EFFECT OF OPERATIONAL PARAMETERS ON TREATMENT OF TEXTILE WASTEWATER BY ELECTROCOAGULATION PROCESS USING DIFFERENT ELECTRODE MATERIALS

MARWA ALI ELAJEL

UNIVERSITI SAINS MALAYSIA 2018

EFFECT OF OPERATIONAL PARAMETERS ON TREATMENT OF TEXTILE WASTEWATER BY ELECTROCOAGULATION PROCESS USING DIFFERENT ELECTRODE MATERIALS

by

MARWA ALI ELAJEL

Thesis Submitted in Fulfilment of the Requirements for the Degree of Master of Science

July 2018

ACKNOWLEDGEMENT

First of all, all praise to the Almighty Allah for completing this thesis. I am deeply thankful, that this M.Sc. research is finally completed, "Thanks Allah".

I would like to express my deepest gratitude to my supervisor, Prof. Dr. Ahmad Zuhairi Abdullah for support, valuable advice, patience, guidance and helping me throughout my study.

My sincere appreciation extended to all technical staff and my friends in the School of Chemical Engineering for their assistance and technical advice during experimental work.

I am very grateful to my family for their continuous support and encouragement throughout my study.

TABLE OF CONTENTS

Page

ACKNOWLEDGMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	ix
LIST OF FIGURES	х
LIST OF PLATES	xiii
LIST OF ABBREVIATIONS	xiv
LIST OF SYMBOLS	xvi
ABSTRAK	xviii
ABSTRACT	XX

CHAPTER ONE: INTRODUCTION

1.1	Problems of Textile Effluent	1
1.2	Treatment of Textile Wastewater	4
1.3	Problem Statement	6
1.4	Research Objectives	9
1.5	Scopes of the Study	10
1.6	Thesis Organization	11

CHAPTER TWO: LITERATURE REVIEW

2.1	Textile	e Industry	12
2.2	Textile	e Dyeing and Printing Process	14
2.3	Dyes u	used in Textile industry	15
	2.3.1	Reactive Dyes	16
2.4	Textile	e Wastewater problems	18
	2.4.1	Colors in Textile Wastewater	18
	2.4.2	Dissolved solids in Textile Wastewater	18
	2.4.3	Toxic Metals in Textile Wastewater	19

	2.4.4	Residual Chlorine in Textile Wastewater	19
	2.4.5	Other Pollutants	19
2.5	Chara	cteristics of Textile Wastewater	20
2.6	Chara	cteristics of Wastewater from Reactive Dye	ing Process 20
2.7	Waste	water Treatment Techniques	21
2.8	Electro	ocoagulation	24
	2.8.1	Advantages of the EC Process	27
	2.8.2	Concept in the EC process	27
		2.8.2(a) Mechanism of the EC process	28
		2.8.2(b) Electrochemical Reactions at	Electrodes 29
2.9	Opera	ting Parameters Affecting the EC Process	33
	2.9.1	Electrodes	33
		2.9.1(a) Electrodes Material	33
		2.9.1(b) Electrode Connection Mode	35
		2.9.1(c) Distance between Electrodes	36
		2.9.1(d) Number of Electrodes	37
	2.9.2	Initial pH of the Solution	38
	2.9.3	Current Density	42
	2.9.4	Initial Dye Concentration	43
	2.9.5	Stirring Speed	44
	2.9.6	Electrical Conductivity	45
	2.9.7	Operating Time	45
	2.9.8	Temperature of the Solution	46
2.10	Proble Waste	ms with Using Aluminum in Treating water	of Real Textile 47

	2.10.1	High Corrosion Rate of Aluminum Electrode	47	
	2.10.2	Reducing Removal Efficiency of Aluminum Electrode	48	
2.11	Improv Wastev	Improvement of the EC Process for Treatment of Real Textile Wastewater Using Alternative Electrode Materials		
2.12	Knowl	edge Gap	51	
СНАРТ	ER THI	REE: MATERIALS AND METHODS		
3.1	Materia	als	55	
	3.1.1	Chemicals and Reagents	55	
	3.1.2	Reactive Blue 261 Dye	55	
	3.1.3	Equipment	56	
3.2	Wastev	water Sample	56	
	3.2.1	Synthetic Textile Wastewater	56	
	3.2.2	Real Textile Wastewater (effluent)	57	
3.3	Experi	mental Set-up	57	
3.4	Experi	mental procedure	59	
3.5	Dye Re Variou	emoval of Reactive Blue 261 Dye Using EC Process under s Operating Parameters	60	
	3.5.1	Effect of Electrode Material	60	
	3.5.2	Effect of Current Density on Dye Removal	61	
	3.5.3	Effect of Initial pH of Wastewater Sample	62	
	3.5.4	Effect of Initial Concentration of the Dye	62	
	3.5.5	Effect of Operating Time	62	
3.6	Analys	is of Treated Sample	63	
	3.6.1	Measurement of Dye Concentration	63	
		3.6.1(a) Synthetic Textile Wastewater	63	

		3.6.1(b)	Real Textile Wastewater	63
	3.6.2	Measure	ment of Chemical Oxygen Demand	64
	3.6.3	Measure	ment of Turbidity	64
	3.6.4	Electrode	e Consumption (Weight loss test)	65
	3.6.5	Electrica	l Energy Consumption	66
3.7	Charae Micro	cterization scope (SEM	of Electrode Surface using Scanning Electron (1)	66
CHAP	FER FO	UR: RESU	JLTS AND DISCUSSION	
4.1	Charae	cteristics of	f Textile Wastewater	68
4.2	Treatn (Prelir	nent of S ninary Stud	ynthetic Textile Wastewater by EC Process ly)	68
	4.2.1	Aluminu	m Electrode	69
		4.2.1(a)	Effect of Current Density on Dye Removal of Synthetic Textile Wastewater Using Aluminum Electrode	69
		4.2.1(b)	Effect of Initial pH on Dye Removal Efficiency of Synthetic Textile Wastewater Using Aluminum Electrode	70
		4.2.1(c)	Effect of Initial Dye Concentration on Dye Removal Efficiency of Synthetic Textile Waste water Using Aluminum Electrode	73
	4.2.2	Stainless	Steel Electrode	74
		4.2.2(a)	Effect of Current Density on Dye Removal Efficiency of Synthetic Textile Wastewater Using Stainless Steel Electrode	74
		4.2.2(b)	Effect of Initial pH on Dye Removal Efficiency of Synthetic Textile Wastewater Using Stainless Steel Electrode	75
		4.2.2(c)	Effect of Initial Dye Concentration on Dye Removal Efficiency of Synthetic Textile Wastewater Using Stainless Steel Electrode	77
	4.2.3	Zinc Elec	ctrode	79

		4.2.3(a)	Effect of Current Density on Dye Removal Efficiency of Synthetic Textile Wastewater Using Zinc Electrode	79
		4.2.3(b)	Effect of Initial pH on Dye Removal Efficiency of Synthetic Textile Waste water Using Zinc Electrode	80
		4.2.3(c)	Effect of Initial Dye Concentration on Dye Removal Efficiency of Synthetic Textile Waste water Using Zinc Electrode	81
4.3	The Be Wastev	est Operatin water	ng Conditions for Treatment of Synthetic Textile	83
4.4	Compl (Dye F Loss at	ete Investi Removal, C nd Energy	gation of Treated Synthetic Textile Wastewater COD and Turbidity Removal, Electrode Weight Consumption)	84
	4.4.1	Dye Rem Efficienc Aluminu	oval, COD and Turbidity Removal ies of Synthetic Textile Wastewater Using m Electrode	85
	4.4.2	Dye Rem Efficienc Using Sta	noval, COD and Turbidity Removal ies of Synthetic Textile Wastewater ainless Steel Electrode	87
	4.4.3	Dye Rem Efficienc Zinc Elec	noval, COD and Turbidity Removal ies of Synthetic Textile Wastewater Using ctrode	88
	4.4.4	Energy C Synthetic	Consumption during Treatment of Textile Wastewater	90
	4.4.5	Electrode Treatmer	e Weight Loss Calculations during nt of Synthetic Textile Wastewater	92
4.5	Treatm	ent of Rea	l Textile Wastewater by EC Process	93
	4.5.1	Dye Ren Efficienc Different	noval, COD and Turbidity Removal cies of Real Textile Wastewater Using t Electrode Materials	94
	4.5.2	Energy C Wastewa	Consumption during Treatment of Real Textile ater	98
	4.5.3	Electrod of Real 7	e Weight Loss Calculations during Treatment Fextile Wastewater	99

	4.5.4 Comparison between Electrode Materials for Treatment 102 of Real Textile Wastewater in Terms of Dye Removal, Energy Consumption and Electrode Weight Loss
4.6	Characterization of Electrode Surface by using Scanning Electron 103 Microscopy (SEM)
4.7	Comparisons between Treatment of Synthetic and Real Textile 105 Wastewater Using Different Electrode Materials
4.8	Operating Cost Estimate for Treatment of Textile Wastewater 106 Using EC Process with Different Electrode Materials

CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATION

5.1	Conclusions	108
5.2	Recommendations	111

112

REFERENCES

APPENDICES

Appendix A:	Calibration curve for reactive blue 261 dye
Appendix B:	Results of dye removal, COD and turbidity removal efficiencies of synthetic textile wastewater under the best operating conditions (pH =7) using aluminum electrode
Appendix C:	Results of dye removal, COD and turbidity removal efficiencies of real textile wastewater under the best operating conditions (pH of real textile wastewater was adjusted from 9 to 7) using aluminum electrode
Appendix D:	Electrode weight loss and energy consumption during EC process for treatment of textile wastewater under the best operating conditions (pH =7) using aluminum electrode
Appendix E:	Cost estimation for treatment of real textile wastewater using the EC process under the best operating conditions (pH of real textile wastewater was adjusted from 9 to 7) using aluminum electrode

LIST OF PUBLICATIONS

LIST OF TABLES

		Page
Table 1.1	Typical characteristics of a real textile wastewater from dyeing process	7
Table 2.1	Chemicals used in various stages of textile manufacturing process	14
Table 2.2	A common dyestuff used in dyeing of fibers	15
Table 2.3	A common reactive dye groups	17
Table 2.4	Pollutants at various textile processes	20
Table 2.5	Methods used for wastewater treatment	24
Table 2.6	Studies on treatment of textile wastewater containing reactive dyes	26
Table 3.1	List of Chemicals and Reagents	55
Table 3.2	Physical and Chemical Properties of Reactive Blue 261 Dye	55
Table 3.3	List of Equipment and Apparatus	56
Table 4.1	Characteristics of Real Textile Wastewater	68
Table 4.2	The best operating conditions for each electrode material	83
Table 4.3	Weight loss of electrodes during the EC treatment of synthetic textile wastewater under the best operating time of 10 min	92
Table 4.4	Dye removal, COD and turbidity removal for each electrode material	94
Table 4.5	Malaysia regulations for discharge wastewater	98
Table 4.6	Comparison between electrode materials	102
Table 4.7	Cost estimation for treatment of real textile wastewater using the EC process under the best operating conditions	107

LIST OF FIGURES

		Page
Figure 1.1	Characterization of textile effluent at various stages of textile manufacturing Process	2
Figure 1.2	Electro-coagulation/flotation process for wastewater treatment	5
Figure 2.1	Flow diagram of cotton processing stages	13
Figure 2.2	Electrocoagulation mechanism	29
Figure 2.3	Electrode mode connection a) monopolar and b) bipolar mode	36
Figure 2.4	Aluminum solubility diagram	39
Figure 2.5	Iron solubility diagram	40
Figure 2.6	Predominance-zone diagrams for Fe(III) chemical species in aqueous solution	40
Figure 2.7	Zinc purbaix diagram	41
Figure 2.8	SEM micrograph of typical surface morphology of aluminum cathode after EC process	48
Figure 3.1	Overall Research Methodology Flow Chart	54
Figure 3.2	Sketch of experimental set-up used for treating textile wastewater	58
Figure 4.1	Dye removal of synthetic textile wastewater at various current density using aluminum electrode (pH = 6.8 , concentration = 50 mg/L and time = 60 min)	70
Figure 4.2	Dye removal of synthetic textile wastewater at different pH using aluminum electrode (current density = 4 mA/cm^2 , concentration = 50 mg/L and time = 60 min)	72
Figure 4.3	Dye removal of synthetic textile wastewater at various concentrations using aluminum electrode (current density = 4 mA/cm^2 , pH = 7 and time = 60 min)	73
Figure 4.4	Dye removal of synthetic textile wastewater at various current density using stainless steel electrode ($pH = 6.8$, concentration = 50 mg/L and time = 60 min)	75

- Figure 4.5 Dye removal of synthetic textile wastewater at different pH 76 using stainless steel electrode (current density = 4 mA/cm², concentration = 50 mg/L and time = 60 min)
- Figure 4.6 Dye removal of synthetic textile wastewater at various 78 concentrations using stainless steel electrode (current density = 4 mA/cm^2 , pH = 9 and time = 60 min)
- Figure 4.7 Dye removal of synthetic textile wastewater at various 80 current density using zinc electrode (pH = 6.8, concentration = 50 mg/L and time = 60 min)
- Figure 4.8 Dye removal of synthetic textile wastewater at different pH $_{using zinc}$ electrode (current density = 4 mA/cm², concentration = 50 mg/L and time = 60 min) 81
- Figure 4.9 Dye removal of synthetic textile wastewater at various 82 concentration using zinc electrode (current density = 4 mA/cm^2 , pH = 9 and time = 60 min)
- Figure 4.10 Dye removal, COD and turbidity removals of synthetic 85 textile wastewater using aluminum electrode under operating conditions (current density = 4 mA/cm², initial pH = 7, initial dye concentration 50 mg/L and time = 60 min)
- Figure 4.11 Dye removal, COD and turbidity removals of synthetic 87 textile wastewater using stainless steel electrode under operating conditions (current density = 4 mA/cm², initial pH = 9, initial dye concentration = 100 mg/L and time = 60 min)
- Figure 4.12 Dye removal, COD and turbidity removals of synthetic 89 textile wastewater using zinc electrode under operating conditions (current density = 4 mA/cm^2 , initial pH = 9, initial dye concentration = 100 mg/L and time = 60 min)
- Figure 4.13 Energy consumption during the treatment of synthetic 91 textile wastewater using aluminum, stainless steel and zinc electrodes under the best of current density and initial dye concertation and at initial pH of 9 for each electrode (time = 10 min)
- Figure 4.14 Weight loss during the treatment of synthetic textile 93 wastewater using aluminum, stainless steel and zinc electrodes under the best of current density and initial dye concertation and at pH of 9 for each electrode (time = 10 min)

- Figure 4.15 Dye removal, COD and turbidity removals of real textile 95 wastewater using aluminum electrode under operating conditions (current density = 4 mA/cm^2 , initial pH = 9, initial dye concentration = 50 mg/L and time = 60 min)
- Figure 4.16 Dye removal, COD and turbidity removals of real textile 96 wastewater using stainless steel electrode under operating conditions (current density = 4 mA/cm^2 , initial pH = 9, initial dye concentration = 100 mg/L and time = 60 min)
- Figure 4.17 Dye removal, COD and turbidity removals of real textile 97 wastewater using zinc electrode under operating conditions (current density = 4 mA/cm^2 , initial pH = 9, initial dye concentration = 100 mg/L and time = 60 min)
- Figure 4.18 Energy consumption during the treatment of real textile 99 wastewater using aluminum, stainless steel and zinc electrodes under the best of current density and initial dye concertation and at initial pH of 9 for each electrode (time = 10 min)
- Figure 4.19 Weight loss during the treatment of real textile wastewater 100 using aluminum, stainless steel and zinc electrodes under the best of current density and initial dye concertation and at initial pH of 9 for each electrode (time = 10 min)
- Figure 4.20 SEM micrograph of aluminum cathode surface after 101 treatment of real textile wastewater under the best of current density and initial dye concentration and at pH of 9 (time = 10 min)
- Figure 4.21 SEM images for aluminum anode (a) and (b) before and 104 after the treatment respectively, zinc anode (c) and (d) before and after the treatment respectively and stainless steel anode (e) and (f) before and after the treatment respectively
- Figure 4.22 Comparisons between treatment of synthetic and real textile 106 wastewater using aluminum, stainless steel and zinc electrodes under the best of current density and initial dye concentration and at initial pH of 9 for each electrode (time = 10 min)

LIST OF PLATES

		Page
Plate 3.1	Photo of experimental set-up used in this study	59
Plate 4.1	Change in the color during the EC treatment of synthetic textile wastewater using aluminum electrode	86
Plate 4.2	Change in the color during the EC treatment of synthetic textile wastewater using stainless steel electrode	88
Plate 4.3	Change in the color during the EC treatment of synthetic textile wastewater using zinc electrode	89

LIST OF ABBREVIATIONS

Abs	Absorbance of wastewater after treatment at time t (min)
Abs ₀	Initial absorbance of wastewater
Al	Aluminum
Al ³⁺	Aluminum ions
ANOVA	Analysis of variance
BOD	Biochemical oxygen demand
CCD	Central composite design
CD	Current density
CO_2	Carbon dioxide
COD	Chemical oxygen demand
DC	Direct current
EC	Electrocoagulation
Fe	Iron
Fe (OH) ₂	Ferrous hydroxide
Fe (OH) ₃	Ferric hydroxide
Fe ²⁺	Ferrous ions
Fe ³⁺	Ferric ions
H ₂ O	Water
H_2O_2	Hydrogen peroxide
H_2SO_4	Sulfuric acid
HCl	Hydrochloric acid
MYR	Malaysian Ringgit
NaCl	Sodium chloride

NaOH	Sodium hydroxide
NTU	Nephelometric turbidity unit
O ₂	Oxygen
OFAT	One- factor- at-a time
OH-	Hydroxide ions
RPM	Revolutions per minute
SEM	Scanning Electronic Microscopy
SS	Suspended solids
SS	Stainless steel
TDS	Total dissolved solids
USEPA	United State Environmental Protection Agency
UV-Vis	Visible and Ultraviolet Spectrophotometer
Zn	Zinc
Zn(OH) ₂	Zinc hydroxide
Zn^{2+}	Zinc ions

LIST OF SYMBOLS

Symbol	Description	Unit
λ	Wavelength	nm
Е	Amount of energy consumed during EC process	KWh
М	Anode material	
Ι	Applied current	mA
С	Final concentration of dye	mg/L
cm	Centimeter	
Co	Initial concentration of dye	mg/L
°C	Degree celeius	
Q	Electric charge passed through the electrode material	coulomb
e	Electron	
F	Faraday constant	C mole-1
kwh	Kilowatt	
L	Liter	
Δm	Mass of the substance liberated at an electrode surface	gram
m	Meter	
mA	Milliampere	
mg	Milligram	
mm	Millimeter	
ms ⁻¹	Millisiemens	
М	Molar mass of the substance	
nm	Nanometer	

n	Number	
Z	Number of electrons transferred during the anodic reaction	
U	Operating voltage	Volt
ppm	Part per million	
Т	Temperature	°C
А	The submerged effective surface area of anodes	cm^2
t	Time	min
Yo	Turbidity value of the sample before treatment	NTU
Y	Turbidity value of treated sample	NTU
$\%\Delta W$	%Weight loss of electrode material	
W2	Weight of the electrode after EC treatment	gram
W1	Weight of the electrode before EC treatment	gram

KESAN PARAMETER OPERASI KE ATAS RAWATAN AIR SISA TEKSTIL MENERUSI PROSES ELEKTRO PENGGUMPALAN MENGGUNAKAN BAHAN ELEKTROD YANG BERBEZA

ABSTRAK

Proses elektro penggumpalan telah digunakan untuk mengatasi masalah yang dihadapi oleh proses fiziko kimia konvensional dalam rawatan air sisa tekstil. Air sisa tekstil sebenar mengandungi pencelup reaktif selalunya bersifat alkali. Bahanbahan elektrod yang berbeza seperti zink dan keluli tahan karat boleh digunakan bagi mengatasi prestasi lemah elektrod aluminium dalam medium beralkali untuk rawatan air sisa tekstil sebenar. Prestasi proses elektro penggumpalan untuk rawatan air sisa tekstil sintetik (disediakan menggunakan pencelup biru reaktif 261) dan air buangan tekstil sebenar telah disiasat. Tiga jenis bahan elektrod iaitu aluminium, zink dan keluli tahan karat telah digunakan dalam kajian ini. Parameter operasi terlibat dalam kajian ini ialah ketumpatan arus (2-8 mA/cm²), kepekatan pewarna awal (20-100 mg/L) dan nilai pH awal (5-9). Kajian permulaan telah dijalankan menggunakan air buangan tekstil sintetik untuk menentukan keadaan operasi optimum yang memberikan penyingkiran pencelup yang tinggi untuk setiap bahan elektrod. Keadaan-keadaan optimum yang diperolehi ialah ketumpatan arus (4 mA/cm² untuk semua elektrodelektrod), kepekatan awal pencelup (50 mg/L untuk elektrod aluminium dan 100 mg/L untuk elektrod zink dan keluli tahan karat) dan nilai awal pH (7 untuk elektrod aluminium dan 9 untuk elektrod zink dan keluli tahan karat). Satu penyiasatan yang menyeluruh dari segi penyingkiran pencelup, COD, kekeruhan, kehilangan berat elektrod, dan penggunaan tenaga dijalankan di bawah keadaan optimum (ketumpatan arus dan kepekatan pewarna yang awal) manakala nilai pH awal telah ditetapkan pada

9 bagi mewakili keadaan air sisa tekstil sebenar yang digunakan dalam kajian ini. Penyingkiran pencelup, kehilangan berat elektrod, dan penggunaan kuasa telah direkodkan sebagai 99.8%, 0.66 kWh/m³ dan 0.039% untuk elektrod zink, 99.1%, 0.70 kWh/m³ dan 0.066% untuk elektrod keluli tahan karat dan 75.8%, 0.50 kWh/m³ dan 0.41% untuk elektrod aluminium masing-masing. Rawatan air sisa tekstil yang sebenar di bawah keadaan operasi optimum (ketumpatan arus dan kepekatan pewarna yang awal) dan pada nilai pH semula jadi air sisa tekstil menunjukkan bahawa elektrod zink memberikan penyingkiran pencelup yang tertinggi (83.7%), kehilangan berat elektrod yang terendah (0.043%) dan penggunaan tenaga yang munasabah (0.69 kWh/m³). Kos operasi duga dianggarkan lebih rendah untuk elektrod zink (MYR 3.93 setiap 1 m³ air sisa terawat tekstil selama 10 minit) berbanding dengan elektrod aluminium dan keluli tahan karat. Oleh itu, elektrod zink dianggap sebagai bahan elektrod plaing berkesan untuk rawatan air sisa tekstil yang mengandungi pencelup reaktif.

EFFECT OF OPERATIONAL PARAMETERS ON TREATMENT OF TEXTILE WASTEWATER BY ELECTROCOAGULATION PROCESS USING DIFFERENT ELECTRODE MATERIALS

ABSTRACT

Electrocoagulation process (EC) has been used to overcome the problems related to the use of conventional physico-chemical process in treatment of textile wastewater. Real textile wastewaters containing reactive dyes are often characterized by their alkalinity. Different electrode materials such as zinc and stainless steel could be used to tackle the low performance of aluminum electrode in alkaline medium for treatment of a real textile wastewater. The performance of electrocoagulation process for treatment of a synthetic textile wastewater (prepared using reactive blue 261 dye) and a real textile wastewater was investigated. Three types of electrode material namely aluminum, zinc and stainless steel were used in this study. The operating parameters involved in this study were current density (2-8 mA/cm²), initial dye concentration (20-100 mg/L) and initial pH (5-9). The preliminary study was conducted using synthetic textile wastewater to determine the best operating conditions that would lead to high dye removal for each electrode material. The best conditions were current density (4 mA/cm² for all electrodes), initial dye concentration (50 mg/L for aluminum electrode and 100 mg/L for zinc and stainless steel electrode) and initial pH (7 for aluminum electrode and 9 for zinc and stainless steel electrode). A thorough investigation in terms of dye removal, COD, turbidity, energy consumption and electrode weight loss was conducted under the best conditions (current density and initial dye concentration) while the initial pH value was kept at 9 to represent the real textile wastewater condition as used in this study. Dye removal,

power consumption and electrode weight loss were found at 99.8%, 0.66 kWh/m³ and 0.039% for zinc electrode, 99.1%, 0.70 kWh/m³ and 0.066% for stainless steel electrode and 75.8%, 0.50 kWh/m³ and 0.41% for aluminum electrode, respectively. The treated real textile wastewater under the best operating conditions (current density and initial dye concentration) and at original pH of textile wastewater demonstrated that zinc electrode showed the highest dye removal (83.7%), lowest electrode weight loss (0.043%) and reasonable energy consumption (0.69 kWh/m³). The estimated operating cost of the EC process was lower for zinc electrode (MYR 3.9 per 1 m³ of treated textile wastewater for 10 minutes) compared with aluminum and stainless steel electrodes. Thus, zinc electrode could be an effective electrode material for treatment of textile wastewater containing reactive dye.

CHAPTER ONE

INTRODUCTION

Water pollution is a major environmental problem due to its effects on human life, plants, organisms and other life forms. The problem occurs when wastes are directly or indirectly discharged into waterways (lakes, river, sea, ocean and groundwater) without necessary treatment. The Malaysia Environment Quality Report (2006-2010) indicated that 203 of rivers were slight polluted while 74 rivers were completely polluted in the year 2010. This was due to the increasing number of manufacturing factories as well as high waste dumping from housing and farming areas (Pang and Abdullah, 2013). Industrial sector remains the main source of water pollution due to its high discharge quantity and diversities. Several industries (textile, paper, leather, food and pharmaceutical industries) generate wastewaters containing dyes, which are considered serious environmental pollutants. This study is focused on the treatment of wastewaters produced by textile industry.

1.1 Problems of Textile Effluent

Textile industry is one of the industries that generate large amount of wastewater that presents a significant environmental pollution problem. It usually has high level of pollutants as characterized by high chemical oxygen demand (COD), high suspended solid, strong color, and high biotoxicity. In general, Figure 1.1 summarizes the main characterization of textile effluent at various stages of textile manufacturing process (cotton based textile production processes). Each textile factory has its own manufacturing and treatment processes which are different from another.

Figure 1.1: Characterization of textile effluent at various stages of textile manufacturing process (Pang and Abdullah, 2013).

Textile industry utilizes 10,000 types of pigments and dyes and many of them are toxic to human and the environment (Essadki et al., 2008). Textile effluents do not only impart color to water ways but also cause environmental damage to living organisms by stopping the reoxyenation capacity of water as well as blocking sunlight, thereby, disturbing the natural growth activity of aquatic life (Rahtinam et al., 2015).

Textile industry uses chemicals and dyes in various fabrication processes (dyeing and finishing process) where large portion of these dyes (up to 50%) is lost in wastewater. Most of pollution problems caused by textile industry have been reported