IMPLEMENTATION OF WIRELESS MONITORING SYSTEM ON THE PERFORMANCE OF 48V DC-DC BOOST CONVERTER IN PHOTOVOLTAIC SOLAR ENERGY

SAMIYAH UMILL HAKIM BINTI HASAN

UNIVERSITI SAINS MALAYSIA

2018

IMPLEMENTATION OF WIRELESS MONITORING SYSTEM ON THE PERFORMANCE OF 48V DC-DC BOOST CONVERTER IN PHOTOVOLTAIC SOLAR ENERGY

by

SAMIYAH UMILL HAKIM BINTI HASAN

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

July 2018

ACKNOWLEDGMENT

In the name of Allah, The most Gracious, The most Merciful,

This thesis is the result of work whereby I have been accompanied and supported by many people. It is a pleasant aspect that I have now the opportunity to express my gratitude for all of them.

First and foremost, I would like to express my gratitude and appreciation to my supervisor Professor Ir. Dr. Mohd Fadzil Bin Ain who has spared lot of his time and energy to help me and to provide guidance that I needed for completion of this project. Without his guidance, I think I will be struggle and unable to complete the project. It was a pleasure to be associated with Electrical and Power Laboratories of Electrical and Electronics school, and I would like to thank the entire lab member. Special thanks to Mr. Suardi, Samiyeh, Ihsan Ahmad Zubir and Khairul Anuar who were at some or the other point involved in my experiment.

I extend my deepest gratitude to my husband, Mohd Akmal Nizam Bin Ruslee and also my daughter Nur Durrani Hanania Binti Mohd Akmal Nizam for their invaluable love, affection, encouragement and support. I am greatly indebted and appreciate very much to my parents, Hasan Bin Lebai Din and Azizah Binti Hashim for their encouragement, support and sacrifices throughout the study. The chain of my gratitude would be definitely incomplete if I would forget to thank the first cause of this chain, the Prime Mover for giving me the strength, wisdom and perseverance in accomplishing my research study. Finally, I would like to thank the University Sains Malaysia (USM) for supporting this research.

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xii
LIST OF SYMBOLS	xv
ABSTRAK	xviii
ABSTRACT	XX

CHAPTER ONE: INTRODUCTION

1.1	Background of Study	1
1.2	Problem Statements	2
1.3	Research Objectives	4
1.4	Scope of Work	4
1.5	Design Methodology	5
1.6	Thesis Outline	7

CHAPTER TWO: LITERATURE REVIEW

2.1	Introduction	9
2.2	Photovoltaic	13

2.3	Solar	Charge Controller	14
2.4	Battery Charging System		
2.5	DC-DC converter		17
	2.5.1	Boost Converter Conversion	21
2.6	Wirel	ess Communication	26
2.7	Radio	Frequency Technology (RF Technology)	27
	2.7.1	Radio Frequency Module (RF Module)	28
2.8	Previo	bus Work	28
	2.8.1	Buck Converter	29
	2.8.2	Boost Converter Topology	32
	2.8.3	Buck-boost Converter Topology	33
	2.8.4	Cuk Converter Topology	36
	2.8.5	Selection of DC-DC Converter Topology	39
2.9	Differ	ent between Charge Controller and DC-DC Boost Converter	43
2.10	Summ	nary	44

CHAPTER THREE: METHODOLOGY

3.1	Introduction			45
3.2	Select	Selection of Demo Board Circuit Boost Converter		
	3.2.1	Integrated (Circuit Linear Technology LTC3862-1	50
	3.2.2	A Design C	Calculation	51
		3.2.2 (a)	Selection of Inductor	53
		3.2.3 (b)	Selection of power MOSFET	56

		3.2.4 (c)	Selection of Capacitor	57
		3.2.5 (d)	Selection of Diode	58
3.3	Exper	imental Proc	ess for Demonstration circuit DC1286A-B	60
3.4	PV M	odules Setup	,	62
3.5	Voltag	ge Sensor Me	easurement	63
	3.5.1	Voltage Ser	nsor Calibration	64
3.6	Curren	nt Sensor Me	easurement Using BB-ACS756 and PIC12F675	68
	3.6.1	System Des	scription	68
		3.6.1 (a)	Microcontroller	69
		3.6.1 (b)	Sensor	71
	3.6.2	System Ope	eration	72
	3.6.3	Current Ser	nsor Calibration	72
	3.6.4	Wireless Co	ommunication	74
		3.6.4 (a)	Radio Modules, FSI000A and CDR033AA	77
	3.6.5	Printed Cire	cuit Board of the All Sensor Circuitry	58
	3.6.6	Applicatior	n Interface (GUI) and Data Collection	80
3.7	Summ	nary		83

CHAPTER FOUR: DESIGN AND IMPLEMENTATION

4.1	Introduction	84
4.2	System Design	85
	4.2.1 PV System Design	89
	4.2.2 System Architecture	89

		4.2.2 (a)	Charge Controller	89
	4.2.3	Data Monito	pring System	92
	4.2.4	Hardware D	esign	92
		4.2.4 (a)	Sensor	93
	4.2.5	Sensor Hard	ware	95
		4.2.5 (a)	PIC12F675 Microcontroller	96
	4.2.6	PIC Basic P	ro Complier	98
	4.2.7	Microcontro	ller Development Debugger	100
	4.2.8	RS232 Seria	l Communication of Microcontroller	103
	4.2.9	Graphic Use	r Interface of the System	104
4.3	Summ	ary		108

CHAPTER FIVE: RESULTS AND DISCUSSION

5.1	Introduction	110
5.2	Boost Converter Solar Charge Controller Monitoring System	112
	Data Collected	
5.3	Data Collection Result	114
5.4	Summary	135

CHAPTER SIX: CONCLUSION

6.1	Conclusion	136
6.2	Future Work	137

REFERENCES

APPENDICES

- Appendix A: Linear Technology LTC3862-1 datasheet
- Appendix B: PIC12F675 datasheet (PIC12F675 pin-out
- Appendix C: PIC12F675 datasheet (PIC12F675 a/d control register)
- Appendix D: PIC12F675 datasheet (PIC12F675 analog SELECT register)
- Appendix F: CDR031 datasheet
- Appendix E: FSI000A datasheet
- Appendix G: Current sensor BB-ACS756 datasheet
- Appendix H: Graph of output voltage (v), efficiency (%) versus time(s)
- Appendix K: Project pictures
- Appendix J: Algorithm code
- Appendix K: Data monitoring center code
- Appendix L: SPM100-M solar module

LIST OF PUBLICATIONS

LIST OF TABLES

Page

Table 2.1	Summarize of DC-DC Converter Topologies	38
Table 3.1	Specification of PV panel	63
Table 3.2	The FSI000A data Transmitter (315 MHz ASK) Module Specifications (Ananiah Electronics (2014))	75
Table 3.3	The CDR03AA data Receiver (315 MHz ASK) Module Specifications (Xenon Design Limited (2014))	76
Table 4.1	Load control options.	91
Table 5.1	Data Collected for May, 21 2014.	119
Table 5.2	Data Collected for May, 25 2014.	125
Table 5.3	Data Collected at May, 20 2014.	130
Table 5.4	Summary of Data Collected for Each Day Experimental.	132

LIST OF FIGURES

Figure 1.1	Flowchart of Research Work	6
Figure 2.1	A Conventional Boost Converter	22
Figure 2.2	Open loop model of DC-DC boost converter	23
Figure 2.3	Schematic Diagram of Cascaded High Gain DC-DC	24
	Boost Converter	
Figure 2.4	Circuit Configuration of Cascaded High Gain DC-DC	25
	Boost Converter	
Figure 2.5	The Conventional Inter Leaved Boost Converter	26
Figure 2.6	Simple Flow of RF Module	28
Figure 2.7	Classification of DC-DC Converter	29
Figure 2.8	Buck Converter	30
Figure 2.9	Typical waveforms for Buck Converter	30
Figure 2.10	Koutroulis et. al (2001) Proposed System	31
Figure 2.11	Boost Converter	32
Figure 2.12	Typical Waveforms for Boost Converter	33
Figure 2.13	Buck – Boost Converter	34
Figure 2.14	Typical Waveforms for Buck – Boost Converter	35
Figure 2.15	Kang et al. (2005) Proposed System	36
Figure 2.16	Cuk Converter	37
Figure 2.17	Typical Waveforms for Cuk Converter	37
Figure 2.18	Block Diagram for the Proposed Standalone Solar Power System	40

Figure 2.19	Switch Utilization in DC-DC Converters	41
Figure 3.1	Methodology of the System Design	47
Figure 3.2	The Circuit Schematic of Proposed Demo Board Circuit Boost	49
	Converter	
Figure 3.3	Pin configuration of IC LTC3862-1(Linear Technology (2014))	51
Figure 3.4	Freq pin resistor versus Frequency	52
Figure 3.5	19.4µH Inductor, manufactured by Pulse Engineering	56
Figure 3.6	Power MOSFET Renesas HAT2279H	57
Figure 3.7	Diode PDS670	59
Figure 3.8	Measurement Equipment Setup for DC1286A-B	61
Figure 3.9	Voltage Divider for Voltage Sensor	64
Figure 3.10	Pin configuration in BB-ACS756 Current Sensor	68
Figure 3.11	Block Diagram of All System Design	70
Figure 3.12	Connection Diagram for BB-ACS756 and PIC12F675	71
Figure 3.13	Block diagram of experimental setup.	73
Figure 3.14	The TX and RX modules are connected to the PIC12F675	73
	through its two I/O pins, GPIO2 and GPIO4	
Figure 3.15	(a)The FSI000A data Transmitter (315 MHz ASK) and	75
	(b) Pin Assignment	
Figure 3.16	(a)The CDR03AA data Receiver (315 MHz ASK) and	76
	(b) Pin Assignment	
Figure 3.17	The (a) receiver, (b) transmitter (input supply from	78
	PV), (c) transmitter (output DC-DC boost converter)	
	and (d) power supply was fabricated on printed circuit board	

(PCB) using PCB wizard software

Figure 3.18	The final design done before the PCB is manufactured	79
	for (a) receiver, (b) transmitter (input supply from PV),	
	(c) transmitter (output DC-DC boost converter) and (d) power	
	supply 5 V.	
Figure 3.19	Graphical User Interface (GUI)	81
Figure 3.20	The Flowchart of the Data Monitoring system	82
Figure 4.1	Completed Circuit involves DC-DC Boost Converter,	86
	all Sensor and RF Sensors.	
Figure 4.2	Solar Charge Controller and Battery	87
Figure 4.3	Completed System Installation	87
Figure 4.4	Load (Variable Resistor 16 Ω)	88
Figure 4.5	PV Panel	69
Figure 4.6	Wiring Diagram for Solar Charger Controller to Supply	88
	All sensor	
Figure 4.7	Flow Chart of Collected Data (PIC12F675)	91
Figure 4.8	Flow Chart of Collected Data (Graphic User Interface)	94
Figure 4.9	PIC12F675 Pin-Out Diagram	96
Figure 4.10	CodeDesign Lite (IDE) Environment	100
Figure 4.11	PICkit2 Programmer Device	101
Figure 4.12	PICKit2 Programmer Connector Pin-out	102
Figure 4.13	PICKit2 Programmer Window	103
Figure 4.14	New Project Windows	105
Figure 4.15	GUI Design Interface.	106

Figure 5.1	The Prototype of Complete System Boost Converter using	111
	photovoltaic power supply system.	
Figure 5.2	The Three Solar Array Panels in Parallel	111
Figure 5.3	The main window of monitoring interface (GUI) software was designed using Visual Basic 2010.	113
Figure 5.4	The one of the data collected using monitoring window interface at May 19, 2014.	113
Figure 5.5	Graph of Input Voltage (V) from Photovoltaic Supply, Output Voltage (V) from DC-DC Boost Converter, Efficiency (%) Versus Time(s) at 19 May 2014.	115
Figure 5.6	Graph of Input Voltage (V) from Photovoltaic Supply, Output Voltage (V) from DC-DC Boost Converter, Efficiency (%) Versus Time(s) at May, 21 2014.	117
Figure 5.7	Graph of Input Voltage (V) Photovoltaic Power Supply, Output Voltage (V) DC-DC Boost Converter versus Time(s) at May, 25 2014.	123
Figure 5.8	Figure 5.8: Graph of Output Power (W), Efficiency (%) versus Time at May, 25 2014.	127
Figure 5.9	Graph of Output Voltage (V), Efficiency (%) versus Time at May 20, 2014.	128
Figure 5.10	Graph of Output Voltage (V), Efficiency (%) versus Date.	133
Figure 5.11	Graph of Input Current (A), Efficiency (%) versus Date.	134

LIST OF ABBREVIATIONS

AC	Alternating current
ADC	Analogue to digital converter
A/D	Analogue to Digital
ADCON	A/D Control Register
ANSEL	Analogue Select Register
ASIC	Application-Specific Integrated Circuit
ASK	Amplitude Shift Keying
BJT	Bipolar Junction transistor
bps	bit per second
BR	Baud-Rate
BS	Base Station
ССМ	Continuous conduction mode
CMOS	Complementary metal oxide semiconductor
CPU	Central Processing Unit
DC	Direct current
DCM	Discontinuous conduction mode
EAS	The rating for avalanche energy
EEPROM	Electrically erasable programmable read only memory
ESR	Equivalent series resistance
GTO	Gate-turn-off thyristor
GHz	Giga Hertz

GUI	Graphical User Interface
IC	Integrated circuit
IGBT	Insulated gate bipolar transistor
IDC	Idiopathic Dilated Cardiomyopathy
IDE	Integrated Development Environment
k	kilo
kΩ	kilo ohm
kB	kilo Byte
kb	kilo bit
kbps	kilo bit per second
kHz	kilohertz
LTC	Linear Technology Center
MCT	MOS-controlled thyristor
MOSFET	Metal oxide silicon field effect transistor
М	meter
mA	milli Ampere
mAh	milli Ampere hour
MCLR	Master Clear
MCU	Microcontroller
MHz	Mega Hertz
mJ	milli Joules
mm	milli meter
ms	milli second

mW	milli Watt
PCB	Printed circuit board
PV	Photovoltaic
PBP	PicBasic Pro
PC	Personal Computer
PIC	Programmable Interface Controller
POR	Power on Reset
PWM	Pulse width modulation
RAM	Random Access Memory
RF	Radio Frequency
ROM	Read-Only Memory
RX	Receiver
SEPIC`	The single-ended primary-inductor converter
VSI	Virtual Socket Interface
ZCS	Zero current switching
ZVT	Zero voltage switching

XV

LIST OF SYMBOLS

С	Capacitor
D	Diode
I _{SW}	MOSFET drain current
I _D	Diode current
I_L	Inductor current
I _{RR}	Diode maximum reverse current
I _{Lmax}	Maximum inductor current
I _{Lmin}	Minimum inductor current
I _{LB}	Average inductor current at boundary condition
I _{outB}	Average output current at boundary condition
I _{in}	Input current
I _{out}	Output current
I _{LBmax}	Maximum average inductor current at boundary condition
IoutBmax	Maximum average output current at boundary condition
I _{act}	Actual current into PIC12F675
L	Inductor
n	The percentage peak to peak ripple current in inductor
k	Duty cycle
P _{divider}	Losses in voltage divider
P _{in}	Input power
Pout	Output power

P_O	Rated output power
P_T	Switch power rating
Q _{RR}	Storage charged from forward biased conduction to reverse blocking conduction
R1	Voltage divider resistor 1
R2	Voltage divider resistor 2
R _{DS(on)}	Drain to source on-resistance
R	Resistor
R _{DS(on)}	Drain to source on-resistance
SW	Electronic switch
t _{on}	Switch on duration
t _{Off}	Switch off duration
Т	Switching time period
t _{rr}	Diode reverse recovery time
t_a	Time between zero crossing and the I_{RR}
<i>t</i> _b	Time between the diode I_{RR} and 25% of I_{RR}
V_{in}	DC input voltage
V _{out}	DC output voltage
Vsw	MOSFET drain-to-source voltage
VD	Diode voltage
V_L	Inductor voltage
V _{br}	Diode breakdown voltage
V_{ref}	Reference value in PIC12F675

V _{GS}	Gate-to-source voltage
V _T	Threshold voltage
V _{st}	Sawtooth voltage
Vcontrol	Control voltage
\mathbf{V}_{FB}	Output voltage feedback value
V _{act}	Actual voltage detect by PIC12F675
x	Number of phases
ΔV_{out}	Output voltage ripple
$-\Delta V$	The charger controller detects an inflection point

PELAKSANAAN SISTEM PEMANTAUAN TANPA WAYAR PADA PRESTASI AT-AT PENUKAR DORONGAN 48 V DALAM KUASA SOLAR FOTOVOLTA.

ABSTRAK

Tenaga solar adalah sumber tenaga yang murah, bersih dan sedia ada. Salah satu aplikasi yang paling penting bagi sistem pengawal caj solar adalah digunakan sebagai penyimpanan cas bateri untuk mengawal selia bateri 'State -of - Charge' dan mencegah bateri daripada keadaan bahaya. AT- AT penukar dorongan adalah salah satu komponen utama yang berfungsi dan dipercayai dalam sistem pengawal caj solar yang digunakan untuk meningkatkan voltan rendah dari panel solar kepada voltan yang lebih tinggi. Cadangan AT – AT penukar dorongan yang digunakan dalam kajian ini adalah papan litar demostrasi DC1286 A-B AT -AT penukar dorongan yang direka khas dari Linear Technology Corporation yang mana rekaannya direka untuk aplikasi voltan dan arus yang tinggi dan boleh mengeluarkan voltan dan arus keluaran 48 V, 3 A. Prosedur yang digunakan untuk memantau atau menilai bekalan kuasa panel fotovolta dan sistem AT-AT penukar dorongan dengan menggunakan pemantauan masa sebenar bekalan kuasa panel fotovolta dan AT- AT peningkat dorongan, sistem ini dapat menilai prestasi sistem solar. Sistem pemantauan akan mengumpul voltan dan arus masukan bekalan fotovolta dan voltan keluaran dan arus keluaran AT - AT penukar dorongan dan memaparkan data diantaramuka pemantauan (GUI) yang telah direka bentuk untuk analisa pada masa hadapan. Eksperimen telah dijalankan dengan AT – AT penukar dorongan beroperasi dalam mod pengaliran berterusan (CCM) dengan voltan keluaran 48 V, 144 W kuasa keluaran dan 200 kHz menukar setiap kekerapan. Keputusan eksperimen menunjukkan bahawa AT –AT penukar dorongan yang dicadangkan itu mampu

menghasilkan voltan keluaran 48 V daripada AT –AT penukar dorongan yang berterusan dengan voltan masukan yang pelbagai daripada bekalan kuasa panel fotovolta 8 V hingga 36 V di mana bebannya adalah 16 Ω . Akhir sekali, analisa bagi sistem voltan keluaran fotovolta (PV) telah siap untuk menyasarkan reka bentuk pada masa hadapan dengan voltan keluaran 48 V pengawal caj solar.

IMPLEMENTATION OF WIRELESS MONITORING SYSTEM ON THE PERFORMANCE OF 48 V DC-DC BOOST CONVERTER IN PHOTOVOLTAIC SOLAR ENERGY

ABSTRACT

Solar energy is cheap, clean and readily available resource. One of the most important solar charge controller's applications in solar power system is used as battery storage to regulate battery state-of -charge and help prevent batteries from hazardous conditions and protects battery from being overcharged by-photovoltaic array. A DC-DC boost converter, one of functional and reliable major components in solar charge controller system was used to boost the low voltage from solar panel to a higher voltage. The proposed boost converter was used in this research is DC1286A-B demonstration circuit board from Linear Technology Corporation was designed for high application, providing output voltage 48 V and output current was at 3 A. The procedures used to monitor or evaluate photovoltaic power supply and boost converter system with using the real time monitoring of photovoltaic power supply and boost converter system, the expert system can evaluate the performance of the solar system. The monitoring system will collect voltage and current of input photovoltaic power supply and output DC- DC boost converter and display the data to the designed monitoring interface (GUI) for future analyzed. Experimental work was carried out with the DC-DC boost converter operating in continuous conduction mode (CCM) with 48 V output voltage, 144 W output power and 200 kHz switching frequency. The experimental results showed that the proposed designed was able to produce a constant 48 V output boost converter with range input from photovoltaic 8 V to 36 V at 16 Ω load conditions. Lastly, the final analysis of the output PV system was completed to target the future design of 48 V output of solar charge controller.

CHAPTER ONE

INTRODUCTION

1.1 Background of Study

Moving into the modern world, the call for the use of portable and environmentally friendly appliances is growing. One of this is the use of solar energy system as renewable energy source. This energy source has significantly contributed to sustainable energy supply. Solar energy or sunlight is not only considered to be the original source of almost all energy on earth but also the most significant source of renewable energy (Tan Yu and Isa, 2009). In generating solar energy, solar power system basically needs four distinct components, namely the solar panel, power converter, controller and battery storage. Solar panel or photovoltaic (PV) systems generate electricity from solar radiation(Halder, 2011). Photovoltaic (PV) which has many benefits especially to the environment, economy and society is used to convert sunlight (photon) directly into electricity. A charge controller has been regarded as one of the important devices in stand-alone photovoltaic systems to prevent the battery from damage due to overcharging and over-discharging, reverse current flow at night and to protect the life of the batteries in a PV system(Saini et al., 2013).

To use solar energy as power supply, the controller should be able to keep the battery charged and deliver constant power to the load. To design the charge controller, engineer must be knowledgeable about other required components. The life time of battery can deteriorate without the use of charge controller. Another important component of the photovoltaic power supply system is the DC- DC converter. A power electronic component that is used in a solar charge controller to get highest efficiency, availability and reliability of charging process (Halder, 2011). Many renewable power sources such as photovoltaic power system have relatively low-voltage output. This output voltage of PV panels is highly dependent on solar irradiance and ambient temperature. Hence, DC loads should not be directly connected to the output of PV panels.

The model used in this research consists of DC-DC boost converter placed between solar PV panel and the loads. The DC-DC boost converter fixes the output voltage of the PV system. The boost converter circuit is used to increase voltage that is generated by PV panel, to meet voltage level of the load (Husna et al., 2012). The proposed dc-dc boost converter featuring in this research is constant frequency current mode boost controller and constant frequency operation results in small and efficient circuit. This converter also provides high output voltage accuracy over wide load range.

1.2 Problem Statement

There are many source of energy that can be used to charge the battery such as electricity directly provided by Tenaga Nasional Berhad (TNB), alternative energy from wind turbine, solar energy, rainfall turbine, thermoelectric generator and many more. Since solar energy is well known for being clean and environmentally friendly, it is selected for this research. The major part of the solar power system is the charge controller. The concept of solar charge controller becomes globally accepted as a practical and feasible for solar power system. If the PV panel is placed under sunlight, tremendous amount of electricity can be extracted depending on the size of the solar panel and the efficiency of solar charger itself. However, PV panel produces DC voltage, but the voltage is unregulated and changes depend on solar irradiation