PROBE DRILLING BASED PREDICTION OF ROCK MASS STRENGTH, NATM-4, PAHANG-SELANGOR RAW WATER TRANSFER TUNNEL, HULU LANGAT, SELANGOR, MALAYSIA

NURFARHANA BINTI HASSAN

UNIVERSITI SAINS MALAYSIA

2018

PROBE DRILLING BASED PREDICTION OF ROCK MASS STRENGTH, NATM-4, PAHANG-SELANGOR RAW WATER TRANSFER TUNNEL, HULU LANGAT, SELANGOR, MALAYSIA

by

NURFARHANA BINTI HASSAN

Thesis submitted in partial fulfilment of the requirements for the degree of

Master of Science

ACKNOWLEDGEMENT

This master's Degree work was initiated by several researches on Pahang Raw Water Transfer Tunnel (PSRWT) tunnel project. Alhamdulillah, all praises to Allah this thesis have been completed. This study would not have been possible without data provided by Kementerian Tenaga, Teknologi Hijau dan Air (KeTTHA) and Shimizu – Nisihimatsu – UEMB IJM Joint Venture (SNUIJV).

First of all, I would like to give my greatest appreciations to my supervisor, Dr. Hareyani Zabidi who really helpful during completion of my dissertation. Thank you to Dean of School of Materials and Mineral Resources Engineering, Prof. Dr. Zuhailawati Hussain, to all the lecturers and technicians who always help and support whenever needed.

Thank you to all my friends who always be there whenever I need helps. Also, to my parents, Hassan bin Samadi & Wan Rosealaiza bt Wan Ab. Ghani for always put trust on me and gave full support morally & financially. Not to forget, my family and my parents in law.

Last but not least, I will forever be thankful to my husband, Mohd Naim bin Mohd Jain Noordin who always be by my side through thick and thin. Thank you for everything you have done for me.

TABLE OF CONTENTS

		Page
ACK	NOWLEDGEMENT	ii
TAB	LE OF CONTENTS	iii
LIST	OF TABLES	vi.
LIST	LIST OF FIGURES	
LIST OF ABBREVIATIONS		xii
LIST OF SYMBOLS x		xiii
ABSTRAK xi		xiv
ABS	ГКАСТ	xvi.
СНА	PTER ONE: INTRODUCTION	
1.1	Research Background	1
1.2	Problem Statement	2
1.3	Objectives	3
1.4	Scope Limitations	3
1.5	Thesis Outline	4
СНА	PTER TWO: LITERATURE REVIEW	
2.1	Introduction	7
2.2	General Background of Pahang-Selangor Raw Water Transfer	7
	(PSRWT) Project Involved	

	2.2.1	Project Details	7
	2.2.2	Geology of The PSRWT Project	12
2.3	Predic	ction of Tunnelling	15
2.4	Probe	Drilling	19
	2.4.1	Parameters Involved	24
2.5	Classi	ification Parameters	25
2.6	The R	tock Mass Rating System	30
	2.6.1	About RMR System	30
	2.6.2	RMR Classification	31
	2.6.3	Application of the system in tunnelling project	34
2.7	Japan	Highway Public Corporation Classification System (JH)	36
	2.7.1	Classification Parameters of JH Method	40
	2.7.2	JH Method Support Patterns	41
	2.7.3	Application of the system in tunnelling project	45
2.8	Cluste	ering Method in Prediction Analysis	45
	2.8.1	K-means Clustering Algorithm	48
2.9	Corre	lation Between Mechanical Test and Rock Strength	51
	2.9.1	Laboratories Studies	51
CHA	PTER 7	THREE: METHODOLOGY	
3.1	Introd	luction	53
3.2	Flowe	chart of Work	53
3.3	Field	Data Collection	54
	3 3 1	Probe Drilling	54

	3.3.2 Probe Drilling Data	56
3.4	K-means Clustering Algorithm	66
3.6	Point Load Test	68
СНА	PTER FOUR: RESULTS AND DISCUSSION	
4.1	Introduction	71
4.2	Field Data Analysis	71
	4.2.1 Geological mapping	71
4.3	Parameters of Probe Drilling	82
4.4	Distribution analysis	91
4.5	K-means Clustering Algorithm Analysis	87
4.6	Validation of k-means clustering	100
СНА	PTER FIVE: CONCLUSION AND RECOMMENDATION	
5.1	Conclusion	109
5.2	Recommendations	110
REFERENCES 11		
APPENDICES		
LIST OF PUBLICATIONS		

LIST OF TABLES

		Page
Table 2.1	Section A: Classification of parameters and their ratings	32
Table 2.2	Section B: guidelines for classification of discontinuity conditions	33
Table 2.3	Section C: Effect of discontinuity orientations in tunnelling	33
Table 2.4	Section D: Rating adjustment for discontinuity orientations	34
Table 2.5	RMR system guidelines for excavation and support in rock tunnel (after Bieniawski, 1989)	35
Table 2.6	Grouping of rocks (after Shinji et.al, 2002)	39
Table 2.7	Standard tunnel support patterns by JH method (after Shinji et.al, 2002)	44
Table 2.8	JH rock mass classes ratings (after Shinji et.al, 2002)	44
Table 2.9	Main requirements to stratify a clustering algorithm	47
Table 2.10	Problems with clustering	47
Table 3.1	Summary and comparison of rock weathering for JH method & RMR system	56
Table 3.2	Points for observation in tunnel for JH classification system	62
Table 4.1	JH rock mass classes ratings and its support system	72
Table 4.2	Standard tunnel support patterns by JH method	82
Table 4.3	Initial center value for each class for drilling speed, sand and clay	101
Table 4.4	New center value for each class for drilling speed, sand and clay	101
Table 4.5	Example of data set and rock class obtained after k-means clustering method applied	102
Table 4.6	Range of drilling speed & cutting discharge for prediction	108

Table 4.7 Accuracy prediction of rock class strength after k-means clustering method applied

108

LIST OF FIGURES

		Page
Figure 1.1	Geological structure along the tunnel alignment. The red circle shows the study area. (After KeTTHA)	5
Figure 2.1	Geological map around the project area (after Hutchison and Tan, 2009)	8
Figure 2.2	Location map of PSRWT Project (after KeTTHA, 2000)	10
Figure 2.3	TBM turning at junction between NATM-3 and TBM-1	11
Figure 2.4	View of the NATM-4	11
Figure 2.5	The water transfer plan from Semantan Pipeline to the Treatment Plant at Selangor (after KeTTHA, 2000)	12
Figure 2.6	The project schematic of water transfer tunnel (after KeTTHA, 2000)	12
Figure 2.7	Geology of water transfer tunnel area	14
Figure 2.8	Examples of common layouts of percussive probe drilling (after Norwegian Tunnelling Technology, Publication No.23)	19
Figure 2.9	Principles of probe drilling and pre-grouting. Typical length of probe drilling hole is 25-30m, and the overlap is typically about 5 m (after Nilsen, 2013)	21
Figure 2.10	Photograph of probe drilling equipment inside the tunnel, NATM 4	21
Figure 2.11	The diagram shows the transition from intact to a heavily jointed rock mass (Hoek and Brown, 1997)	28
Figure 2.12	Parameters describing rock mass characteristics (Hoek and Bray, 1981)	29
Figure 2.13	Relationship between the stand-up time and span for various rock mass classes according to the RMR system (after Lauffer, 1988, modified after Bieniawski,1979)	36
Figure 2.14	The tunnel face observation data sheet (after Shinji et.al, 2002)	38
Figure 2.15	Rock mass classes of JH classification system (after Shinji et.al. 2002)	39

Figure 2.16	Data sheet done after geological mapping (after KeTTHA, 2000)	42
Figure 2.17	NATM-support type pattern for each rock class (after KeTTHA, 2000)	43
Figure 2.18	K-means algorithm. Training examples are shown as dots, and cluster centroids are shown as crosses (after Chris, 2013)	50
Figure 2.19	Penetration rate versus point load index (after Kahraman et.al, 2003)	52
Figure 3.1	Flowchart shows the relationship between all parameters	55
Figure 3.2	Geological mapping sheet that are mapped after drill, blast and excavation process, taken from Ch. 41784.0	58
Figure 3.2A	The wall of tunnel is described by few important geological parameters, taken from Ch. 41784.0	59
Figure 3.2B	The wall of tunnel is described by few important geological parameters; rock strength, weathering/alteration, taken from Ch. 41784.0	60
Figure 3.2C	The wall of tunnel is described by few important geological parameters; rock strength, weathering/alteration, continuities, joint patterns (orientation), groundwater and degradation by water, taken from Ch. 41784.0	61
Figure 3.3	The scanline arrangement for tunnel face mapping	64
Figure 3.4	Specimen shape requirement for (a) block test and (b) irregular lumps (after ISRM, 1985)	69
Figure 4.1	Geological mapping for rock class B (Ch. 41916.4)	74
Figure 4.2	Tunnel face for rock class B (Ch. 47916.4)	75
Figure 4.3	Geological mapping for rock class CI (Ch. 43485.3)	76
Figure 4.4	Tunnel face for rock class CI (Ch. 43478.4)	77
Figure 4.5	Geological mapping for rock class CII (Ch. 42649.0)	79
Figure 4.6	Tunnel face for rock class CII (Ch. 42649.0)	80
Figure 4.7	Geological mapping for rock class D (Ch. 42743.7)	83

Figure 4.8	Tunnel face for rock class D (Ch. 42743.7)	84
Figure 4.9	Geological mapping for rock class E (Ch. 42675.5)	85
Figure 4.10	Tunnel face for rock class E (Ch. 42675.5)	86
Figure 4.11	Probe drilling mapping for rock class B (Ch. 41916.4) –	89
	Probe Hole No.20	
Figure 4.12	Probe drilling mapping for rock class E (Ch. 42675.5) – Probe Hole No.11	90
Figure 4.13	Distribution pattern of sand versus drilling rate for each rock class for NATM-4	92
Figure 4.14	Distribution pattern of fine fraction versus drilling rate for each rock class for NATM-4	92
Figure 4.15	Percentage of sand and fine fraction versus drilling rate for rock class B, NATM-4	96
Figure 4.16	Percentage of sand and fine fraction versus drilling rate for rock class CI, NATM-4	96
Figure 4.17	Percentage of sand and fine fraction versus drilling rate for rock class CII, NATM-4	97
Figure 4.18	Percentage of sand and fine fraction versus drilling rate for rock class D, NATM-4	97
Figure 4.19	Percentage of sand and fine fraction versus drilling rate for rock class E, NATM-4	98
Figure 4.20	Distribution for Class 2 (B) before and after applied k-means algorithm	103
Figure 4.21	Distribution for Class 3 (CI) before and after applied k-means algorithm	103
Figure 4.22	Distribution for Class 4 (CII) before and after applied k-means algorithm	104
Figure 4.23	Distribution for Class 5 (D) before and after applied k-means algorithm	104
Figure 4.24	Distribution for Class 6 (E) before and after applied k-means algorithm	105

Figure 4.25	3D graph for distribution for each rock class based on drilling rate, sand percentage & fine fraction percentage after k-means algorithm applied		
Figure 4.26	Drilling speed versus point load index at NATM-4, Hulu	111	

LIST OF ABBREVIATIONS

AIV Aggregate Impact Value

Ch. Chainage

ISRM International Society for Rock Mechanics

JH Japanese Highway

JHPC Japan Hihgway Public Corporation

KeTTHA Kementerian Tenaga, Teknologi Hijau dan Air

NATM New Austrian Tunnelling Method

PLT Point Load Test

PSRWT Pahang-Selangor Raw Water Transfer

TBM Tunnel Boring Machine

TD Tunnel distance

TSP Tunnel Seismic Prediction

LIST OF SYMBOLS

k	Number of cluster
C	Degree Celsius
D	Specimen diameter
L	Length of the specimen
W	Width of the specimen
P	Maximum load at failure

DATA PENGGERUDIAN BERASASKAN RAMALAN KEKUATAN BATU, NATM-4, TEROWONG PERPINDAHAN AIR PAHANG-SELANGOR, HULU LANGAT, SELANGOR, MALAYSIA

ABSTRAK

Ramalan keadaan tanah dan batuan geologi terowong adalah salah satu aktiviti penting semasa pembinaan terowong. Sebelum penggalian, ciri-ciri geologi dianggarkan untuk mengelakkan masalah sebagai contoh kemasukan air yang berlebihan atau keruntuhan terowong yang boleh menyebabkan kematian. Kebiasaannya, jumbo terowong dengan gerudi pukulan digunakan untuk siasatan penggerudian. Data yang diperoleh daripada kaedah siasatan penggerudian telah diambil di Hulu Langat, Selangor, Malaysia. Perubahan diperhatikan pada ciri penggerudian semasa siasatan dijalankan dan ia memberikan petunjuk kepada kekuatan tanah, kehadiran rongga besar, jenis batu dan jumlah air bawah tanah. Rekod maklumat yang telah diperolehi ditafsirkan dengan menggunakan kelompok algoritma k-means untuk meramal keadaan tanah yang akan datang. Parameter yang diambil kira adalah kelajuan penggerudian dan peratusan batuan penggerudian memandangkan kedua-dua parameter ini memainkan faktor penting dalam keadaan tanah ramalan hadapan. Parameter ini digunakan untuk mengumpul data dan mengklasifikasi kekuatan batuan di mana ia digunakan untuk membezakan kumpulan kekuatan batu. Berdasarkan kelompok algoritma k-means, kelajuan penggerudian, peratusan keadaan batuan penggerudian dan ramalan ketepatan dikira untuk setiap kelas. Kaedah pengkelasan Japanese Highway (JH) digunakan untuk mengelaskan kelas batuan. Batu kelas B ditakrifkan sebagai kualiti batu yang baik, keras dan sedikit terjejas oleh luluhawa manakala kelas batu E ditakrifkan sebagai batuan yang sangat teruk kualiti and terjejas teruk oleh luluhawa. Dengan menggunakan kaedah kelompok algoritma k-means, ramalan ketepatan diperolehi untuk semua batuan kelas B, CI, CII, D dan E masing-masing adalah 76.2%, 60%, 25.8%, 42.3% dan 51.9% manakala ramalan dari penggerudian pengesanan untuk batuan kelas B, CI, CII, D dan E masing-masing adalah 100%, 30.3%, 36.6%, 84.7% dan 85.2%.

PROBE DRILLING BASED PREDICTION OF ROCK MASS STRENGTH, NATM-4, PAHANG-SELANGOR RAW WATER TRANSFER TUNNEL, HULU LANGAT, SELANGOR, MALAYSIA

ABSTRACT

Probe drilling in tunnelling is carried out to collect information on the rock mass conditions ahead of a tunnel face. Prior to excavation, geological features are thoroughly studied in order to avoid unexpected difficult ground condition, for example excessive water ingress or tunnel collapse that may cause fatality. Usually, the tunnel jumbo with percussive drill is used for a probe drilling campaign. In this study, probe drilling data was collected from drilling activities recorded at Hulu Langat, Selangor, Malaysia. The observed changes on the drilling characteristic of probe drilling carried out provide us indication on the strength of ground, presence of large cavities, type of rock and the volume of groundwater. The information recorded were interpreted using k-means clustering algorithm to predict the ground condition. Parameters considered are drilling speed and percentages of rock chipping as both play important factors in prediction of ground condition ahead. Both parameters were used to cluster the data and classification of rock strength class. Based on k-means clustering algorithm, range of drilling speed, percentage rock chipping and accuracy was determined for each rock class. Japanese Highway (JH) classification method is used to classified the rock class. Rock class B is defined as a good quality rock, hard and fresh slightly affected by weathering whilst rock class E is defined as very poor to extremely poor-quality rocks and considerably weathered rock mass. By using kmeans clustering method, the accuracy prediction was obtained for all rock class B, CI, CII, D and E is 76.2%, 60%, 25,8%, 42.3% and 51.9% respectively whereas prediction from probe drilling for rock class B, CI, CII, D and E is 100%, 30.3%, 36.6%, 84.7% and 85.2% respectively.

CHAPTER ONE INTRODUCTION

1.1 Research Background

Infrastructure projects worldwide often face the same demands of producing short cuts in order to keep up with the increase in public traffic and transportation. Particularly in urban areas where the widening or adding of roads is no longer an option. One practicable solution is to go underground (Jetschny, 2010). One of the well-known method used up to now is conventional tunnelling which is also known in underground tunnelling as drill and blast. New Austrian Tunnelling Method (NATM) is by far the oldest method of tunnelling, still in use and a focus of continuing improvements. In general, a conventional tunnelling approach is safe, reliable and well researched method of tunnel construction. In spite of the advantages, there are certain disadvantages such as low safety at work of close to the tunnel face, and limited progress in tunnelling in soft rock is almost impossible. However, this conventional tunnelling is exceptional when constructing reasonably short tunnels due to its low costs (Singh & Singh, 2006).

To make it safe and to optimum the cost of a project, ground investigation is very important in any underground construction. It is required to study the ground condition ahead and make prediction from various methods such as Tunnel Seismic Prediction (TSP), seismic imaging technique, probe drilling method and drilled hole imaging method. It is essential to know the properties of the rock ahead of the face when digging a tunnel therefore lot of research studies of prediction of rock properties ahead of a tunnel face by using exploration drilling (Schunnesson, 1998; Yamashita et.al, 2008; Steele et.al, 2014) have been done. Identification on the properties of rock ahead of a tunnel face is one of the most important practices in tunnelling as it gave

advantages, increase safety and efficiency of tunnel construction. Probe drilling is used in this study to give information for the prediction. Info on drilling speed, rock chippings and water flow are some of the parameters given from the probe drilling.

By correlating predicted geological features, for instance weak or water bearing zones and lithological interfaces, with the known geological situation, the tunnelling process can be improved. Time consuming and expensive downtime can be avoided and the construction site as well as the surface is less exposed to safety threat. This is particularly essential for the tunnelling in urban areas, which mainly includes the utilization of tunnel construction machines below the water table.

1.2 Problem Statement

Prediction of ground condition ahead of tunnel face have developed and improved significantly over recent times. The most studied methods are; Tunnel Seismic Prediction (TSP), probe drilling method and the latest is drilled hole imaging technique (Kim et.al, 2015). In this research, data collected from prove drilling campaign at NATM-4 site of Pahang-Selangor Raw Water Transfer (PSRWT) tunnel project was used to study the ground condition ahead. It is presumed that the changes of drilling characteristics of probe drilling gave indication on the strength of ground/bedrck, presence of large cavities, type of rock and the volume of groundwater. All these factors will influence the high and low on values of parameters such as drilling speed, percentage of rock chipping, and slime colour that significant to ground conditions. The information records will be interpreted in order to predict the anticipated ground condition.

However, probe drilling is a brief data. More as a pinpoint data (Moritz et.al, 2004). Probe drilling data gave slight information regarding the ground conditions and

cannot be used to predict the ground condition ahead and not detail enough to be used without any aid from others method. Therefore, in predicting the ground conditions ahead tunnel face further testing like TSP and drilled hole imaging equipment are required.

Rock engineer is normally encountered with the need to work out at a number of design decisions in which judgement and practical experience must play an important part (Palmstrom, 1995). Prediction and/or evaluation of support requirements for tunnels is largely based on observations, experience and personal judgement of those involved in tunnel construction (Howard & Brekke, 1972). Thus, we want to make it as small as possible the uncertainties of prediction.

In summary, problem statement encounter in this study are:

- i. Probe drilling data extraction
- ii. Prediction of ground conditions ahead by using probe drilling

1.3 Objectives

To get the optimum information from probe drilling data, few objectives are set as follows:

- 1. To determine the geological factors affect the performance of probe drilling
- 2. To develop a method to predict ground conditions ahead using probe drilling
- To correlate drilling speed & percentage of rock chipping parameters with rock strength.

1.4 Scope Limitations

Considering that there are a lot of parameters (drilling speed, percentage of rock chipping, slime colours, involved in probe drilling), therefore few scopes of

limitations has been decided. First scope is to choose the parameters related to this study such as rock cutting condition (chipping discharge from the drilling), water flow and drilling speed. Quantitative data is required in the analysis. Studies are solely based on the collected field data, defined as uncontrolled parameters. Further testing under the controlled environment are required to really identified the relationship thus to predict the ground ahead.

Another limitation of this study is referred to NATM tunnelling method. NATM is opted in outlet site which is in Langat area provides a good opportunity to study the ground condition. NATM-4 was chose as study area and constructed in the Main Range Granite. This granitic formation is idyllic for tunnelling since their characteristics which are massive, relatively "homogeneous" and competent. Figure 1.1 shows geological structure along the tunnel alignment. Method adopted for this prediction deals with short term settlement only. Normally the short-term settlements take place during or after excavation within a certain period of time, assuming that the condition of the ground is in the dominant undrained condition (Latif et al., 2013; Yahya & Abdullah, 2014). Long term settlements which consist of creep behaviour, consolidation and other factors are not within the scope of this study.

1.5 Thesis Outline

This dissertation is divided into three major parts. The first part deals with the analysis of the probe drilling data and geological data; the second part is investigating the rock properties of tunnel; and the third part correlates on the above mention factors leading to the prediction of ground condition ahead. This dissertation, however has five chapter. The contents of each chapter are outlined as follows:

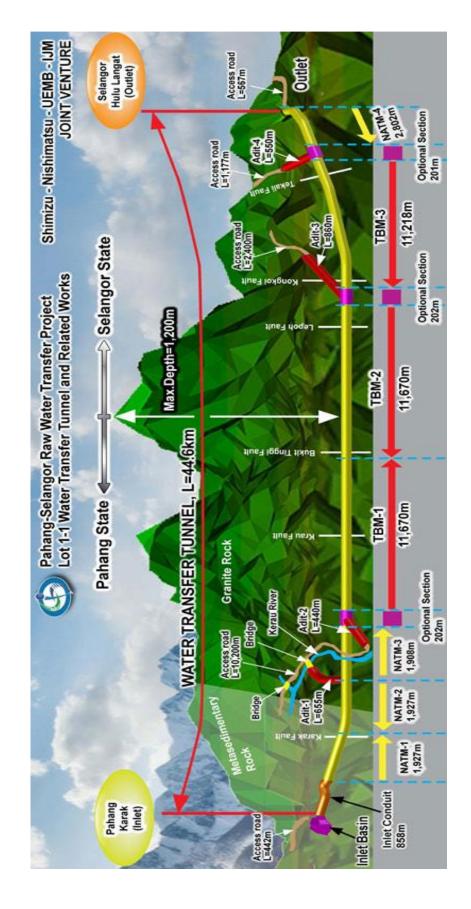


Figure 1.1: Geological structure along the tunnel alignment. The red circle shows the study area. (After KeTTHA)

Chapter 1: This chapter introduces the brief overviews on the problem statement, background research, study area and scope of limitations. Objectives of the research are stated and the workflow are given to correlate the parameters, methodologies, and relationships in prediction analysis.

Chapter 2: This chapter presents literature study which deals with the parameters and methodologies chosen. This chapter also enlighten the importance of prediction ground condition ahead.

Chapter 3: This chapter discusses methodologies chosen for each parameter. Lab tests could help to study the geomechanics properties.

Chapter 4: This chapter is a compilation results of the analyses. End results from the analyses will then be used for make a prediction of ground condition ahead.

Chapter 5: This chapter discusses the output towards conclusion and recommendations for future work.

CHAPTER TWO LITERATURE REVIEW

2.1 Introduction

The purpose of this chapter is to provide an overview on the methods and analyses that have been carried out by the previous researchers. The limitations in this study is the accessible probe drilling data from the project. There is neither specific equation not empirical scheming which is suitable for every underground condition study since the geological conditions is varies in every construction. In this chapter, geology of study area will be explained in details as well as the methods used in prediction of tunnelling.

2.2 General Background of Pahang-Selangor Raw Water Transfer (PSRWT) Project

2.2.1 Project Details

PSRWT project is located in the central area of the Peninsular Malaysia. Figure 2.1 shows the geological map around the project area. Topographically, the project area in Pahang side is drained by a number of rivers. The main rivers are the Semantan River, Telemong River and Kelau River.

A scheme to transfer water from Pahang to Selangor has been proposed to meet the increasing water demand in the commercial and industrial development centres. Selangor/Kuala Lumpur has the highest these demands but the water resources within the Selangor/Kuala Lumpur are not able to meet the demands in the near future. Therefore, the Pahang-Selangor Raw Water Transfer (PSRWT) tunnel project has been constructed to fulfil the demands.