ACKNOWLEDGEMENT

First and foremost, I take this opportunity to express my deepest gratitude and special thanks to my supervisor, Prof. Dr. Khairunisak Abdul Razak and Dr. Wan Nordiana Wan Abdul Rahman who in spite of being extraordinarily busy with her duties, took time out to hear, guide and keep me on the correct path and allowing me to carry out my project the initial to the final.

I express my deepest thanks to School of Material & Mineral Resources Engineering and Nanobiotechnology Research & Innovation (NanoBRI), INFORMM, USM for their technical support. I also would like to thank all staffs for taking part in useful decision and giving necessary advices and guidance and arranged all facilities to make my research project easier. I choose this moment to acknowledge their contribution gratefully.

It is my radiant sentiment to place on record my best regards, deepest sense of gratitude to my parents, to my husband, Mr Zulfahmi, to my sister, Ms Zulfa Ajeerah, to my senior, Ms Syafinaz, Mrs Hashimah and Mr Lukman and to my colleagues, Ms Atiqah, Ms Hidayah, Mr Safri, Mr Sanju and Mr Illyas for their careful and precious guidance which were extremely valuable for my study both theoretically and practically and always share my laughs and tears together.

Lastly, I offer my regards to Universiti Sains Malaysia for financially support through TRGS grant and Graduate Research Assistant Scheme (GRA). Also not to forget to MyBrain15 programs which gave me MyMaster scholarship to further my studies and to all of those who supported me in any respect during the completion of the project. I perceive as this opportunity as a big milestone in my career development later. Thank you.

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xiv
LIST OF SYMBOLS	xviii
ABSTRAK	XX
ABSTRACT	xxi

CHAPTER ONE: INTRODUCTION

1.1	Research background	1
1.2	Problem statement	5
1.3	Objectives	7
1.4	Scope of work	7
1.5	Dissertation structure	8

CHAPTER TWO: LITERATURE REVIEW

2.1	Introdu	iction to nanotechnology	9
2.2	Nanote	chnology in radiotherapy	10
2.3	Bismut	h-based nanoparticles	15
2.4	Bismut	th Oxide nanoparticles (Bi ₂ O ₃ NPs)	18
	2.4.1	One-dimensional (1D) Bi ₂ O ₃ NPs	19
	2.4.2	Biological properties of Bi2O3 NPs	21
	2.4.3	Surface modification of Bi ₂ O ₃ NPs	22
2.5	Bi ₂ O ₃ I	NPs synthesis	24
	2.5.1	Oxidative metal vapor-phase deposition	28

	2.5.2	Metalorganic Chemical Vapor Deposition (MOCVD)	30
	2.5.3	Hydrothermal method	32
2.6	Bi ₂ O ₃	NPs synthesis parameters in hydrothermal method	34
	2.6.1	Reaction temperature	38
	2.6.2	Reaction time	40
	2.6.3	Starting materials/mineralizers	42
	2.6.4	Surfactant/surface modifier	45
2.7	Genera	al application of Bi ₂ O ₃ NPs	47
2.8	Radiot	herapy application	48
	2.8.1	Requirements for radiotherapy	50
	2.8.2	In vitro assessment of radiotherapy effect	50
	2.8.3	High Z radiation enhancer	51
	2.8.4	Bi ₂ O ₃ NPs in radiotherapy	53
	2.8.5	PEG surface modifier in radiotherapy application	56
2.9	Summ	ary of literature review	57
СНАР	TER TH	HREE: METHODOLOGY	
3.1	Introdu	uction	60
3.2	Chemi	icals and materials	61
3.3	Metho	dology	63
	3.3.1	Synthesis of Bi ₂ O ₃ NPs	63
	3.3.2	Surface modification of Bi ₂ O ₃ NPs	65
	3.3.2	Characterisation of Bi ₂ O ₃ NPs	65
		3.3.3 (a) Phase identification	65
		3.3.3 (b) Morphology and elemental analysis	66
		3.3.3 (c) Bi–O bonding analysis	67
	3.3.4	In-vitro cytotoxicity	68

	3.3.4 (c)	Cytotoxicity test	68	
	3.3.4 (d)	Presto blue assay	69	
	3.3.5	Radiothera	apy analysis	70
		3.3.5 (a)	Cells irradiation	70
	3.3.5 (b)	Clonogenic assay	71	

CHAPTER FOUR: RESULT AND DISCUSSION

4.1	Introdu	action	75
4.2	Synthe	sis of Bi ₂ O ₃ NPs	76
	4.2.1	The Effect of Reaction Temperature on Formation of Bi_2O_3 NPs	76
	4.2.2	The Effect of Reaction Time on Formation of Bi ₂ O ₃ NPs	85
	4.2.3	The Effect of Bi(NO ₃) ₃ concentration on Formation of Bi ₂ O ₃ NPs	90
	4.2.4	The Effect of PEG concentration on Bi ₂ O ₃ NPs Surface Modification	96
4.3	Bi ₂ O ₃	NPs Cytotoxicity study	100
	4.3.1	The effect of different concentration of Bi ₂ O ₃ NPs on cytotoxicity	101
	4.3.2	The effect of different size of Bi ₂ O ₃ NPs on cytotoxicity	105
	4.3.3	PEG-Bi ₂ O ₃ NPs cytotoxicity study	108
4.4	Radiot	herapy application	114
	4.4.1	The effect of size of Bi_2O_3 NPs as radiosensitisers for mcf-7 cell therapy	114
	4.4.2	The effect of of Bi ₂ O ₃ NPs and PEG-Bi ₂ O ₃ NPs as radiosensitisers for mcf-7 cell therapy	116

CHAPTER FIVE: CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

5.1	Conclusion	119
5.2	Suggestions for future work	120

REFERENCES

APPENDICES

APPENDIX A: Calculation for the amount of chemical required to produced Bi₂O₃ NPs by hydrothermal method

APPENDIX B: Calculation of cell viability

APPENDIX C: Calculation for radiotherapy test

LIST OF PUBLICATIONS

LIST OF TABLES

Page

Table 1.1	The comparison of several approaches to produce Bi_2O_3 NPs	4
Table 2.1	Nanoparticles for radiotherapy applications	12
Table 2.2	Methods of synthesizing 1D Bi ₂ O ₃ NPs	26
Table 2.3	Compilation of 1D Bi_2O_3 synthesised by hydrothermal method by varying the synthesis parameters	36
Table 2.4	Comparison of the various PEG modified nanoparticles	58
Table 3.1	Materials and chemicals used in this study	61
Table 4.1	Crystallite size and particle size (diameter) with varying hydrothermal reaction temperature	79
Table 4.2	Comparison of the produced Bi_2O_3 NPs with other reported Bi_2O_3 NPs	84
Table 4.3	Crystallite size and particle size of particles with varying hydrothermal reaction time	89
Table 4.4	Crystallite size and particle size (diameter) of Bi2O3 NPs with varying Bi(NO3)3 concentration	92
Table 4.5	Crystallite size, particle size (diameter) of Bi2O3 NPs with PEG and without PEG	99
Table 4.6	Summary of Cell viability of mcf-7 cells treated with different concentration of 60 nm Bi ₂ O ₃ NPs after 24 hours exposure	102
Table 4.7	Summary of Cell viability of mcf-7 cells treated with different concentration of 60 nm Bi ₂ O ₃ NPs exposure against times	104

Table 4.8	Summary of Cell viability of mcf-7 cells treated with different concentration of Bi_2O_3 NPs after 24 hours exposure	106
Table 4.9	Summary of Cell viability of mcf-7 cells treated with different concentration of Bi ₂ O ₃ NPs exposure against times	108
Table 4.10	Comparison of the various PEG modified nanoparticles with this work PEG- Bi ₂ O ₃ NPs	110
Table 4.11	Summary of Cell viability of mcf-7 cells treated with Bi_2O_3 NPs and PEG- Bi_2O_3 after 24 hours exposure	113
Table 4.12	Summary of Cell viability of mcf-7 cells treated with Bi_2O_3 NPs and PEG- Bi_2O_3 exposure against times	113
Table 4.13	Sensitisation enhancement ratio (SER) to demonstrate lethal damage to cells after exposed to radiation	115
Table 4.14	Sensitisation enhancement ratio to demonstrate lethal damage to cells after exposed to radiation	118

LIST OF FIGURES

Figure 2.1	Changes of the nanoparticles (NPs) properties of matter depend on synthesis (Park et al., 2007, Kwon and Hyeon, 2011)	10
Figure 2.2	Tumour growth curves of prostate tumour-bearing mice after treatment of X-ray radiotherapy and BMSNs with X- ray radiotherapy (Ma et al., 2015)	16
Figure 2.3	Quantitative analysis of γ -h2ax foci density (γ -h2ax foci/100 μ m2) for n > 100 cells in each treatment group. P values: **P < 0.01, by analysis of variance (Song et al., 2016)	17
Figure 2.4	Existence domains of the four polymorphs of Bi_2O_3 as a function of temperature. (a) The α -phase transforms to the δ -phase when heated above 727 °C, which remains the structure until the melting point, 824 °C, is reached. When cooled, the δ -phase transforms into either the β -phase at 650 °C, shown in (b), or the γ -phase at 639 °C, shown in (c). The β -phase transforms to the α -phase at 303 °C. The γ -phase may persist to room temperature when the cooling rate is very slow, otherwise it transforms to the α -phase at 500 °C (Bedoya Hincapie et al., 2012)	19
Figure 2.5	Types of nanocrystalline materials by size of their structural elements: 0D: clusters; 1D: nanotubes, fibers and rods; 2D: films and coats; 3D: polycrystals (Stewart, 2014)	20
Figure 2.6	SEM image of (a) α - Bi ₂ O ₃ (b) β - Bi ₂ O ₃ (Qiu et al., 2011)	21
Figure 2.7	SEM (a–c and e) and STEM (d and f) images of (a and b) uncoated α -Bi ₂ O ₃ , (c and d) APTMS coated α -Bi ₂ O3 and (e and f) α -Bi ₂ O ₃ –APTMS–MTX (Bogusz et al., 2014)	24
Figure 2.8	General schematic diagram of oxidative metal vapor- phase deposition method (Linkedin, 2015)	29

Figure 2.9	a) SEM and b) TEM images of a Bi_2O_3 nanowires collected at the 350 temperature zone. Evaporation temperature = 800, nitrogen flow rate = 600 sccm (Qiu et al., 2006)	29
Figure 2.10	Schematic diagram of MOCVD set up (Kim et al., 2007a)	31
Figure 2.11	Side-view SEM image of Bi ₂ O ₃ rods (Kim et al., 2006a)	32
Figure 2.12	Schematic diagram of hydrothermal set up (Einarsrud and Grande, 2014)	34
Figure 2.13	SEM images of α - Bi ₂ O ₃ under the different scale; (a) 3 μ m, (b) 2.4 μ m and (c) 6 μ m, at 12 h, 120 °C (Xiong et al., 2008)	34
Figure 2.14	The SEM images of the as-prepared products using the precursors prepared at various temperatures after calcinations. (a) 120 °C, (b) 150 °C, (c) 210 °C and (d) 240 °C (Hou et al., 2013)	39
Figure 2.15	Effects of reaction temperature on the particles size and yield of the as-synthesised Bi_2O_3 products. All the experimental parameters were identical ([PEG] = 0.2, [Bi3+] = 0.5 mol L-1, 2 h) except that specially indicated (Li, 2006)	40
Figure 2.16	Effects of reaction time on the particles size and yield of the as synthesised Bi ₂ O ₃ products. All the experimental parameters were identical ([PEG]=0.2, [Bi ³⁺] = 0.5 mol L-1, 90 °C) except that specially indicated (Li, 2006)	41
Figure 2.17	SEM (a) and TEM (b–d) images of Bi nanostructures obtained at 90 °C for 10 h (Ma et al., 2012)	42
Figure 2.18	Effects of Bi(NO ₃) ₃ concentration on the particles size of the as synthesised Bi ₂ O ₃ products. All the experimental parameters were identical ([PEG] = 0.2, 90 °C, 2 h) except that specially indicated (Li, 2006)	43
Figure 2.19	Formation of Bi ₂ O ₃ using (a) Bismuth oxalate precursor; (b) bismuth acetate precursor (Muruganandham et al., 2012)	44

Figure 2.20	SEM photographs of Bi_2O_3 powders prepared from (a) $Bi(NO_3)_3$; (b) $Bi(OH)_3$; and (c) $Bi(OH)_3$ +KOH (hydrothermal conditions: 220 °C, 10 h, filling capacity 80%) (Yang et al., 2002)	45
Figure 2.21	TEM and SEM images of α - Bi ₂ O ₃ under the different reaction, aging 12 h at 120 °C: (a-b) without surfactant; (c-f) with surfactant (Xiong et al., 2008)	46
Figure 2.22	Interaction between X-rays with high-Z NPs (Kwatra et al., 2013)	52
Figure 2.23	Ratio of mass energy absorption coefficient of Bi_2O_3 relative to water (Stewart et al., 2016)	54
Figure 2.24	Survival curves of 9L untreated and treated with 50 lg/ml of Bi_2O_3 NPs and exposed to 125 kVp X-ray radiation doses (Stewart et al., 2016)	55
Figure 2.25	Survival curves of 9L cells untreated and treated with 50 lg/ml of Bi_2O_3 NPs and exposed to 10 MV X-ray radiation doses (Stewart et al., 2016)	56
Figure 3.1	Flowchart of Bi_2O_3 NPs synthesis using hydrothermal method	64
Figure 3.2	The cells with Bi_2O_3 NPs was irradiated with LINAC machine with different dose	71
Figure 3.3	Overall flowchart for whole process of the study	72
Figure 4.1	XRD patterns of Bi_2O_3 NPs synthesised using hydrothermal method at 4 h and 0.2 M of $Bi(NO_3)_3$ with varying hydrothermal reaction temperature: at (a) 60 °C, (b) 70 °C, (c) 80 °C, (d) 90 °C and (e) 120 °C	78
Figure 4.2	SEM images before hydrothermal (a) $Bi_2O(OH)_2SO_4$, (b) the mixture of $Bi_2O(OH)_2SO_4$ and $Bi(OH)_3$, and after hydrothermal at (c) 60 °C, (d) 70 °C, (e) 80 °C, (f) 90 °C and (g) 120 °C	83
Figure 4.3	XRD patterns of Bi_2O_3 NPs synthesised using hydrothermal method at 60 °C and 0.2 M of $Bi(NO_3)_3$ with varying hydrothermal reaction time:(a) 10 min, (b) 20 min,	86

xi

	(c) 30 min, (d) 1 hour, (e) 2 hours, (f) 3 hours and (g) 4 hours	
Figure 4.4	SEM images of Bi_2O_3 NPs synthesised using hydrothermal method at 60 °C and 0.2 M of $Bi(NO_3)_3$ with varying hydrothermal reaction time:(a) 10 min, (b) 20 min, (c) 30 min, (d) 1 hour, (e) 2 hours, (f) 3 hours and (g) 4 hours	88
Figure 4.5	EDX spectrum of Bi_2O_3 NPs synthesised at (a) 10 min reaction time and (b) random spot area	89
Figure 4.6	XRD patterns of Bi_2O_3 NPs synthesised using hydrothermal method at 60 °C and 10 min with varying $Bi(NO_3)_3$ concentration: (a) 0.05 M, (b) 0.1 M, (c) 0.2 M, and (d) 0.3 M	91
Figure 4.7	The schematic diagram of Bi_2O_3 NPs formation by controlling the concentration of $Bi(NO_3)_3$: (a) Low concentration $Bi(NO_3)_3$, (b) High concentration $Bi(NO_3)_3$	92
Figure 4.8	SEM images of Bi_2O_3 NPs synthesised using hydrothermal method at 60 °C and 10 min with varying $Bi(NO_3)_3$ concentration: (a) 0.05 M, (b) 0.1 M, (c) 0.2 M, and (d) 0.3 M	93
Figure 4.9	(a) TEM image of 60 nm Bi_2O_3 NPs and (b) HRTEM image of 60 nm Bi_2O_3 NPs	94
Figure 4.10	EDX spectrum of 60 nm Bi ₂ O ₃ NPs	95
Figure 4.11	FTIR spectra of 60 nm Bi ₂ O ₃ NPs	96
Figure 4.12	XRD patterns of Bi2O3 NPs synthesised using hydrothermal method with varying PEG concentration: (a) 0.05 M PEG, (b) 0.10 M PEG, (c) 0.15 M PEG and (d) 0.20 M PEG	97
Figure 4.13	SEM patterns of Bi_2O_3 NPs synthesised using hydrothermal method: (a) 0.05 M PEG, (b) 0.10 M PEG,	98

(c) 0.15 M PEG and (d) 0.20 M PEG

Figure 4.14	FTIR spectra of Bi_2O_3 NPs synthesised using hydrothermal method: (a) 0.05 M PEG, (b) 0.10 M PEG, (c) 0.15 M PEG and (d) 0.20 M PEG	100
Figure 4.15	Cell viability of mcf-7 cells treated with 60 nm of Bi_2O_3 NPs after 24 hours incubation	102
Figure 4.16	Cell viability of mcf-7 cells treated with different concentration of $60 \text{ nm Bi}_2O_3 \text{ NPs}$ incubation against times	104
Figure 4.17	Cell viability of mcf-7 cells treated with different sizes of Bi ₂ O ₃ NPs after 24 hours incubation	106
Figure 4.18	Cell viability of mcf-7 cells treated with different concentration of Bi_2O_3 NPs incubation against times	107
Figure 4.19	Cell viability of mcf-7 cells treated with Bi_2O_3 NPs and PEG- Bi_2O_3 after 24 hours incubation	112
Figure 4.20	Cell viability of mcf-7 cells treated with Bi_2O_3 NPs and PEG- Bi_2O_3 incubation against times	113
Figure 4.21	Survival curves of mcf-7 cell lines untreated and treated with Bi_2O_3 NPs and exposed to 6 MV radiation doses	115
Figure 4.22	Survival curves of mcf-7 untreated and treated with Bi_2O_3 NPs and Bi_2O_3 -PEG exposed to 6 MV radiation doses	118

LIST OF ABBREVIATIONS

Ag	Silver
APTMS	Aminopropyl-trimethoxysilane
BCC	Base-centered cubic
Bi	Bismuth
Bi(OH) ₃	Bismuth hydroxide
Bi ₂ O ₃	Bismuth oxide
Bi ₂ Se ₃	Bismuth selenide
BSA	Bovine Serum Albumin
СТ	Computed tomography
DMEM	Dulbecco's Modified Eagle Medium
DNA	Deoxyribonucleic acid
DTPA	Diethylenetriaminepentaacetic
EDTA	Ethylenediaminetetraacetic acid
EDX	Energy Dispersive X-Ray Analysis
EGFR	Epidermal growth factor receptor
EPR	Enhanced permeability and retention
ESR	Erythrocyte sedimentation rate

FBS	Fetal bovine serum	
FCC	Face-centered cubic	
FTIR	Fourier-transform infrared spectroscopy	
Gd	Gadolinium	
H ₂ O	Water	
HER-2	Human epidermal growth factor	
HSA	Human serum albumin	
IC ₅₀	The half maximal inhibitory concentration	
ICDD	International Centre for Diffraction Data	
КОН	Potassium hydroxide	
LSM	Strontium-doped lanthanum manganate	
MBE	Molecular beam epitaxial	
Mcf-7	Michigan Cancer Foundation 7: Type of breast	
	cancer cells	
MOCVD	Metalorganic Chemical Vapor Deposition	
MRI	Magnetic resonance imaging	
MTX	Methotrexate	
Mw	Molecular weight	

Na ₂ SO ₄	Sodium sulfate
NaOH	Sodium hydroxide
NPs	Nanoparticles
O ₂	Oxygen
OH-	Hydroxide ions
PBS	Phosphate buffer saline
PDT	Photodynamic therapy
PEG	Polyethylene glycol
PFC	Perfluorocarban
Pt	Platinum
ROS	Reactive oxygen species
RT	Radiotherapy
SEM	Scanning electron microscopy
SER	Sensitisation enhancement ratio
Si	Silica
STEM	Scanning transmission electron microscope
TEM	Transmission electron microscopy
TiO ₂	Titanium dioxide

TMBi	Trimethylbismuth
VS	Vapor-solid
XRD	X-Ray Diffraction
YSB	Yttria-stabilized bismuth oxide

LIST OF SYMBOLS

α	Alpha phase (monoclinic)
Z	Atomic number
β	Beta phase (tetragonal)
G	Degree of ellipticity
δ	Delta phase (face-centered cubic)
er	Diaelectric permittivity
e _r	Dielectric permittivity
γ	Gamma phase (body-centered cubic)
g	Gram
Gy	Gray (radiation dose)
h	Hour
KeV	Kilo-electronvolt
kPa	Kilopascal
kVp	Kilovolt photon
MeV	Mega-electronvolt
MV	Megavolt
$\mu g.mL^{-1}$	Microgram per milliliter

μL	Microlitre
μΜ	Micromolar
ml	Millilitre
mm	Millimeter
mM	Millimolar
nm	Nanometer
%	Percent
V	Potential
Р	Probability
η	Refractive index
rpm	Revolutions per minute
θ°	Theta

SINTESIS NANOPARTIKEL BISMUT OKSIDA UNTUK APLIKASI RADIOTERAPI

ABSTRAK

Nombor atom tinggi (Z) nanopartikel bismut oksida (Bi₂O₃ NPs) mempunyai penembusan sel yang lebih banyak dan kurang kesan buruk daripada pemeka sinaran konvensional. Pelbagai saiz Bi₂O₃ NPs telah berjaya dihasilkan dengan menggunakan kaedah hidroterma dan digunakan untuk aplikasi radioterapi. Beberapa sintesis parameter telah dikaji: kesan perbezaan suhu dan kesan perbezaan masa hidroterma, kesan perbezaan kepekatan bismuth nitrat, Bi(NO₃)₃, dan kesan perbezaan kepekatan polietilena glikol (PEG). Sifat-sifat Bi₂O₃ NPs telah dikaji untuk menentukan kehadiran fasa, penghabluran, morfologi, kehadiran unsur dan saiz partikel. Analisa XRD membuktikan Bi₂O₃ tulen dengan fasa monoklinik telah dihasilkan (Kod Rujukan ICDD: 98-000-6260). Saiz Bi₂O₃ NPs didapati meningkat dengan peningkatan suhu dan masa tindakbalas hidrotherma. Walaubagaimanapun, apabila kepekatan Bi(NO₃)₃ meningkat, saiz partikel Bi₂O₃ NPs menurun disebabkan oleh kurangnya resapan ion ke dalam nucleus. Pemerhatian terhadap morphologi menunjukkan Bi₂O₃ NPs berbentuk rod. Nanopartikel yang disalut dengan PEG tidak menunjukkan sebarang peningkatan saiz. Berdasarkan analisa FTIR, keamatan Bi₂O₃ NPs berkurang apabila kepekatan PEG meningkat kerana molekul PEG dapat diserap ke permukaan kristal Bi melalui ikatan Bi–O. Bi₂O₃ NPs yang dihasilkan kemudiannya menjalani kajian ketoksikan dan radioterapi. Kajian ketoksikan terhadap Bi₂O₃ NPs tidak memberi kesan toksik kepada sel barah payudara (mcf-7) pada kepekatan 0.05 μ M - 50 μ M. Prestasi radioterapi oleh Bi₂O₃ NPs yang telah dihasilkan diperoleh dengan mengira nisbah peningkatan pemekaan (SER). Akhirnya, 60 nm Bi₂O₃ NPs diperolehi sebagai keputusan yang optimum dengan SER 1.26.

SYNTHESIS OF BISMUTH OXIDE NANOPARTICLES FOR RADIOTHERAPY APPLICATION

ABSTRACT

High atomic number (Z) of bismuth oxide nanoparticles (Bi₂O₃ NPs) has more cell penetration and less adverse effects than conventional radiosensitisers. In this work, various sizes of Bi₂O₃ NPs were successfully synthesised using hydrothermal method. Several synthesis parameters were studied: effect of hydrothermal reaction temperature, effect of hydrothermal reaction time, effect of bismuth nitrate, Bi(NO₃)₃ concentration and effect of polyethylene glycol (PEG) concentration. The properties of Bi₂O₃ NPs were then characterised to determine the phase presence, crystallinity, morphology, elemental presence and size of nanoparticles. The as-synthesised Bi_2O_3 NPs was in monoclinic Bi₂O₃ phase (ICDD 98-008-5622). Increasing reaction temperature and time increased the size of Bi₂O₃ NPs. However, as the Bi(NO₃)₃ concentration increased, the particle size of Bi₂O₃ NPs decreased due to less ions diffusion per nuclei. The morphology observation showed that Bi₂O₃ NPs were in rods form. Coating with PEG did not show any increase in nanoparticles size. Based on Fourier-transform infrared spectroscopy (FTIR) analysis, by increasing the PEG concentration, the intensity of Bi₂O₃ NPs band diminished because PEG molecules could adsorb onto the surface of Bi crystals through Bi-O bonding. After that, the produced Bi₂O₃ NPs were subjected to cytotoxicity analysis and radiotherapy. Bi₂O₃ NPs did not induce cytotoxicity in breast cancer (mcf-7) cell lines at concentration from 0.05 μ M to 50 μ M. The radiotherapy performance of the as-prepared Bi₂O₃ NPs was obtained by calculating the sensitisation enhancement ratio (SER). The optimum result was obtained for 60 nm Bi₂O₃ NPs with SER of 1.26.

CHAPTER ONE

INTRODUCTION

1.1 Research background

Nanomaterials with diameters ranging between 1 and 100 nanometers, are natural bridges between molecules and extended solids. Nanomaterials are complex of many-electron systems, where reduced sizes and quantum confinement of electrons and phonons give birth to fascinating new effects, potentially tunable with particle size (Van Dijk et al., 2005). The use of nanomaterials in medical application has been developed into a promising research area known as nanobiotechnology (Ahmed et al., 2012). The application of nanomaterials in medical field is very much welcomed nowadays especially in biological labelling and sensing, and cancer therapy. The main advantage of using nanomaterials is that its properties can be tuned or manipulated in order to meet the specific requirements of particular applications (Sumer and Gao, 2008).

Recently, application of nanomaterials in cancer therapy has gained a great interest. One of the main modalities for the treatment of cancer is radiotherapy. Radiotherapy is a critical component of the modern approach for curative and adjuvant treatment of cancers. Radiotherapy controls the growth of cancerous cells by bombardment with ionizing radiation, causing deoxyribonucleic acid (DNA) damage by direct ionization or through generation of free radicals by ionization of water or oxygen molecules. Sufficient damage to DNA can halt cell growth and prevent metastasis. The primary drawback is collateral damage: there is little distinction in absorption between healthy and malignant tissues, and thus doses must be limited in order to mitigate unwanted damage to the tumour surroundings (Cooper et al., 2014).

Nanomaterials with high atomic number (Z), have recently received wide interests for their excellent radiosensitisation effect in order to overcome the weaknesses, as well as to selectively increase the radioactivity deposition in the cancer region (Kaur et al., 2013, Xiao et al., 2011). The strong photoelectric absorbance capacities and the numerous short-range secondary electrons generated on the particle surface can accelerate the DNA break and thus kill more tumour cells when undergo the radiotherapy. Meanwhile, nanoparticles down to 100 nm in diameter could increase tumour accumulation in the intravenous administration by virtue of the enhanced permeability and retention (EPR) effect of leaky tumour vasculature. Thus, it is believed that the nanometer size radiosensitiser could efficiently integrate the radiosensitisation effect as well as showing a great potential in delivering sufficient radiation dosage to the targeted tumour.

Gold nanoparticles (AuNPs) (Z = 79) is the most well developed nanoparticle platform. Hainfeld et al. (2013) reported that gold nanoparticles (AuNPs) (Z = 79) showed high-resolution CT-scan when AuNPs was injected into mice and evidently increased approximately three times local radiation dose in radiotherapy. The AuNPs was found to be effective as radiosensitiser to kill tumour cell by surrounded or loaded to specific cancer cells. However, the high cost of gold could limit the widespread use of AuNPs. The cost of 1kg bismuth is around USD29, while 1kg gold is around USD39 000 (Argus 2018, Goldprice 2018). Bismuth nanoparticles (BiNPs) (Z = 83), is a cost effective alternative and a better candidate for high Z radiosensitiser research. Furthermore, bismuth compounds are biodegradable and biocompatible with a long history in biomedicine. To date, most investigations centering on the use of bismuth for nanoparticulate radiosensitiser. However, comprehensive cytotoxicity information of BiNPs is not available. BiNPs was detected in the nervous system and other organs of the mice (Stoltenberg et al., 2003). Therefore, the approval of Bi as a non-toxic alternative to Pb has been questioned by scientists who raised concerns about the lack of knowledge about Bi toxicity.

Bismuth-based nanoparticles have been studied as radiosensitiser. For example, bismuth sulphide nanoparticles (Bi_2S_3 NPs) could be successfully realized on the tumour-bearing mice model in the X-ray radiotherapy research, resulting in significantly higher inhibition effect for the tumour growth (Yao et al., 2014). Bismuth selenide nanoparticles (Bi_2Se_3) had exhibited remarkably enhanced DNA damage suggesting the strong radiotherapy enhancement effect of Bi-based nanoparticles (Song et al., 2015). Most recently, bismuth oxide nanoparticles (Bi_2O_3 NPs) also has be used to kill tumour in radiotherapy. Bi_2O_3 NPs also has been used in many medical and cosmetic applications for many years (Kim et al., 2008). Stewart et al. (2014) showed that Bi_2O_3 NPs could be tailored with different oxygen contents to induce cell proliferation or toxicity. Another research highlighted that a theranostic system based on Bi_2O_3 NPs would be highly effective in the treatment of cancer (Bogusz et al., 2014). Thus, it is suggested that Bi_2O_3 NPs is an ideal alternative to evaluate the therapeutic effect of nanomedicine based radiosensitiser in the radiotherapy research.

Therefore, several approaches have been employed to synthesis Bi₂O₃ NPs in materials science and engineering. Bi₂O₃ NPs has been synthesised via sol gel method (Armelao et al., 1998, Xiaohong et al., 2007), citrate gel process (Anilkumar et al., 2005), oxidation of bismuth metal at 800 °C or thermal decomposition of bismuth salt solution (Krüger et al., 2000, Davidge, 1986), flame spray pyrolysis (Mädler and Pratsinis, 2002), polyol method (Jungk and Feldmann, 2001) and atomic-pressure

chemical vapor deposition (CVD) (Shen et al., 2007). Although these methods have been proven to be successful in the synthesis of Bi_2O_3 NPs, they normally require high temperature heat treatment, long synthesis period, and post treatment, which is far from low cost and apparently require sophisticated equipments. Hence, a more simple synthesis method, which is precipitant-free, additive-free, and low cost, is sought after for the synthesis of Bi_2O_3 NPs. A hydrothermal method is a powerful method in synthesis of Bi_2O_3 NPs at a considerably low temperature, energy saving and cost effective benefits (Wu et al., 2011). The hydrothermal method also has the advantages such as controllable particle size, morphology and the degree of crystallinity by simply changing the experimental parameters (Xu et al., 2005). Table 1.1 shows in detail the comparison of several approaches to produce Bi_2O_3 NPs.

Method	Advantages	Disadvantages	Reference
Sol-gel method Citrate gel method		 Substrate dependent Non-uniform thermal expansion 	(Armelao et al., 1998, Xiaohong et al., 2007) (Anilkumar et al., 2005)
Thermal decomposition method	Successful in producingBi ₂ O ₃	High temperature	(Krüger et al., 2000)
Flame spray pyrolysis method	NPs	 Requires line of sight to the surface being coated Difficult to handle 	(Mädler and Pratsinis, 2002)
Polyol method		Required alkali as precipitation reagent	(Jungk and Feldmann, 2001)

Table 1.1: The comparison of several approaches to produce Bi₂O₃ NPs