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The question on how the irrational numbers can be approximated by the rational numbers has long been raised by many
Mathematicians, In 1963, Niven in his monograph bad shown a sketch proof of several results related to this problem.
Now, in this paper we attempt to write a more comprehensive proofs and also filling in the gaps left out by Niven

[1963]. Given a real number O , how closely can it be approximated by rational numbers?. To make this more precise,
a

: . . . a . . . ,
for any given positive £ is there a rational number —b— within £ of O , 50 that the inequality (@ - —| < ¢ i
b

satisfied?. The answer is yes because the rational numbers are dense on real line. In fact, we proved that given any

S . . a :
irrational number O , there are infinitely many rational numbers E , where @ and b > 0 are integers, such that

a 1
6 --—< —2'- Although the exponent cannot be improved, this result can be strengthened by a constant factor.

bl b
1 1 . N s
Specifically ? can be replaced by —'? and no larger constant than 1/5 can be used. In addition to this, an
5b
attempt also has been made to improve this constant but not in generalized form. We then have put several restrictions to
help improved the copstant,.
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1. Introduction

To 15 decimal places, Tt is given by 3.141592653589793... For simple calculations, it is widely known
that 22/7 = 3.142857... is a good approximation of T, valid to 2 decimal places. It is also true that
355/113 = 3.14159292... is accurate to 6 decimal places. For a relatively small denominator 113, we
obtain accuracy up to a large number of decimal places. This kind of consideration is an example of the
problem of Diophantine approximation: How close can irrational numbers are approximated by rational
numbers. For instance, given any irrational numbers @, how close can it be approximated by rational

4 ; . .
numbers — ? Mathematically we can conclude this statement as follows, for any £ > 0, is there any
q

; P . L. . . p . .
rational number — approximates the irrational numberd, so that the inequality (@ — — < s satisfied
q q
and the distance between these two numbers is less than € 7. This paper explores this question. We first
introduce the most useful theorem in Diophantine approximation which is the Hurwitz Theorem. We give
a detailed proof of the Hurwitz Theorem, which has filled the gaps to minimize complexity. We then give
a precise approximation, which considers the extension results.

2. The Approximation Of Irrationals By The Rationals

In 1918, Hurwitz proved a useful result in approximating irrational numbers by rational numbers. Before
we go further, some basic results are needed.



2.1. Farey sequence.

Given any positive number n, the Farey sequence F, is a sequence ordered in size, of all rational

a
fractions 7 in lowest terms with 0 < b < 72, For instance

I 1. 1111221
0

The following theorem mentions two properties of Farey sequence which is required in our discussion.

. Theorem 2.1. If 2 and 3 are two consecutive terms in Fn* then pre.s';lming Ebl- to be a small and
bc—ad =1.1f 6 is any given irrational number and r is any positive integer, then Jor all n sufficiently
large, the two fractions % and g—adiacent to @ in F, have denominators larger than r, that is b > r

and d > r.

Lemma 2.1. There is no positive integers x and y which satisfy simultaneously the inequalities

1 1 1 1 1 1

1 1
—2+=|—+— |ad ——z2—=| —+——|. (1)
xy 5 x2 y2 xx+y) ’\[5- x2 (I+y)2

Proof of Theorem 2.1 and Lemma 2.1 refer to Niven[1963].

2.2. The Theorem of Hurwitz

Theorem 2.2 (Hurwitz). Given any irrational number© there exist infinitely many rational numbers 4

q

in lowest terms such that

P 1

—< .
2

q 5q

g - )

The value /5 is the best constant. This inequality become false if N replaced by any larger constant.

Proof:
Two parts will be proved here which are:
i) There exist infinitely many rational numbers L2 in Jowest terms such that the inequality
q
a- L < is satisfied
q w/gq?'
i) This inequality become false if «/5 is replaced by any larger constant.
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. a é .
We start our proof with the first part. Let say Z and E are two adjacent fractions in Farey sequence,

F,,, and @ is between of these two fractions withh > Oand d > 0. So,

a o
—<f<—.
b d

N

a+c¢ (a+c)

Consider two cases which are either 8 > or #< . In case one, prove that not all of the
k+d) b+d)
following inequalities
a 1 a+c 1 c 1
f—-—2 > G- b3 5 and —-4 = 2:a,resr:;tisﬁf:d.Addtheﬁrstandthe’
b s b+d 5+ d) d 5d

third inequality, then add the second and third inequality, we will get (1) with x=5 and y =d (from
Lemma 2.1). In case two, prove that not all of the three inequalities

prla—r, B el a T el bl fewe add the i d third,
S s - ,and ——-6 = . If we a e first and thir
b ? brd  spray?  d 5d*

then add the second and third inequality we get (2.1) with x =) and y =d . Hence, the inequality (2)

o P2 a c¢ (a + c) Lo
holds if we replace — by at least one of —, — and . Then we will prove there are infinitely many
g bd  (b+d)

solutions a which satisfy the inequality (2). We argue by contradiction. Suppose there are finitely many
q

solutions to inequality (2), and let r denote the maximum denominator among these solutions. For

; a c . .
‘sufficiently large n, Theorem 2.1 guarantees the comsecutive fractions —5 and E adjacent to & in

>

F, have denominators greater than r. The solution of 2 to (2 ) is one of the three forms

c
q d

[S NS

(a+0)

a+c a c L.
( ) By definition of Farey sequences— and — is in the lowest terms. Also is in the
b d (b + d)

(b+a)
lowest terms because c(b +d ) -d (a‘+ c) =bc —ad =1. What will happen if +/5 is replaced by any
larger constant? This is impossible, because if +/5 is replaced by any larger constant the result become

or

false. There exist finitely many rational numbers 2 in lowest terms that satisfy the inequality (2 ). This

q «
l+\/g ) 1—\/5

andBl =
2

, such that

can be seen in the followirlg argument. Now, define &y =

(x—BO)(x—Bl)= x> — x — 1. Hence, for any integers p and g, withg > 0, we find that

2
3“90-£—91=[£) ~Z _1[#0,aa
q q q q
,Pz pgq q2
b4 p il 1
91=90—’\/g=>——90.——-90+\[5- =—2—-'-ZT.
q q9 q q
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Using applications of the triangle inequality gives

+\El 3)

p .
For some >0, there exist infinitely many solutions L where F=12,3,... such that

9j
Pj 1 .
—— -8 < As j — ® =>qj o, from inequality (3), we found that
1 1 l 1 1
—_—<— ——+'\/g = ﬂ<——+w/§. Whenj—> o =g; —>®,—— 0. Hence,
2 2 2 2 J 2
9 Paj\ Ay Aaj ~ Aaj

the largest constant we can use is \/;-5- JIf «/g is replaced by any larger constant, we can see that j actually

p .
is finite. So that there exist finite solutions —ja.nd this contradict the hypothesis in the Theorem. Note
9j

that the exponent two on the ¢ 4 in inequality (3) is the best value. If any real number which is larger than
2 is replaced, then the result become false. That means there exist finitely many solutions to inequality (3).

These complete the proof of the theorem of Hurwitz. =
3. An Extension Result

Can the value \/‘3 be replaced by any larger constant? The answer is yes. The value \/-5_ can be replaced
by any larger constant if we use certain constraint to the irrational numbers {Eggan(1961)].

3.1. More Precise Approximation.

1-+5

The constant V5 can be replaced by any larger constant if the irrational number & = is omitted

2
from consideration. In [Nat] small changes in Cohn’s proof was made a much stronger result was
obtained. Consider £ = 1and let F(k)be the set of all real numbers x such that 0 < x <1 and the

continued fractions for x has no partial quotient greater than k and F (0) =¢.

Theorem 3.1. Ler k=1 and x be a real irrational number and not equivalent to the element

in F'(k ~1). Then there exists infinitely many rational numbers £ such that
q

1

< 75
(k2 +4)/ q2

p
¥ —=

q9

G
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1
The constant 17 is the best possible. Given k 21 and x be a real irrational number and not
2 2
k™ + 4)/

equivalent to the element in F(k~1). We need to show that, there exists infinitely many rational

O

1 1

< and the constant —————— is the best possible.
2 V22 2 V2
k= +4 q (k + 4

p
x —

q

numbers 2 such that

q

Proof.

p
Let —Zdenote the nth convergent of the continued fractions [ao,al,az,...] of x and

In
2 .
On =|qnX— Pndn|, $p =min(@,_,6,,0,,,) . Hence
O Onst_|93x =Pt o ] |
In Zntl 199X " Pn9n|  |9n41% ~ Pp+l19n+l Pn Pn+l 1
Tt = > + 2 =lx~-—+[x- |=
9n  9n+l I 9n l , n4l l n 9n+1| 9n9n+l
6, 8 1
= et
9n 95n+1 qanH‘l
2 2
- Ondn+l +ni19n 1
2 2 B
ann+1 qnqn+l
2 2
= Ondn+1 +nt19n 1
2 -
qnqn+] 9n
2 2
-y Ondn+1 + On+19n _9n+l
5 =
qn ' an
2
9n+1 I+l
= 6, +8, ~—2=0 )
dp Cdy

The equation (5) is a quadratic equation. So, we can get the solutions of this equation by using the formula

nal  -b:VB  —dac —(-Dt1-46,6,

. 2 26,

H

and the solutions are

li-,}l—
9n 41 _ 49n9n+1

qn 29n

From our solution we can say that,
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/. < 1+Wf1“4€n5n+!
—_— g AT

. (6)
g, 20,1
1—,/1—4@,,.9,,+1 1+1/1-49n9,,+1 Tl Ip_1
dueto—,\—u<\ and—~——=an+1 + .
26, 26y, n n
9n__1tyl1-46,0, , In-1 260y,
Also = = = .
In-1 26,4 In I+ vi- 4’971611—1
It is obvious that )
2‘9n—1 . 2‘911-1
N —— - H
1+\’I‘4*9n9n—1 I—w/l—-49n0n_1
-] 28,,_
:an_,_l + n 1 2 a”+1 T 1

In 1—1f1—4€”5n_1
1+ -‘ﬂ. el 49’19?1'1'1
——— 2 T

268

qg
= 5 n+l

G 20,
=an+1+N—n]2a |

ntl * [,
n 9n In 1- 1"4911‘9"—1

In Theorem 3.1, given that 2, =min(9n_1, n+0y41), we have 2¢nan+1 529n”n+1 » and it hag

L+,1-46 g g
alteady  been  shown above  that L Z’_‘!‘_l_zi'_lji=an+l LS »  hence
26, In an

172 -
1+(1-48,0, )% s 26,4, +20, T1=1

n

=14y1-46,6, ;- 29 In-l 2205a,,).2 f1-46,6, +y1-48,6, | > 20
I

n nn+l -

Given¢n = min(&,,_l ,6’",9"_,_1 ), we have

/2
V1=48,6, 1 + /I 46,6,y > 2(1 - 4¢,f)]
1/2 1/2 2}/2
= 20a,, < 20pap4 < (1 - 4€n'9n+1) + (I = 4611'9!:—1) = 2(1 ~44,, )l
/2
= Bpapy < (l ~ 44,
2 2
= (¢nan+l) 5(1—4¢n )
2 2
= (¢nan+l) a4y <1

2 2 2 1 1
z>¢n(an+1+4)sl

s Dy S—— DBy S ———

2 172
(@41 +4) (ayq1 +4)
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There are two possible conditions which are @, =——————— and ¢, < ~———75 Butif

2 /2 2
(an+l +4) (an+1 +4)

1 N

¢n = T implies 9,, = 9n+l = ¢n_- From 6) we
B 407
q 1+41-46,0

have it < n il , (undefined). So, it is impracticable to have 8, =G, =¢,.

qy 26,

1
Therefore for all values of n, #, < — 17 If x is not equivalent to the element in F(k-1), thus
(a1 +4

1/2
L (’i + 4) -~k
for infinitely many #, @,,; 2 k& and the continued fractions for x = is [O,k ,k,k,---]-
2

The smallest vale of @, is , so that the distance between both two numbers is less than or equal to

1 1 1

75— - Note that ¢, < = ¢, <—F——~5.Letsay ¢, =8,, hence
1/2 n 1/2 n 2 1/2 n n
(k2+4) q2 (apy1 +4) *k*° +4)
2 1
¢n = qnx_ann’<_—2—_7
(k +4)
1
ol | < 12
qnl (k2 +4)1 q2
£ _— D 1
orn=1,2,3,.. an d these implies ¢ = jx — < <—T'
q (k2+4)l q2

For infinitely many solutions L , the largest distance between rational number £ and irrational number x
q

_ 1
18 at most (“2——75—— . For k =1, this theorem gives Hurwitz’s Theorem. For k£ = 2, the constant
2
k™ + 4)l q

1 1 1
Is —=, k =3, the constant is ——, for £ = 4, the largest constant is
V8 Y134

and so on.
V20

4, Conclusion

The largest and the best constant can be chosen depends on the form of the irrational number. From our
1/2
(kz + 4)

2

-k
discussion above, the form of the irrational numbers are 8 = = [0, k. k, k,---], for

. 1
integer £2>1 and the largest constant for such irrational numbers are of form VTR
2
(k +4)l
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where k 2 1. But what happen to other constants or other irrational numbers that is not in the mentioned

form?, That is part of the future works, We expect the constant would change if we modify the form of the
irrational numbers. That means it requires another form of irrational numbers to obtain different constants.
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