sempadan laminar 

didapati memainkan peranan penting untuk ayunan yang mengekalkan ayunan dalam 
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ayunan amplitud kecil. Fenomena aliran pusaran, pemisahan aliran dan fenomena 

pengaliran lampiran semula dijumpai menyebabkan amplitud yang besar dan pusaran 

aliran yang terbalik di titik belakang aerofoil menyebabkan sayap bergerak dan 

mengekalkan kitaran ayunan. 
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FSI SIMULATION OF AN AEROELASTIC SYSTEM WITH 

AERODYNAMIC NONLINEARITY 

ABSTRACT 

This thesis presents a study of aeroelastic system of an elastically mounted rigid 

NACA0012 airfoil with aerodynamics nonlinearity. The aeroelastic behavior of a two 

dimensional wing oscillating is examined by means of numerical simulations. The 

simulation of NACA0012 is studied numerically through unsteady two-dimensional 

aeroelastic simulation using ANSYS Fluent 16.1 to evaluate the aeroelastic response 

of stall flutter at different elastic axis with aerodynamic nonlinearities and found that 

the aerodynamic nonlinearities are from boundary layer separation, the separation and 

reattachment of flow around the airfoil. The simulation employed RANS (SST) k-𝜔 

model with low Reynolds number correction to capture the physical flow around the 

airfoil. The dynamics fluid structure interaction (FSI) were achieved by coupling the 

structural equation of motion  with an in-house fluid solver through defined function 

(UDF) utility in Fluent. Numerical simulations were ran through at three different 

elastic axis (EA) positions, 0% (leading edge), 18.6% and 35% from the leading edge. 

The simulations were ran through at free stream velocity range from 4m/s to 14m/s. 

The results showed two different oscillation amplitudes from the dynamic responses 

generated by the aeroelastic system of the airfoil, at EA of 0% (leading edge) and 

18.6% produced small amplitude oscillation (SAO) while at 35% elastic axis produced 

large amplitude oscillations (LAO). The validation of numerical simulation showed 

trends which are similar to experiment results and are found to produce a reasonably 

comparable limit cycle oscillation (LCO) amplitudes. From the aerodynamic flow 

aspect, laminar boundary layer separation was found to play an important role for the 

oscillation sustaining the pitching oscillation in small amplitude oscillation. Leading 
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edge vortex, flow separation and reattachment flow phenomena was found which 

caused large amplitude oscillation and reversed flow vortices at the trailing edge of the 

airfoil caused the wing to pitch down and maintaining the oscillation cycle.  
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 CHAPTER ONE 

INTRODUCTION 

1.1 Aeroelasticity 

 

“Aeroelasticity” is a term used to represent the field of study concerned with the 

interaction between the deformation of an elastic structure in an airstream and the 

resulting aerodynamic force. Aeroelasticity can be categorized into two major 

categories, static and dynamic. Static aeroelasticity consists of the interaction between 

elastic and aerodynamic forces whereas the dynamic side involves the interaction of 

aerodynamic, elastic, and inertial forces. Aeroelastic phenomena can include several 

types of oscillations resulted from classical bending torsion flutter, stall flutter, 

buffeting and Limit Cycle Oscillations (LCO). Flutter is an example of an unstable 

self-excited vibration, and can arise under conditions of steady-state airflow. In the 

design of aircraft and aerospace components, design for aeroelastic performance is of 

fundamental importance, where if flutter vibration amplitude cannot be controlled, 

catastrophic structural failure can result. The classical airfoil flutter is a fundamental 

flow induced instability mechanism described as self-excited plunging and pitching 

oscillations of an airfoil subjected to airflow. One of the first fundamental studies 

considering the classical airfoil flutter was published by Theodorsen (Theodorsen, 

1934) who obtained a closed-form solution of the flutter instability in the frequency 

domain with the experimental validation. Flutter of airplane wings or aircraft engine 

turbomachinery blades is a critical issue determining the reliability of the aircraft. The 

flutter phenomenon is the results of the fluid structural interaction and is usually 

involved with complicated phenomena such as the shock wave boundary layer 

interaction, flow separation, nonlinear limited cycle oscillation, etc. Accurate 
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prediction of the flutter is very challenging due to the complex physical phenomena 

and the required large amount of computation. The current study is an effort to develop 

the methodologies needed to achieve prediction of aircraft flutter. The best way to 

explain aeroelastic phenomena and interaction between forces mentioned is by 

observing at Collar’s aeroelastic triangle (Collar, 1946) shown in Figure 1.1  In Figure 

1.1, main disciplines of stability and control, structural dynamics and static 

aeroelasticity each caused from the interaction of two of the three forces. However, all 

three forces are required to interact for dynamic aeroelastic effects to happen. 

 

Figure 1.1: Collar’s Aeroelastic Triangle 

 

  The presence of nonlinearity in aeroelastic system is known to affect the 

dynamic responses of the system which sometimes  causes oscillation that cannot be 

predicted by linear theory (Razak, 2012). One of the types of oscillation is Limit Cycle 

Oscillation or LCO which requires at least one nonlinear element in a given system to 

occur. The sources of nonlinearity can be from structural or aerodynamic nonlinearities 

(Razak and Dimitriadis, 2013). 
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Computational fluid dynamics (CFD) and finite element method (FEM) 

provide the basic tools for predicting flutter, buffeting and limit cycle oscillation, 

hence computational aeroelasticity is expected to play a vital role in numerical 

modelling of combined solid-fluid interaction in the context of aerospace component 

and structure design (Schuster et al., 2003). In this project, Fluid structure interaction 

simulation analysis predicts the flow characteristics of the airfoil, including turbulence 

and flow separation. 

 

1.1.1 Stall Flutter 

 

Phenomenon of stall flutter arises when there is flow separation and 

reattachment to the surface of the wing in a cyclic manner. The separation can be 

categorized as partial separation or fully separation on the wing surface. Another 

aeroelastic phenomenon that can occur from the flow separation is galloping. The 

Occurrence of galloping can be observed when there is only flow separation over the 

bluff bodies. Dynamic stall is a process of alternation between stalled and attached 

flow, this phenomenon has been the subject of numerous experimental and theoretical 

investigations.(Ericson and Reding, 1971; McCroskey William, 1981; Spentzos et al., 

2005) 

The coupling of the vibration characteristics of a flexible structure with 

dynamic stall caused stall flutter to take place. The stall flutter phenomenon has been 

observed in helicopter rotor blades, wind turbine blades, low stiffness wing operating 

at high angles of attack and wind tunnel models.  
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1.2 Conceptual Theory 

 

1.2.1 Dynamic 

 

In this section the terminology that will be used to define airfoil, airfoil motions 

and unsteady aerodynamics in the rest of this thesis are presented. The terminology 

concerns geometric, aerodynamic and kinematic characteristics. 

1.2.2 Reduced Frequency 

 

In the field of aeroelasticity, reduced frequency describes the unsteadiness of 

the flow and is symbolized by the symbol 𝑘. Reduced frequency is a degree of flow 

unsteadiness due to body motion. Reduced frequency is given by 

 
𝑘 =

𝜔𝑏

𝑣
 

(1.1) 

 

Where, 𝜔 is the oscillation frequency, 𝑏 is the airfoil’s chord length and 𝑣 is the free 

stream airspeed. The value of reduced frequency represents the unsteadiness of the 

flow which ranges from 0 to 1 as given in Table 1.1. 

Table 1.1: Classification of flow unsteadiness 

Range Classification 

k = 0 Steady 

0 < k < 0.05 quasi-steady 

0.05 < k < 0.2 Unsteady 

k > 0.2 Highly unsteady 
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Reduced frequency values between 0 and 0.05 specifies quasi-steady flow 

where wake effects are unimportant. For 0.05 to 0.2 the flow is quasi-unsteady and 

added mass is negligible but wake effects are critical. The fully unsteady flow regime 

is characterized by reduced frequency values exceeding 0.2, the resulting flow is 

dominated by acceleration effects.   

 

1.2.3 Equation of motion 

 

   Equation of motion for one degree of freedom can be obtained by applying 

summation of forces and moment acting on the airfoil body. 

 

Figure 1.2: Schematic of a spring-supported symmetric airfoil. 

 

  From the Figure 1.2, AC is the aerodynamic center, EA is the elastic axis which 

the spring-supported symmetric airfoil is located, c is the chord length and e is the 

distance between aerodynamic center and elastic axis. In the case where the motion is 

restricted to pitching only, the equation of motion is given as:  
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 𝐼𝐸𝐴𝜃̈ +  𝐷𝜃𝜃̇ +  𝐾𝜃𝜃 =  𝑀𝐸𝐴 (1.2) 

 

Where, 𝑀𝐸𝐴 is the moment at the elastic axis, 𝐼𝐸𝐴 is the moment of inertia measured 

at the elastic axis, 𝐷𝜃 and 𝐾𝜃 are structural damping and structural stiffness 

respectively. 

1.2.4 Limit Cycle Oscillation 

 

Aeroelastic phenomenon are the dynamical phenomenon resulting from the 

mutual interaction of aerodynamic forces, elastic forces and elastic forces. Limit Cycle 

Oscillations (LCO) is one of the vibration phenomenon which requires at least one 

nonlinear element in a given system to occur (Razak and Dimitriadis, 2013). For an 

aeroelastic system, the nonlinearity can be from structural, aerodynamic or both. 

Flutter causes the system to vibrate and when nonlinearity elements is introduced, 

LCO phenomenon happens to sustain the vibration without any decay in the system. 

The nature of the transient oscillations is dependent on the initial conditions or 

perturbation given to the system. 

 

Figure 1.3: Limit cycle oscillations time response (Abdul Razak et al., 2012). 
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