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KAJIAN SEL SOLAR TERSENSITASI PEWARNA SEMULAJADI DENGAN 

ELEKTROD TIUB NANO TITANIA 

 

ABSTRAK 

Teknologi boleh diperbaharui dan teknologi hijau amat penting untuk 

memelihara masa depan teknologi. Solar Sel Disensitasi Pewarna (DSSC) sebagai 

solar sel generasi baru boleh menangani isu tersebut dengan pengunaan pewarna 

semula jadi berbanding pewarna sintetik. Dalam pengajian ini, DSSC dibentuk dengan 

penggunaan pewarna semula jadi dan sintetik, untuk mengaji kemampuan pewarna-

pewarna semula jadi berbanding N-719, pewarna sintetik. Untuk menekankan konsep 

teknologi hijau lagi, dua sumber pewarna, iaitu pewarna dari bunga peltophorum 

pterocarpum dan daun yang layu dari pokok millettia pinnata, yang hanya akan 

dibuang dan menambahkan kepada sampah sarap yang dikutip. DSSC dibentuk 

dengan menggunakan nanotiub Titanium Dioksida (TNT) sebagai substrat untuk 

pewarna. Kemampuan solar DSSC menunjukkan bahawa pewarna sintetik N719 

mempunyai kecekapan quantum yang paling tinggi, iaitu 0.0789%, manakala pewarna 

semulajadi yang mempunyai kecekepan yang paling tinggi ialah pewarna bunga 

peltophorum pterocarpum, iaitu 0.0715%. DSSC yang dibuat turut digunakan dalam 

pengajian degradasi pewarna pencemar metilena biru. Dalam pengajian ini pewarna 

klorofil telah mengurangkan tahap pencemaran sebanyak 60 % dalam dua jam dengan 

penggunaan cahaya boleh dilihat, manakala pewarna N719 hanya mampu 

mengurangkan pewarna metilena biru sebanyak 40 %. Buat kali pertama juga, pewarna 

klorofil yang dikeluarkan mampu bertahan untuk jangka masa melebihi 5 bulan dalam 

suasana bercahaya dan bersuhu billik, dan ini meningkatkan potensi pewarna tersebut 

dalam penjanaan kuasa dan pendegradasian pencemaran dalam masa depan.  
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THE STUDY OF NATURAL DYE SENSITIZED SOLAR CELLS WITH 

TITANIA NANOTUBES ELECTRODE 

 

ABSTRACT 

 

Renewable and green technology is important in future-proofing advancements 

in technology. Dye Sensitized Solar Cells, a new generation solar cell has the potential 

to be just that with the application of natural dyes over synthetic ones. In this study, 

cost effective and chemically safe natural dyes are tested and compared with the 

commercial dye standard N-719 to gauge its performance and viability as a suitable 

substitute. To further emphasize the concept of green technology, two of the flora 

sources were fallen flowers of the peltophorum pterocarpum and dead leaves of the 

millettia pinnata tree, which would otherwise contribute to the growing amount of 

waste collected. DSSCs were fabricated using Titanium Dioxide Nanotubes (TNT) as 

the substrate for the dye, grown via anodization, and were tested with both natural and 

synthetic dyes. Solar cell performance of the dye reveals that even in low 

concentrations the synthetic dye gives a higher quantum efficiency of 0.0789%, while 

best natural dye is flower peltophorum pterocarpum at 0.0715%. The DSSCs 

configuration was also used to degrade methylene blue via photocatalysis to prove its 

viability as a pollutant degrader. Chlorophyll was determined to be the best natural dye 

tested, degrading approximately 60% of the methylene blue under visible light 

irradiation in 2 hours, while the synthetic dyes only degraded approximately 40% of 

the pollutant dye. For the first time recorded, chlorophyll dyes that can be stored at 

room temperature in ambient light for over 5 months was achieved, further increasing 

the potential of this natural dyes for energy generation and pollutant degradation in the 

future. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

Nanotechnology is a growing field dedicated to nanosized material analysis and 

design. At a resolution of 1 – 100 nanometers, its characteristics differ as compared to 

bulk material [1]. The morphology of nanomaterials offers a greater surface area to 

volume ratio as compared to bulk materials. In applications requiring high surface 

areas for reaction nanoparticles are thus important, and one such application is 

photocatalytic degradation. 

Photocatalytic degradation revolves around the conversion of a substance into 

a lesser compound with the use of photonic energy. This is often done to toxic 

pollutants, degrading them to create inert compounds. Ultraviolet light is commonly 

used for this purpose due to its higher energy photons, but research is growing in the 

application of the lower energy visible light spectrum to achieve similar 

photodegradation.  

TiO2 is one popular semiconductor in photocatalytic degradation due to its 

robust structure, chemically inert bonds, and general resistance to self-degradation. 

The bandgap of TiO2 is reported at 3.2 eV, but values from 2.7 eV to 3.4 eV have also 

been reported [2], [3],  The variation in this value is due to the effect of morphology, 

as the nanostructures start to become smaller in dimension, the electronic properties 

change. This occurs in nanotube samples, where a quantisation effect causes the 

bandgap to increase slightly when subjected to optical analysis. The bandgap of the 
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TiO2 can be related to its absorption edge of its optical absorption. By observing a 

transmission spectrum of TiO2 nanotubes, the refractive index can be obtained, which 

is an average 1.7 for nanotube TiO2 films [3] and more than 2 for bulk or nanoparticle 

anatase TiO2 [4]. Anatase TiO2, popular for DSSC and photoreactive applications, 

have an absorption coefficient in the range of 620 µ to 1300 µ [5]. This is a small value 

when compared to other solar cell materials such as PbS/CdS [6], but this is due to the 

absorption edge of the TiO2 only appearing at the UV-light region.    

Due to its absorption edge being located in the UV region, photocatalytic 

degradation with TiO2 is commonly done with an UV-light source. This was 

discovered by a then-graduate student Akira Fujishima in 1967, and till the present 

date, TiO2 remains a prominent material in this field. While TiO2 is mainly reactive in 

a UV-light source, various methods to induce reactions within the visible range have 

been used, including doping with metallic or non-metallic compounds such as Copper 

, Sulphur, Carbon, Hydrogen [7]–[9], forming junctions with semiconductors [10], 

[11], and sensitizing with dyes [12]–[14]. Sensitization with dyes are the basis for 

DSSC devices. 

The dyes that were used in this study were based on the effort of green-

technology. As dyes have been extensively studied, Table 1.1 reveals that most natural 

dyes simply do not fare as well as synthetic dyes as efficient energy generators. 

Instead, different reasons are chosen for the use of natural dyes, namely cost 

effectiveness and effective recycling of organic by-products. 

To create a zero-waste society, the local flora of Malaysia can contribute in 

other ways other than simple photosynthesis. Flowers of the Peltophorum tree, for 

example, flowers yearly and the flowers subsequently wilt, creating a beautiful effect 

when it falls and covers the surrounding area. These flowers still possess a remarkably 
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vivid colour after falling, which was chosen to be made into a dye, as the flowers 

would otherwise be swept and added into common waste. Another seemingly odd 

choice that was chosen was the dead leaves of the Millettia tree, which sports an even 

shade of brown when wilted. While these two sources were previously destined for the 

rubbish heap may in fact be the key of using technology for unexpected recycling 

techniques. Lastly, chlorophyll was also chosen, being an abundant and commonly 

researched natural dye that has been used for fabricating DSSCs, which would serve 

as a makeshift natural dye benchmark. In this work, three sources were chosen, the 

aforementioned Peltophorum pterocarpum flower, the dead leaves of the Millettia 

pinnata tree, and green leaves of the Ipomoea aquatica as the natural dye sources. 

Electronically, these dyes chosen have the potential for applications in DSSCs. 

The HOMO and LUMO levels of the dyes, as shown later in Chapter 4, have the 

characteristics necessary for a DSSC; that is, having a LUMO level higher than that of 

TiO2 and a HOMO level lower than the level of the redox couple that serves as the 

electrolyte. This would be further elaborated in the further chapters. 

The DSSC is a solar cell that uses a coloured dye to absorb photons of the 

visible light spectrum and convert that energy into electronic energy. The sensitizing 

of wide bandgap materials allowed them to conduct electrons at a lower photonic 

energy, ideally in the visible spectrum. There are many factors that determine the 

effectiveness of the DSSC, namely, the open circuit voltage (VOC), the short circuit 

current density (JSC), Fill Factor (F.F), and the efficiency (η). One commercial dye that 

is popular is Ruthenium based N719, and the highest recorded efficiency on a DSSC 

is attributed to this dye, at about 11 % efficiency. Table 1.1 shows a comparison of 

current DSSCs recorded with the parameters mentioned. Sensitizers other than 

commercial synthetic dyes are also listed in Table 1.1. This is due to the costs of 
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commercial dyes, that natural sources are also investigated as economical alternatives 

with varying success. 

The versatileness of TiO2 in photoreactive devices also extends to photocatalytic 

applications. When activated with UV light, holes formed in the valence band of the 

TiO2 form hydroxyl ions with adsorbed water, which is used to oxidize organic 

molecules in photocatalytic degradation [15]. The use of photocatalytic degradation is 

a passive form of pollution degradation, with the drawback that TiO2 on its own is only 

reactive to UV-light. With visible light active TiO2 organic based pollutant can be 

degraded rapidly with irradiance from sunlight. This would be beneficial for industries 

that have high organic waste products that would otherwise pollute waterways such as 

textile industries [28]. For this study, methylene blue will be used as the pollutant dye, 

and the effectiveness of dye degradation will be analysed using photospectroscopy to 

observe a decrease in peak values, which indicate a decreasing concentration of 

pollutant. The photocatalytic study conducted is irradiated within the visible spectrum, 

allowing for better accuracy in determining real life application performance of the 

device in dye degradation. 

Morphology of the TiO2 substrate also play an important role towards the 

performance of the DSSC device. From the Table 1.1 a nanotube DSSC is shown to 

have roughly half the performance of a mesoporous device, but nanotube TiO2 is 

versatile, in the sense that synthesis is simple to perform, and dimensional properties 

of the nanotubes can be controlled precisely. The optical properties of the 

nanopowders and nanotubes also differ. More importantly, nanotube TiO2 is a 

physically strong structure, that is, compared to nanowire and nanopowder TiO2, 

nanotube TiO2 would be capable of maintaining its integrity for the second part of the 

study, which is the dye degradation study. Reported results using nanotubes indicate   
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Table 1.1. Comparison of Reported DSSCs. An “S” beside the Sensitizer denotes a synthetic dye while an “N” denotes an organic one 

Sensitizer TiO2 Substrate Type VOC (V) JSC (mA.cm-2) FF η (%) Year Ref. 

S N-719 Nanotubes 0.75 12.78 0.65 6.2 2011 [16] 

S N-719 Nanopowder/MWCNT 0.79 16.99 0.77 10.3 2009 [17] 

S N-749 Screen-Printed 0.74 20.9 0.72 11.1 2006 [18] 

S Cu(II/I) Complex Mesoscopic 1.08 13.87 0.733 11.0 2017 [19] 

S Co(III/II) Complex Mesoporous 0.994 9.55 0.776 14.7 2012 [20] 

S Perovskite (CH3NH3PbI3) Mesoporous - - - 15.1 2013 [21] 

S Chinese wisteria Mesoporous 0.56 5.22 0.38 1.1 2015 [22] 

S C-217 Screen-Printed 0.80 16.1 0.76 9.8 2009 [23] 

N Pomegranate Spin-Coated P-25 0.39 12.20 0.41 2.0 2017 [24] 

N Chlorophyll Spin-Coated P-90 0.54 8.44 0.58 2.2 2015 [25] 

N Acanthus s.c. flower Mesoporous 0.51 0.49 0.60 0.15 2016 [26] 

N Beetroot Mesoporous 0.46 1.70 - 1.3 2017 [27] 
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that a nanotube length of 1.5 µm and diameter of around 80 nm  to 100 nm would be 

suitable for an N-719 dye [29], but a nanotube length of between 6 µm – 10 µm   is 

also usable, and for this study preferred as a wide range of dyes are used, and 

structurally a thicker nanotube length would be stronger. The size of the nanotube 

diameter is sufficient for the dye adsorption and also for the degradation study; the 

estimated molecular surface areas of the dyes, both sensitizer and pollutant, are listed 

in Table 1.2. The surface area of β-carotene was estimated using the chemical viewer 

J-mol (https://chemapps.stolaf.edu/jmol/jmol.php). 

 

Table 1.2. Molecular Surface Area of Dyes 

Dye N-719 Chlorophyll β-carotene Methylene Blue 

Area (nm2) 2.43 [30] 1.08 [31] 1.67 (J-mol) 1.30 [32] 

 

1.2 Problem Statement  

The role of the dye in a DSSC is to receive energy from photons, exciting an electron 

which, by a cascading effect is transferred to the TiO2 medium, and finally recombine 

when returned to the DSSC from the negative terminal. Dyes used must have lower 

recombination rates or else risk premature recombination before the electron may be 

transferred to the TiO2 medium. Dyes should be easily adsorbed onto the TiO2 surface 

to ensure proper electronic pathways are created between the dye and the TiO2 surface. 

Another reason for a good adsorption of dyes is in the use of photocatalytic degradation 

of liquid sources, the adsorbed dye should remain adsorbed on the dye and not 

dissolved into the liquid source used. 

 One disadvantage of liquid dyes is its limited shelf life. Dyes prepared must be 

kept in darkened containers, as photonic interaction would result in the degradation of 
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the dye itself. Natural dyes as alternative dyes commonly have limited shelf lives, as 

shown in Table 1.2 for various types of solar cells, and synthetic and natural dye 

DSSCs. From the data it is clear that DSSC solar cells are still lacking in terms of 

lifetime durability; even the 20 years of the N-719 dye is an estimate based on electron 

lifetimes of the dye, a more conservative estimate is about a year or so, depending on 

various factors such as temperature, light intensity, and dye concentration. 

As of now, the two main methods of extending the shelf life of natural dyes are 

to keep the dyes in a darkened environment and freezing in sub-zero temperatures. 

With a greater shelf life more applications for the natural dyes could be realised for a 

remote setting where dyes cannot be stored in controlled environments or are needed 

for longer uses without constant preparation, such as rural villages or townships that 

may use such DSSC devices. In this study a two-step method is proposed that would 

increase the shelf life of a chlorophyll dye longer than the 10 days reported as Table 

1.3.  

The cause of a low shelf life for the natural dyes would be photooxidation of 

the dye. Chlorophyll for example, in an organic solvent degrades when exposed to 

light in the presence of oxygen [33]. Thus, stability would be ensured with two factors, 

that is, either in the absence of light, which is a more popular option, or storing the 

chlorophyll dye in a oxygen limited or absent environment. For this study a two-step 

route was chosen to store the chlorophyll dye in a oxygen diffused environment, as the 

allomerisation of chlorophyll occurs even with the absence of light, as long as oxygen 

is present [34]. The two-step method protects the chlorophyll dye from unwanted 

oxidation by storing the chlorophyll dye in a heptane solution. With less chance of 

oxidation, a longer shelf life that does not require extremely rigid conditions can be 

achieved. The chlorophyll dye will be subjected to a stability test, where the dye will 
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be left to stand over a period of a month and longer if necessary in ambient light, to 

determine the effectiveness of the two-step method. Chlorophyll is chosen for the 

longevity study due to its natural role as a sensitizer for photosynthesis, thus making 

it suitable in a device that requires artificial synthesis. 

 

Table 1.3. Standard Lifetime of Solar Cells 

Type of Solar Cell Shelf Life Reference 

Silicon Solar Cells 22 years - 50 years [35] 

Thin Film Solar Cells 20 years - 50 years [35] 

DSSC - Anthocyanin 20 - 30 days [36] 

DSSC - Chlorophyll 5 - 10 days [37] 

DSSC - Ruthenium dyes 1 - 20 years [38], [39] 

 

Cost is another factor in choosing a dye. In view of a long-term goal a cost-

effective solution is needed. Commercially available dyes are costly, with prices of 

RM2000 and above for a gram of N-719. Natural dyes are favoured in this case as 

most are easily obtainable for a mere fraction of the cost. The spinach is necessary for 

the extraction of chlorophyll, for example, it is easily available for low prices at farm 

supplied markets or grocery stores. While research is being done to synthesize cheaper 

dyes, naturally occurring dyes that are cost effective may at the same time be a feasible 

idea for a balanced cost-for-power sensitizer dye.  

Recently, there have been some researches done towards the morphology of 

TiO2 in regard to the efficiency of the DSSC. The morphology is important as a greater 

adherence area would be beneficial to ensure more dye is adsorbed onto the TiO2 

structure. In the case of a nanotube structure, the length also is a relevant factor. 

Nanotubes are normally tailored to the corresponding adsorbed molecule for height, 
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which varies typically between 1 µm – 10 µm. Thus, optimizing the length would be 

the key to higher efficiency. The size of the nanotubes matters as different dyes have 

a different molecular structure, larger dyes may need larger areas for adherence while 

smaller dyes may make do with less surface area. For this study instead, a fixed length 

is employed to maintain a constant distance between the electrodes of the DSSC. 

Finally, pollution is rampant and a cost effective and environmentally sound 

solution is needed. As TiO2 is non-toxic its use in a pollutant degradation device may 

not introduce additional harm to the environment but finding a way to create a passive 

device that does not require additional electrical sources is important to create stand-

alone unattended devices. TiO2 based photocatalytic devices have been fabricated 

commonly use metal doping to achieve visible light reactivity, and general duration 

for degradation is shown in Table 1.4. The most researched method in utilizing TiO2 

for methylene blue degradation is by using a nanoparticle morphology. This is due to 

its superior surface area and dispersion capabilities as compared to a stationary 

morphology such as nanotubes. While this method is effective in a controlled 

environment, in a practical approach the nanoparticles must be filtered out of the water 

following the degradation process, which in a practical setting may result in not all the 

nanoparticles being removed. As of now the effects of TiO2 nanoparticles on the 

physiology of animal and humans are not clearly understood and smaller than 100nm 

particles, common in photodegradation studies, would then be considered a pollutant 

in the waterway following the degradation. Thus, an immobile morphology such as a 

metal backed nanotubular structure would be a better alternative, albeit with less 

efficiency than the nanoparticle TiO2. 
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Table 1.4.  Summary of Duration for Methylene Blue Degradation in Various Settings. 

  

TiO2 Dopant  Spectrum MB Concentration Duration Ref. 

Nanoparticles - UV-A 5mg/L 120 minutes  [40] 

Nanoparticles RGO UV-A 10mg/L 240 minutes [41] 

Nanoparticles Sulphur Visible NA 20 % /10 minutes [42] 

Nanoparticles CNT UV-A 10 mg/L 200 minutes [43] 

Nanotubes - UV-A 93.5 mg/L 180 minutes [44] 

Nanotubes - Visible 10 mg/L 120 minutes [45] 

 

1.3 Hypothesis 

In this study, a bifunctional DSSC will be fabricated, for traditional use as a DSSC and 

also for the purpose of photocatalytic methylene blue dye degradation. Thus a sturdy 

TiO2 substrate is chosen; it is predicted that while sacrificing efficiency by using a 

nanotube morphology, a sturdier substrate would be obtained that can hold its integrity 

even in an unsealed environment, that is, during the dye degradation process. 

Nanopowder TiO2, while still superior to nanotubes in efficiency, may be prone to 

accidental dispersal in the medium, which would erode the dye substrate over time. 

For a practical DSSC with dye degradation capabilities, thus a nanotube foil 

morphology would be employed.   

It is hypothesized that the absence of oxygen is a key factor in a long shelf life 

dye. For that a two-step method would be employed to extract the dye; once with 

acetone using a standard extraction method and a second time with heptane. In an 

oxygen diffused environment, photooxidation would be limited, thus even allowing 

for the dye to be stored in an ambient light setting. This would allow for easier storing 
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of the dyes if made in larger quantities, as the storage medium does not need to block 

out light. 

1.4 Objectives 

The main objectives of this project are to:  

1. Investigate the performance characteristics of a TiO2 nanotube substrate with 

a length between 5 µm to 10 µm for use in a DSSC 

2. Extract dyes from three natural sources and to investigate the two-step method 

in preparing a chlorophyll dye with a shelf life above 10 days 

3. Fabricate DSSCs with the TiO2 medium of Objective 1 and dyes from 

Objective 2 to compare their performances with an N-719 DSSC and dye. 

4. Determine the photocatalytic degradation performance of the DSSCs 

fabricated with methylene blue dye with the target pollutant processing rate of 

50 % or greater in 120 minutes. 

 

1.5 Novelty of Study 

This study employs a two-step extraction method for long term storage of chlorophyll, 

which has been previously unreported as an effective technique for long term dye 

durability. The chlorophyll dye stored with this method was able to surpass the 10 days 

previously reported for dye lifetime. 

 The use of natural dyes in photocatalytic dye degradation is rarely reported, 

due to the low efficiencies associated with such dyes. In this study, natural dyes and 

synthetic dyes are used to degrade methylene blue in a DSSC setup. 
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1.6 Outline of Dissertation 

Chapter 1 presents the introduction regarding this experiment. The problem statement 

and the objective of this experiment also mentioned in this chapter. 

Chapter 2 presents established research and literature that is related to the topic 

of this experiment. The structural properties and characteristics of the elements 

involved, the TiO2 substrate, the sensitizer dye, and the DSSC in whole are established 

in this chapter. 

Chapter 3 encompasses the methodology of the experiment, as to the steps 

involved. This is vital for the reproducibility of the results. 

Chapter 4 is the results and discussions of the data obtained. The performance 

of the DSSCs made by both natural and N719 dyes will be assessed in this chapter. 

Chapter 5 ends the dissertation with a conclusion on the experiment, as well as 

future works and any final remarks. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction  

This chapter presents established literature on the field and topic of this experiment, 

that is the DSSC. A lot of research has been done to improve the efficiency of the 

DSSC. The creation of a high efficiency DSSC as a third-generation solar cell would 

pave the way for lower cost green energy, which is vital in future proofing the 

technological road map. Current disadvantages of the DSSC aside from a low 

efficiency is the stability and cost of manufacturing the sensitizer dyes. While natural 

dyes are easily extracted, shelf life is extremely limited without highly controlled 

environments, limiting the use of such DSSCs. The research done for this thesis has 

been fruitful in producing longer lasting dyes, a chlorophyll dye that can maintain its 

stability and molecular integrity for far longer than other instances of the dyes reported, 

at over five months. In this chapter, further elaboration on the DSSC and the integral 

components will be explored. 

 A brief look on renewable energy would introduce the chapter, followed by 

elaboration on the components of the study such as the base material, TiO2, the 

sensitizer dyes, the natural dyes and the synthetic N-719, and some of the current 

efforts done into improving the efficiencies of the DSSC. 
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2.2 Renewable Energy 

Renewable energy is the energy obtained naturally that is infinite in the sense that it 

will not be depleted in the foreseeable future. Solar energy is an example of renewable 

energy. These energies are always “on”, in the sense that regardless of use or not are 

ever present. Examples of which are light from the sun, heat from the core and mantel, 

potential energy of waterfalls, etc. Such energy also known as Green Energy or 

Sustainable Energy [46].  

 

 

Figure 2.1. Environmental energy flow ABC and harnessed energy flow DEF of 

Renewable (green) energy supplies [46] 
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Renewable energy technologies take advantage over this already available 

potential energy, converting it into usable energy, in the form of electricity, heat, 

chemicals or mechanical power [47]. There are few sources of useful energy such as: 

a) The sun. 

b) The motion and gravitational potential of the Sun, Moon and the Earth. 

c) Geothermal energy from cooling, chemical reactions and radioactive decay in 

the Earth. 

d) Human-induced nuclear reactions. 

 

The use of fossil fuels is very common in today’s society, as many forms of the 

fuel exist in daily use. It is convenient thus to continue and extract coal, oil and natural 

gases to meet the power needs of the earth’s population, but the supply of fossil fuels 

are limited. Each year as the power need increases, the fuel consumption in turn 

increases, and eventually the supply of fossil fuels would be completely finished. 

Even with a hypothetical unlimited supply of fossil fuels, the use of renewable 

energy remains superior, as there is less toxic by-product in the use of the latter. 

Whereas the combustion of fossil fuels produces oxides of carbon which are harmful 

for health, renewable energy sources have virtually no released toxic or harmful 

compounds, thus earning the label “clean” or “green”. With fossil fuels, greenhouse 

gases released occupy the atmosphere, trapping the sun’s heat and increasing the 

average temperature of the earth, the so-called “greenhouse effect”. If the Earth’s 

average temperature keep rising, the sea levels will rise and the scientists predict that 

floods, heat waves, droughts and other extreme weather conditions will be occurring 

more often. 
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 Pollutants released into the air, soil and water when fossil fuels are burned can 

harm the environment, taking a dramatic impact on it and on humans. Air pollution 

will contribute to disease like asthma while acid rains from sulfur dioxide and nitrogen 

oxides will harm plants and fish. Nitrogen oxides also will contribute to smog. 

 However, renewable energy will also develop energy independence and 

security. For example, by replacing petroleum with fuels that are made from plant 

matter, there is a reduction in costs, at the same time there is less dependence then on 

petroleum. Renewable energy exists in great quantities and the technology needed to 

acquire it is improving all the time. There are many ways to use renewable energy and 

some methods are already common in daily life [47]. 

 

2.3  Solar Cell 

Solar cell is an electronic device and known as photovoltaic (PV) cell where it converts 

light energy into electrical energy. This mechanism is due to physical and chemical 

phenomenon known as photovoltaic effect [48]. When light enters a photovoltaic cell, 

it gives enough energy to excite some of the electrons. Then, built-in potential barrier 

acts on these electrons to produce voltage known as photovoltage which can be used 

to flow current through circuit [49].  

Alexander-Edmond Becquerel, a French experimental physicist discovered the 

photovoltaic effect in 1839. He discovered that two brass plates immersed in a liquid, 

as shown in Figure 2.2 produce a continuous current when it is exposed to the light 

[50][51]. 100 years later in 1939, Russel Ohl built the first photovoltaic device by 

using a Silicon PN junction. These junctions were formed naturally when melting 

silicon hardens. This junction is shown in Figure 2.3 [50][52].  
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Figure 2.2. Diagram of apparatus described by Alexander-Edmond Becquerel [52] 

 

 

 

Figure 2.3. Structure of an Efficient Solar Cell [52]  

This device has electrical characteristics where current, voltage or resistance 

will vary when it is exposed to light. Other than measuring light intensity, this device 

also was used as a photodetector where it can detect light or other electromagnetic 

radiation near the visible range [48]. Solar cells are an unbiased photodetector that is 
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connected to a load (impedance). There are three qualitative differences between a 

solar cell and photodetector which is: 

a) Solar cells need to work over a broad spectral range (solar spectrum) while 

photodiode works on narrow range of wavelength. 

b) Solar cells are a device used to minimize exposure. 

c) In solar cells, the metric is power conversion efficiency which defined as the 

power delivered per incident solar energy while in photodiodes, it is quantum 

efficiency which is the signal to noise ratio. Solar cells are designed to 

connected to the external load to minimize the delivered power [50]. 

 

2.3.1 Solar cell working principle 

Basic structure of solar cell is a PN junction diode. The schematic of the device is 

shown in Figure 2.4. It consists of PN region where n region is heavily doped and 

made thin so that light can penetrate easily while p region is lightly doped which causes 

the depletion region to lie in that P region [50]. The operation of this devices requires 

three basic steps which are: 

a) Electron hole pairs or exactions will be generated through the absorption of 

light 

b) The charge carriers of opposite type will separate  

c) The extraction of those carriers separate to an external circuit [48] 
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Figure 2.4. Schematic Diagram of pn junction diode in solar cell [49] 

 

When light is incident on the cell, it will generate electron hole pairs (EHPs) 

which then will be separated by the potential barrier thus creating a voltage that allows 

the current to flow through the external circuit [49]. The penetration of light depends 

on the wavelength. As the wavelength decreases, the absorption coefficient 

increases[50].  

When light is incident on the cell, electrons absorb light, moving it from the 

valence band to the conduction band throughout the pn junction.[52] Thus, electron 

hole pairs will be generated. The generation of electron hole pairs is the central process 

of the photovoltaic effect but it does not produce current by itself. Another mechanism 

is needed for electrons and holes to produce an electric force and a current. This 

mechanism is known as a built-in potential barrier.  
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This potential barrier separates light-gathered electrons and holes. More 

electrons will be sent to one side of the cell while same goes to the other side of the 

cell where more holes will be sent there. Thus, the electrons and holes are less likely 

to recombine and lose their electrical energy.  

This phenomenon sets up a voltage difference which can be used to allow an 

electric current in an external circuit [49]. When the junction operates as a solar cell, 

the excited electrons will excite to the conduction band and flow from p-type to the n-

type side. As the electrons leave the valence band, it left behind holes that flow in the 

opposite direction [52].  

 

2.3.2 Types of solar cells 

Solar cells can be made of one single layer of light-absorbing material known as single 

junction. It also can be made of multiple physical configurations which is known as 

multi-junction. The purpose of this junction is to take advantage of various absorption 

and charge separation mechanisms [48].  

There are various types of materials applied for photovoltaic solar cells which 

is mainly in the form of silicon (single crystal, multi-crystalline, amorphous silicon) 

(Si), cadmium-telluride (CdTe), copper-indium-gallium-selenide (CIGS) and copper-

indium-gallium-sulphide (CIGS2) [53]. Photovoltaic cell technologies usually 

classified into three generations which is depending on the basic material used and the 

level of the commercial maturity [54]. Figure 2.5 shows different types of solar cell 

technologies in each generation. 
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Figure 2.5. Various types of solar cell technologies [53]   

a) First generation solar cells 

This generation, also known as conventional, traditional or wafer-based cells [48]. 

They are produced on silicon wafers [53]. Silicon is one of the most abundant 

elements on earth’s surface. It is a semiconductor material with bandgap energy of 

1.1eV that is suitable for photovoltaic applications [54].  

Due to high power efficiency, this generation of solar cells was known as 

the oldest and the most popular. The silicon wafer technology can be further 

categorized into two groups which are: 
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i. Single / Mono-crystalline silicon solar cell 

Mono crystalline solar cells are manufactured from single crystals of silicon 

usually by a process called Czochralski process. In this process, Si crystals 

are sliced from the large ingots and do not completely cover a square solar 

cell module without a substantial waste of refined silicon. Due to this 

process, single crystal wafer cells tend to be expensive. The efficiency of 

this kind of solar cell lies between 17% - 18% [53], [55]. 

ii. Poly / Multi-crystalline silicon solar cell 

Polycrystalline photovoltaic modules are generally made of many different 

crystals that will be coupled to one another in a single cell [53]. It is made 

from cast square ingots where a large block of molten silicon is carefully 

cooled and hardened [53], [55]. Currently, this type of solar cell is the most 

popular solar cells [53]. It is less expensive to produce as compared to single 

/ mono-crystalline silicon solar cell but at the same time it is less efficient 

because it only capable of achieving around 10% efficiency [53], [55]. 

b) Second generation solar cells 

This solar cell is mostly thin films solar cells and Amorphous Si solar cells [53]. 

It can combine multiple light in a “stack” of films with each material absorb 

slightly different range of light wavelengths. The efficiencies of thin-film solar 

cells are lower compared to silicon (wafer based) solar cells. Other than that, the 

manufacturing costs are also lower than Si solar cells, as it does not require the 

highly stringent requirements of material and environment as seen in the 

manufacturing of Si solar cells. [55].  
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Silicon-wafer cells have light absorbing layers that are up to 350µm thick 

while thin film solar cells have very thin layers which is generally in the order of 

1µm thickness [53]. Thin film solar cells can be classified as: 

i. Amorphous Silicon (a-Si) Thin Film Solar Cell 

Amorphous silicon is a non-crystalline form of silicon [48]. The basic 

structure of this solar cell is p-i-n junction. It is made of amorphous or 

microcrystalline silicon [55]. It can be deposited on cheap and large 

substrate which is based on continuous deposition method. Thus, 

manufacturing costs also can be reduced [54]. It is widely used in pocket 

calculators and also powers some private homes, buildings and remote 

facilities [48]. The efficiency of amorphous photovoltaic module currently 

are in range 4% to 8%. Very small cells will reach 12% [54]. Figure 2.6 

below shows amorphous silicon. 

  

Figure 2.6. Amorphous Silicon that using triple layers system [48]  
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ii. Cadmium Telluride (CdTe) Thin Film Solar cell 

Cadmium telluride thin film photovoltaic cells have the advantage of low 

costs and high cell efficiencies up to 16.7% compared to other thin-film 

technologies [54]. CdTe has a band gap of ~1.5eV with a high optical 

absorption coefficient and chemical stability, making it a versatile material 

suited for designing thin-film solar cells [53]. Figure 2.7 shows CdTe solar 

cells. 

 

 

Figure 2.7. CdTe Solar cells (Durham University, 2015)  

iii. Copper Indium Gallium Di-Selenide (CIGS) Solar Cells 

A CIGS collar cell is a quaternary material thin film solar cell [48]. It offers 

the highest efficiencies among all those thin-film photovoltaic technologies,  

up to 20.3% which is higher than CdTe [53][54]. Figure 2.8 shows a cross 

section of a CIGS Solar cell. 
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