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SINTESIS NANOPARTIKEL BISMUT OKSIDA UNTUK APLIKASI 

RADIOTERAPI 

ABSTRAK 

 

 Nombor atom tinggi (Z) nanopartikel bismut oksida (Bi2O3 NPs) mempunyai 

penembusan sel yang lebih banyak dan kurang kesan buruk daripada pemeka sinaran 

konvensional. Pelbagai saiz Bi2O3 NPs telah berjaya dihasilkan dengan menggunakan 

kaedah hidroterma dan digunakan untuk aplikasi radioterapi. Beberapa sintesis 

parameter telah dikaji: kesan perbezaan suhu dan kesan perbezaan masa hidroterma, 

kesan perbezaan kepekatan bismuth nitrat, Bi(NO3)3, dan, kesan perbezaan kepekatan 

polietilena glikol (PEG). Sifat-sifat Bi2O3 NPs telah dikaji untuk menentukan 

kehadiran fasa, penghabluran, morfologi, kehadiran unsur dan saiz partikel. Analisa 

XRD membuktikan Bi2O3 tulen dengan fasa monoklinik telah dihasilkan (Kod 

Rujukan ICDD: 98-000-6260). Saiz Bi2O3 NPs didapati meningkat dengan 

peningkatan suhu dan masa tindakbalas hidrotherma. Walaubagaimanapun, apabila 

kepekatan Bi(NO3)3 meningkat, saiz partikel Bi2O3 NPs menurun disebabkan oleh 

kurangnya resapan ion ke dalam nucleus. Pemerhatian terhadap morphologi 

menunjukkan Bi2O3 NPs berbentuk rod. Nanopartikel yang disalut dengan  PEG tidak 

menunjukkan sebarang peningkatan saiz. Berdasarkan analisa FTIR, keamatan Bi2O3 

NPs berkurang apabila kepekatan PEG meningkat kerana molekul PEG dapat diserap 

ke permukaan kristal Bi melalui ikatan Bi–O. Bi2O3 NPs yang dihasilkan kemudiannya 

menjalani kajian ketoksikan dan radioterapi. Kajian ketoksikan terhadap Bi2O3 NPs 

tidak memberi kesan toksik kepada sel barah payudara (mcf-7) pada kepekatan 0.05 

µM - 50 µM. Prestasi radioterapi oleh Bi2O3 NPs yang telah dihasilkan diperoleh 

dengan mengira nisbah peningkatan pemekaan (SER). Akhirnya, 60 nm Bi2O3 NPs 

diperolehi sebagai keputusan yang optimum dengan SER 1.26. 
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SYNTHESIS OF BISMUTH OXIDE NANOPARTICLES FOR 

RADIOTHERAPY APPLICATION 

ABSTRACT 

 

 High atomic number (Z) of bismuth oxide nanoparticles (Bi2O3 NPs) has more 

cell penetration and less adverse effects than conventional radiosensitisers. In this 

work, various sizes of Bi2O3 NPs were successfully synthesised using hydrothermal 

method. Several synthesis parameters were studied: effect of hydrothermal reaction 

temperature, effect of hydrothermal reaction time, effect of bismuth nitrate, Bi(NO3)3 

concentration and effect of polyethylene glycol (PEG) concentration. The properties 

of Bi2O3 NPs were then characterised to determine the phase presence, crystallinity, 

morphology, elemental presence and size of nanoparticles. The as-synthesised Bi2O3 

NPs was in monoclinic Bi2O3 phase (ICDD 98-008-5622). Increasing reaction 

temperature and time increased the size of Bi2O3 NPs. However, as the Bi(NO3)3 

concentration increased, the particle size of Bi2O3 NPs decreased due to less ions 

diffusion per nuclei. The morphology observation showed that Bi2O3 NPs were in rods 

form. Coating with PEG did not show any increase in nanoparticles size. Based on 

Fourier-transform infrared spectroscopy (FTIR) analysis, by increasing the PEG 

concentration, the intensity of Bi2O3 NPs band diminished because PEG molecules 

could adsorb onto the surface of Bi crystals through Bi–O bonding. After that, the 

produced Bi2O3 NPs were subjected to cytotoxicity analysis and radiotherapy.  Bi2O3 

NPs did not induce cytotoxicity in breast cancer (mcf-7) cell lines at concentration 

from 0.05 µM to 50 µM. The radiotherapy performance of the as-prepared Bi2O3 NPs 

was obtained by calculating the sensitisation enhancement ratio (SER). The optimum 

result was obtained for 60 nm Bi2O3 NPs with SER of 1.26.
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Research background 

 

 Nanomaterials with diameters ranging between 1 and 100 nanometers, are 

natural bridges between molecules and extended solids. Nanomaterials are complex of 

many-electron systems, where reduced sizes and quantum confinement of electrons 

and phonons give birth to fascinating new effects, potentially tunable with particle size 

(Van Dijk et al., 2005). The use of nanomaterials in medical application has been 

developed into a promising research area known as nanobiotechnology (Ahmed et al., 

2012). The application of nanomaterials in medical field is very much welcomed 

nowadays especially in biological labelling and sensing, and cancer therapy. The main 

advantage of using nanomaterials is that its properties can be tuned or manipulated in 

order to meet the specific requirements of particular applications (Sumer and Gao, 

2008). 

 Recently, application of nanomaterials in cancer therapy has gained a great 

interest. One of the main modalities for the treatment of cancer is radiotherapy. 

Radiotherapy is a critical component of the modern approach for curative and adjuvant 

treatment of cancers. Radiotherapy controls the growth of cancerous cells by 

bombardment with ionizing radiation, causing deoxyribonucleic acid (DNA) damage 

by direct ionization or through generation of free radicals by ionization of water or 

oxygen molecules. Sufficient damage to DNA can halt cell growth and prevent 

metastasis. The primary drawback is collateral damage: there is little distinction in 
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absorption between healthy and malignant tissues, and thus doses must be limited in 

order to mitigate unwanted damage to the tumour surroundings (Cooper et al., 2014).  

 Nanomaterials with high atomic number (Z), have recently received wide 

interests for their excellent radiosensitisation effect in order to overcome the 

weaknesses, as well as to selectively increase the radioactivity deposition in the cancer 

region (Kaur et al., 2013, Xiao et al., 2011). The strong photoelectric absorbance 

capacities and the numerous short-range secondary electrons generated on the particle 

surface can accelerate the DNA break and thus kill more tumour cells when undergo 

the radiotherapy. Meanwhile, nanoparticles down to 100 nm in diameter could increase 

tumour accumulation in the intravenous administration by virtue of the enhanced 

permeability and retention (EPR) effect of leaky tumour vasculature. Thus, it is 

believed that the nanometer size radiosensitiser could efficiently integrate the 

radiosensitisation effect as well as showing a great potential in delivering sufficient 

radiation dosage to the targeted tumour. 

 Gold nanoparticles (AuNPs) (Z = 79) is the most well developed nanoparticle 

platform. Hainfeld et al. (2013) reported that gold nanoparticles (AuNPs) (Z = 79) 

showed high-resolution CT-scan when AuNPs was injected into mice and evidently 

increased approximately three times local radiation dose in radiotherapy. The AuNPs 

was found to be effective as radiosensitiser to kill tumour cell by surrounded or loaded 

to specific cancer cells. However, the high cost of gold could limit the widespread use 

of AuNPs. The cost of 1kg bismuth is around USD29, while 1kg gold is around USD39 

000  (Argus 2018, Goldprice 2018). Bismuth nanoparticles (BiNPs) (Z = 83), is a cost 

effective alternative and a better candidate for high Z radiosensitiser research. 

Furthermore, bismuth compounds are biodegradable and biocompatible with a long 

history in biomedicine. To date, most investigations centering on the use of bismuth 
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for nanoparticulate radiosensitiser. However, comprehensive cytotoxicity information 

of BiNPs is not available. BiNPs was detected in the nervous system and other organs 

of the mice (Stoltenberg et al., 2003). Therefore, the approval of Bi as a non-toxic 

alternative to Pb has been questioned by scientists who raised concerns about the lack 

of knowledge about Bi toxicity. 

 Bismuth-based nanoparticles have been studied as radiosensitiser. For 

example, bismuth sulphide nanoparticles (Bi2S3 NPs) could be successfully realized 

on the tumour-bearing mice model in the X-ray radiotherapy research, resulting in 

significantly higher inhibition effect for the tumour growth (Yao et al., 2014). Bismuth 

selenide nanoparticles (Bi2Se3) had exhibited remarkably enhanced DNA damage 

suggesting the strong radiotherapy enhancement effect of Bi-based nanoparticles 

(Song et al., 2015). Most recently, bismuth oxide nanoparticles (Bi2O3 NPs) also has 

be used to kill tumour in radiotherapy. Bi2O3 NPs also has been used in many medical 

and cosmetic applications for many years (Kim et al., 2008). Stewart et al. (2014) 

showed that Bi2O3 NPs could be tailored with different oxygen contents to induce cell 

proliferation or toxicity. Another research highlighted that a theranostic system based 

on Bi2O3 NPs would be highly effective in the treatment of cancer (Bogusz et al., 

2014). Thus, it is suggested that Bi2O3 NPs is an ideal alternative to evaluate the 

therapeutic effect of nanomedicine based radiosensitiser in the radiotherapy research. 

Therefore, several approaches have been employed to synthesis Bi2O3 NPs in 

materials science and engineering. Bi2O3 NPs has been synthesised via sol gel method 

(Armelao et al., 1998, Xiaohong et al., 2007), citrate gel process (Anilkumar et al., 

2005), oxidation of bismuth metal at 800 °C or thermal decomposition of bismuth salt 

solution (Krüger et al., 2000, Davidge, 1986), flame spray pyrolysis (Mädler and 

Pratsinis, 2002), polyol method (Jungk and Feldmann, 2001) and atomic-pressure 
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chemical vapor deposition (CVD) (Shen et al., 2007). Although these methods have 

been proven to be successful in the synthesis of Bi2O3 NPs, they normally require high 

temperature heat treatment, long synthesis period, and post treatment, which is far 

from low cost and apparently require sophisticated equipments. Hence, a more simple 

synthesis method, which is precipitant-free, additive-free, and low cost, is sought after 

for the synthesis of  Bi2O3 NPs. A hydrothermal method is a powerful method in 

synthesis of Bi2O3 NPs at a considerably low temperature, energy saving and cost 

effective benefits (Wu et al., 2011). The hydrothermal method also has the advantages 

such as controllable particle size, morphology and the degree of crystallinity by simply 

changing the experimental parameters (Xu et al., 2005). Table 1.1 shows in detail the 

comparison of several approaches to produce Bi2O3 NPs. 

 

Table 1.1: The comparison of several approaches to produce Bi2O3 NPs 

Method Advantages Disadvantages Reference 

 

Sol-gel method  

 

 

 

 

 

 

 

 

Successful in 

producingBi2O3 

NPs 

• Substrate 

dependent 

• Non-uniform 

thermal 

expansion 

 

(Armelao et al., 

1998, Xiaohong 

et al., 2007) 

 

Citrate gel method (Anilkumar et al., 

2005) 

 

Thermal 

decomposition 

method 

 

High temperature (Krüger et al., 

2000) 

Flame spray 

pyrolysis method 
• Requires line of 

sight to the 

surface being 

coated 

• Difficult to 

handle 

 

(Mädler and 

Pratsinis, 2002) 

Polyol method Required alkali as 

precipitation 

reagent 

 

(Jungk and 

Feldmann, 2001) 
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