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KAJIAN PENGIMEJAN RESONANS MAGNET KEFUNGSIAN KE ATAS 

TAHAP KESAKITAN DENGAN KEHADIRAN DAN KETIDAKHADIRAN 

ORANG TERSAYANG 

 
 

ABSTRAK 

 

Kesakitan yang disebabkan oleh haba laser dan teknik pengimejan resonans magnet 

kefungsian (fMRI) telah digunakan untuk mengkaji respons terhadap modulasi 

kesakitan di dalam dua keadaan. Keadaan pertama ialah apabila peserta tidak 

ditemani orang tersayang (keadaan Bersendiri) dan keadaan kedua ialah apabila 

peserta ditemani oleh orang tersayang (keadaan Sokongan) semasa stimulasi 

kesakitan diberikan di dalam gantri MRI. Laser jenis Th:YAG digunakan untuk 

stimulasi kesakitan dan alur cahayanya disasarkan ke dorsum tangan kanan. 

Paradigma eksperimen menggunakan kaedah blok dihasilkan terlebih dahulu untuk 

imbasan fMRI. Sebanyak 17 subjek perempuan telah dipilih (min umur 20.59, SD 

2.85 tahun) dan tahap kesakitan ditentukan terlebih dahulu sebelum imbasan. Soal 

selidik Pengalaman Hubungan Akrab - Struktur Hubungan (ECR-RS) dan ujian 

personaliti USM (USMaP-i) diberikan kepada subjek sebelum imbasan. Pemetaan 

Statistik Berparameter (SPM) versi 8 dengan pendekatan pemodelan dinamik 

penyebab (DCM) digunakan untuk mengkaji kehubungan di antara kawasan-

kawasan pengaktifan dan akhirnya satu model kehubungan optimum ditentukan. 

Kajian ini mendapati tindak balas individu terhadap kesakitan boleh dibahagikan 

kepada dua kategori. Kumpulan yang mempunyai ahli keluarga sebagai orang 

tersayang mempunyai tahap kesakitan yang lebih rendah di dalam keadaan 

Sokongan, mewakili kes Cinta Menyakitkan; manakala kumpulan yang ditemani oleh 

pasangan mereka mempunyai tahap kesakitan yang lebih tinggi di dalam keadaan 



 

xx 

 

yang sama, mewakili kes Cinta Menguatkan. Ciri-ciri personaliti seperti Ekstraversi 

didapati mengurangkan tindak balas kepada rangsangan kesakitan apabila ditemani 

oleh orang tersayang. Semua peserta menunjukkan pengaktifan di dalam kawasan 

otak yang berkaitan dengan pemprosesan kesakitan. Di dalam keadaan Bersendiri, 

ACC, MCC, INS, AMY, VLPFC dan HIP didapati teraktif, manakala di dalam 

keadaan Sokongan, INS, VLPFC, SII, THA dan girus supramarginal didapati 

teraktif. Analisis DCM menunjukkan Cinta Menyakitkan melibatkan pengaktifan 

dalam THA, PHG dan HIP manakala Cinta Menguatkan melibatkan pengaktifan di 

semua bahagian korteks singulat. BMS menunjukkan Cinta Menguatkan boleh 

diwakili oleh rangkaian kortikal yang melibatkan kehubungan intrinsik ACC → PCC 

→ MCC dan ACC → MCC. Kesimpulannya, kajian ini mendapati kehadiran orang 

tersayang berdekatan individu memodulasikan kesakitan secara berbeza dan 

bergantung kepada keperibadian seseorang individu serta jenis perhubungannya 

dengan orang tersayang. Lebih menarik lagi, kajian ini mendapati satu kemungkinan 

rangkaian korteks yang baru untuk mekanisma Cinta Menguatkan. 
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fMRI STUDY OF PAIN THRESHOLD IN THE PRESENCE AND ABSENCE 

OF THE LOVED ONE 

 

ABSTRACT 

 

Laser-induced heat pain and functional magnetic resonance imaging (fMRI) 

techniques were used to investigate the modulation of pain response under two 

different conditions. One condition was when the participants were not accompanied 

by their loved ones (Alone condition) and the other condition was when the 

participants were accompanied by their loved ones (Support condition) during pain 

stimulus delivery inside the MRI gantry. Th:YAG laser was used as pain stimuli with 

its light beam targeted onto the dorsum of the right hand. An experimental paradigm 

utilizing block design was first developed for the fMRI scan. 17 female subjects 

participated (mean age 20.59; SD 2.85 years) and the pain threshold was determined 

prior to scanning. The Experience Closed Relationship - Relationship Structure 

(ECR - RS) test and USM personality inventory questionnaires (USMaP-i) were 

given prior to fMRI scanning. Statistical Parametric Mapping (SPM) version 8 with 

Dynamic Causal Modelling (DCM) approach was used to investigate the 

connectivity between activated regions and one optimum connectivity model was 

identified finally. It was found that individual responses to pain may be divided into 

two categories. The group accompanied by a family member as the loved one have 

lower pain threshold in Support condition, representing Love Hurts; while the group 

accompanied by a partner have higher pain threshold in the same condition, 

representing Love Heals. Extraversion personality was found to reduce the response 

to pain stimulation when accompanied by the loved one. All participants showed 

activations in areas associated with pain processing. In Alone condition, ACC, MCC, 



 

xxii 

 

INS, AMY, VLPFC and HIP were activated, while in Support condition, INS, 

VLPFC, SII, THA and supramarginal gyrus were activated. DCM analysis revealed 

that Love Hurts involved activations in THA, PHG and HIP while Love Heals 

involved activations in all parts of cingulate cortex. BMS showed that Love Heals 

could be represented by a cortical network involving the intrinsic connectivity of 

ACC → PCC → MCC and ACC → MCC. In conclusion, the present study revealed 

that having a loved one nearby modulates pain differently depending on the 

personality of the individual and the type of relationship with the loved one. More 

interestingly, this study discovers a new possible cortical network for Love Heals. 



 
 

1 
 

CHAPTER 1 

INTRODUCTION 

 

1.1 Background of the study 

Functional magnetic resonance imaging (fMRI) is one of the techniques to image the 

brain in vivo and is capable of correlating psycho-physiological processes. This 

technique records neuronal activity by measuring changes in blood flow (Brooks & 

Tracey, 2005). fMRI provides information related to brain function by capturing the 

blood oxygenation level dependent (BOLD) contrast which is sensitive to changes in 

the state of oxygenation of the hemoglobin (Westbrook et al., 2005).  

 

fMRI has become a tool to understand the physiology of pain. Pain is not a simple 

and straightforward sensory experience because it does not have one specific cortical 

area like other sensations such as vision and auditory. Using fMRI with an 

appropriate experimental paradigm and a suitable analysis, the pain-related brain 

regions can be investigated. For more advanced findings, this method is not only 

used to explore the pain network but also to investigate connectivity between brain 

regions associated with pain in relevant situations and its relation with personality 

and feelings. 

 

Research reveals that pain perception is influenced by two aspects: a sensory-

discriminative and an affective-motivational aspect of pain (Brooks & Tracey, 2005; 

Aurav et al., 2010; Ahmad & Abd. Aziz, 2014). The sensory-discriminative 

component provides information about the intensity, modality and location of pain 

(Ohara et al., 2005) while the affective-motivational component is subjective to 

personal perception and involves psychological variables such as attention, anxiety, 
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emotional responses and personality (Ohara et al., 2005; Ahmad & Abd. Aziz, 

2014). While pain is subjective, an analysis of  connectivity can be done to 

investigate how the two pain components as well as the related brain regions are 

connected to each other. A method called Dynamic Causal Modelling (DCM) which 

generates the model of brain network  (Friston et al., 2003; Stephan et al., 2010) can 

be used to explain the connection between all related areas in one interaction. 

 

1.2 Problem statement 

Pain is multidimensional and is subjective to personal experience and perception. A 

similar type of pain stimulus may be perceived differently by different individuals. 

The perception of pain maybe influenced by a person’s surrounding or maybe 

modulated by the personality or a person’s past experiences. Considering these 

factors, medical practitioners or therapists may face problems in treating patients’ 

pain. 

 

Pain research is not only limited to patients but is also performed in healthy 

individuals. Healthy individuals’ reaction to pain varies and can be related to their 

psychological characteristics. For example, ‘emotionally fragile’ individuals are 

unable to bear much pain. Without the knowledge of the factors that enable a person 

to feel more pain or less pain, it is difficult to predict a person's reaction to pain and 

difficult to plan for any treatment. 

  

Most people feel comfortable and have positive emotion when their loved ones are 

near them. However, emotions are not always helpful. Emotions can hurt as well as 

help us (Gross, 2008). For instance, upon receiving the stimulus of pain, some people 
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will feel more pain even while receiving support from their loved ones. This 

phenomenon is called Love Hurts. On the other hand, some people will tolerate pain 

more. In this work, a new phrase Love Heals is introduced to explain such group. 

Taking these conditions into account, several questions arise such as: 

1. Are there any differences in the response to pain based on the specific conditions 

during the stimulus delivery? 

2. Are the same areas of the brain involved in the different responses to pain? 

3. What is the relationship between different pain reactions and the connectivity of 

areas in the brain that are activated during pain processing? 

 

1.3 Objective of the study 

The objectives of the study are: 

1. To study the individual responses to acute pain using laser heat stimulation. 

2. To study whether the individual’s responses to acute pain is modulated by the 

presence of a loved one. 

3. To map the brain activation to laser heat pain in two conditions: alone in the 

experiment room and in the presence of support by a loved one. 

4. To investigate the possible model of connectivity based on Bayesian selection 

technique that may explain the individual’s pain response. 

 

In general, the expected outcome of this study is to obtain the functional brain map 

of pain signal based on laser heat pain stimuli under two conditions (1) alone and (2) 

accompanied by a loved one. This study tries to find evidence to prove whether Love 

Hurts or Love Heals. Note that Love Hurts means the situation where a person 

reports more pain in the presence of support from a loved one, while Love Heals 
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means the resulting response of feeling less pain in the presence of a loved one while 

receiving pain.  

 

Bayesian technique is a method of selecting and proving that there exists the 

possibility of an optimal connectivity model which may be used to represent an 

interaction. Bayesian Model Selection (BMS) applies a Bayes approach in estimating 

and choosing the most optimal model among the competing models (Stephan et al., 

2010). It is to be noted that the distance between points of connectivity should not be 

too far. 

 

1.4 Scope of study 

This study is firstly, to focus on the influences of a loved one on the person's 

response to pain stimulation. Secondly, it is to determine the brain map of regions 

that are activated upon receiving the stimulus. The connectivity study is not meant to 

build a full pain model but rather to expect the connectivity of activated brain regions 

for different responses to pain by different groups. 

 

The study is focussed to consider only Malay-right-handed-female participants, with 

no history of brain injuries and critical illnesses or mental disorder. All participants 

must be MRI compliant and not pregnant. The main focus to the study is to 

investigate only the preoccupied type of relationship between participants and their 

loved ones.  
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1.5 Benefits of the study 

The study is expected to contribute to the knowledge of physiology of pain, focusing 

on the effect of the presence and absence of a significant figure near the patient 

during receiving pain. This study may lead to a new method or assessment on 

patients by medical practitioners or therapists in handling patients. The outcome of 

the study is expected to contribute to the knowledge of brain connectivity. 

 

1.6 Outline of the thesis 

In Chapter 2, the relevant studies are reviewed. This chapter reviews some research 

that had been done by other researchers which have some relatedness with this study 

and also some theoretical framework to explain the basic idea. Chapter 3 outlines the 

methodology of the study. This chapter focuses on the experimental design, the data 

acquisition and method of analyses. Chapter 4 presents the results obtained from the 

study. Chapter 5 explains the discussion of the results. Lastly, the conclusion and 

suggestions for further work are summarised in Chapter 6.
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Pain 

The perception of pain is complex and subjective. Even though pain can be defined 

as unbearable sensation arising from specific parts of the body, it is evident that pain 

is not experienced by different individuals in the same way (Ohara et al., 2005). The 

International Association for the Study of Pain (IASP) widely used definition stated 

that “pain is an unpleasant sensory and emotional experience associated with actual 

or potential tissue damage, or described in terms of such damage” (IASP, 1994a); 

while the American Medical Association defined pain as “the sensory and emotional 

experience of discomfort, which is usually associated with actual or threatened tissue 

damage or irritation” (AMA, 2003). 

 

2.1.1 Pain pathway 

Studies of pain reveal that the perception of pain comprises two major components. 

First, a sensory-discriminative component of pain which processes the information of 

pain modality, location and the quality of pain (Ohara et al., 2005; Vogt, 2015; 

Ahmad & Abd. Aziz, 2014). Secondly, an affective-motivational aspect of pain 

which is responsible in processing the cognitive factors which modulate pain 

perception such as emotion, attention, anxiety, fear, expectation and anticipation 

(Opisov et al., 2010; Ahmad & Abd. Aziz, 2014). 

 

In general, the pain pathway starts from the periphery, the site where the pain 

stimulation is received before transmitting the pain information from periphery to the 

cerebral cortex of the brain and translating it (Ahmad, 2004). Pain signals are then 
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carried by two types of afferent peripheral fibers: A-delta and C fibers. C fibers 

transmit impulses involved in diffuse dull, burning, or aching pain sensations while 

A-delta fibers transmit sharp or pricking pain (Tortora & Grabowski, 2003; Sarafino 

& Smith, 2011). Signals from A-delta and C fibers follow different paths when they 

reach the brain where A-delta signals go to motor and sensory areas in the brain, 

while C fiber signals terminate mainly in the forebrain (Sarafino & Smith, 2011). 

 

2.1.2 Pain related regions 

Pain does not have a specific cortical area as it has diverse dimensions. However, 

many studies show that basically the pain-related brain areas especially the pain 

associated to skin acute pain involves the activation in primary and secondary 

somasosensory cortex (Chen et al., 2002; Bingel et al., 2003; Apkarian et al., 2005) , 

thalamus (Baumgartner et al., 2010; Ploner et al., 2010; Yen et al., 2013) and insula 

(Ploner et al., 2010; Wiech et al., 2014b). The cognitive affective aspect of pain may 

involve several unspecified brain regions such as anterior cingulate cortex (Ohara et 

al., 2005; Roy et al., 2009), amygdala (Bornhovd et al., 2002; Weich & Tracey, 

2013), orbitofrontal cortex (Roy et al., 2009) and ventrolateral prefrontal cortex 

(Ahmad, 2011; Wiech et al., 2014a, b). These are not fixed regions in the process of 

pain perception and depends on the cognitive modulations. 

 

2.1.3 Pain modulations 

Pain perception is not only modulated by the nociceptive inputs such as the intensity, 

quality and location of pain (Ohara et al., 2005; Ahmad, 2011) but also by the 

affective and cognitive factors (Aurav et al., 2010; Wiech & Tracey, 2013) which 

constitute more subjective psychological variables comprising attention, anxiety, 
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expectation, depression, stress and anticipation (Valente et al., 2009; Wiech & 

Tracey, 2013; Ahmad & Abd Aziz, 2014). In recent studies, the pain perception is 

found to be modulated by several other factors like emotion, personality, and the 

condition at the time the individual receives the pain (Roy et al., 2009; Cheng et al., 

2010; Cameron, 2011; Martinez et al., 2011; Inakagi & Eisenberger, 2012; Tamam et 

al., 2014).  

 

Emotion, such as love, like, hate, sad, happy and etc, may either be positive or 

negative modulates the pain perception of the individual. The emotion of individual 

is, in turn, modulated by the personality characteristics. Another factor that 

contributes to modulation of pain is the presence or absence of a significant other at 

the time of receiving pain (Cheng et al., 2010). According to a study by Montoya et 

al. (2004), the social support through the presence of a significant other can 

influence pain processing at the subjective behavioral level as well as the central 

nervous system level; and this has been proven true by Cheng et al. (2010) and 

Tamam et al., (2014). However how this factor influences the neuronal 

hemodynamic responses is still under investigation. 

 

2.2 Pain studies 

Laboratory studies of pain need to pay attention to several aspects which would help 

to obtain the precise findings other than just to minimize the confounding factors or 

analysis imperfection due to too many variables. For instance, pain studies should  

consider what type of stimulus to be used and what type of pain would it produced. 

The experimental design should take into account some precautions to avoid the 

confounding effects which result in an unwanted outcome. 



 

9 

 

2.2.1 Quality of pain 

Human skin may sense pain with many different qualities. For instance, a sensation 

of stabbing or pricking might be described as “sharp” while others may be felt as 

“dull” pain (Sarafino & Smith, 2011). A sensation of heat may not always be 

perceived as warm or hot, but sometimes may be perceived as sharp pain when a 

targeted area is very small.  

 

2.2.2 Laser heat pain 

A study by Agostino et al., 2000 revealed that a pinprick sensation can be produced 

using a small laser beam. Laser stimuli with a diameter of 2.5mm, irradiating an area 

of approximately 5mm2 produces a sharp pain like a pinprick (Agostino et al., 2000). 

Laser heat is used in pain studies since it selectively activates nerves under the skin 

which evoke brain responses and a variety of sensations (Arendt-Nielsen & Bjerring, 

1988).  The Th:YAG (Thalium: Yttrium-Aluminium-Garnate) laser with a 

wavelength of  1.96µm, spot diameter of 5mm is widely used in laser pain studies 

and is able to penetrate the human skin up to 360µm in depth (Bornhovd et al., 

2002). The pinprick sensation created by laser stimulation elicits the activation of 

thinly myelinated A-delta and unmyelinated C-fibres (Bornhovd et al., 2002) with no 

damage to epidermis or subcutaneous tissue (Spiegel et al., 2000) 

 

2.2.3 Sensitivity to pain 

Pain studies should take into account several things that affect the sensitivity to pain 

such as gender, location of stimulation, sensitisation and habituation.  
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2.2.3.1 Gender differences in pain response 

A number of studies have been carried out to investigate the differences in pain 

response between men and women. Shah et al. (2012) found that pain parameters are 

influenced by gender when they found that females have lower pain threshold 

compared to males. This statement is supported by the function of testosterone in 

males which helps men to release more endorphin than women (Pednedkar & 

Mulgaonker, 1995). The increases of quantity of endorphins in men will greatly 

increase the pain threshold (Crafts, 1998). On the other hand, in women, 

progesterone increases excitability of spinal neurons, thus decreases the pain 

threshold (Hashami & Davis, 2009).  In terms of brain activation, Paulson et al., 

2007 revealed that both men and women activate pain-related areas such as 

thalamus, somatosensory cortex, cingulate cortex and insula cortices.  

 

2.2.3.2 Location of stimulation 

The selection of the location of stimulation is an important consideration in 

designing a pain study. This is because pain can be detected all over the body but 

varies considerably in terms of intensity and quality. The main aim is to find the 

location that would give the optimum pain effect, so that the pain-brain activation is 

easily and reliably captured by fMRI.  

 

Based on previous studies, the cheek is a known site to have high sensitivity to heat 

(Moulton et al., 2012). However in this research, cheek is not a good choice to 

receive a series of laser heat due to aesthetic and ethical issues. Targeting laser onto 

the participant’s cheek would also make them feel terrified and afraid to receive the 

subsequent stimulation. Furthermore, the resulting response may be distorted by the 
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extreme fear. Other sites that are chosen for pain stimulation include ventral surface 

of forearm, wrist and foot (Coghill et al., 1994; Davis et al., 1997; Kong et al., 2006; 

Ploner et al., 2010a,b).  

 

In this study, the dorsum of hand is chosen since many laser pain studies uses this 

site to deliver laser stimuli (Becerra et al., 1999; Bornhorvd et al., 2002; Watson et 

al., 2002; Baumgartner et al., 2010). Laser energy mediates pinprick sensation on the 

skin (Agostino et al., 2000; Bornhovd et al., 2002). Basically, the pinprick threshold 

is significantly increased with the increase of distance from the brain (Agostino et 

al., 2000). This means the nearer the location of stimulation from brain, the lower the 

pinprick pain threshold. For instance, targeting the laser heat onto the hand may 

result in a lower pain threshold compared to targeting the laser heat onto the foot. 

However, the thickness of epidermis and conduction distance may also influence the 

laser threshold. The skin thickness is similar in the forehead, upper arm, thigh, cheek, 

hand and ankle (Agostino et al., 2000). Taking all factors into consideration, the 

dorsum of hand is selected for the current research due to the skin thickness and easy 

access. When the participant is placed in the MRI gantry, it is much easier to deliver 

the laser via the fibre optic cable to the dorsum of hand compared to other locations 

such as cheek, forehead and arm. 

 

2.2.3.3 Sensitisation and habituation 

According to the IASP taxonomy, sensitisation is defined as “Increased 

responsiveness of nociceptive neurons to their normal input, and/or recruitment of a 

response to normally subthreshold inputs.” (IASP, 1994b); while habituation in 
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relation to pain may occur when greater tolerance for persisting pain is reported or 

the person reports the pain as not as troubling as it had been (Nicholas, 2013). 

 

Sensitisation may affect the experimental result by increasing the responsiveness due 

to repeated application of pain stimuli. It may occur typically with high-intensity 

stimuli which make the body become more sensitive to the stimuli. Sensitisation is 

usually temporary and will recover in a short time by giving a resting state during the 

interstimulus interval.  

 

Habituation can also be understood as the ability to discontinue the response to 

highly repetitive stimuli. This condition may decrease the strength of behaviour and 

can be short or long-term, depending on the presentation and interval between 

stimuli. Habituation may result in significant signal attenuation (Becerra et al., 

1999). 

 

In order to minimise the sensitisation and/or habituation, the stimuli can be rotated 

among several locations with a duration of presentation at each site followed by a 

duration of rest (Coghill et al., 1994). Bornhovd and Agostina slightly moved the 

stimulation site after each pain stimulus to avoid sensitisation, habituation and tissue 

damage (Agostina et al., 2000; Bornhovd et al., 2002). Using and rotating different 

types of stimulations also help in reducing the sensitisation and habituation as done 

by Chen et al., 2002. These investigators started the imaging session with tactile runs 

and followed by thermal runs. The current study follows the method used by 

Bornhovd and Agostino. 
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2.3 fMRI pain studies 

The fMRI offers sufficiently great benefits for the study of pain over other brain 

imaging modality such as positron emission tomography (PET) especially in its 

ability to capture the time course of a physiological response (Becerra et al., 1999; 

Ahmad & Abd. Aziz, 2014). fMRI technique allows us to understand the central 

nervous system (CNS) changes related to pain experiences (Wise, 2010). The 

advantages of fMRI include lack of exposure to ionising radiation, good anatomical 

localisation, sensitive to many different types of contrast (Huettel et al., 2003) and 

able to image pain in individual patients (Becerra et al., 1999). The technique that 

forms the basis for nearly all fMRI studies and creates data associated with brain 

function is called blood-oxygenation-level-dependent (BOLD) contrast imaging 

(Huettel et al., 2003; Amaro & Barker, 2006).  

 

2.4 MRI: Basic principles 

The MRI relies on basic physical principles which involve directional magnetic field, 

or moment of charged particles in motion (Mackiewich, 1995; Huettel et al., 2003). 

The human body consists of abundant hydrogen nuclei which are also known as 

single protons. The proton is a charged particle where when it spins, generates an 

electrical current and induces a torque called magnetic moment. Because proton has 

an odd number of atomic mass i.e. 1, the spin results in an angular momentum. Both 

magnetic moment and angular momentum are the important characteristics for a 

nuclei to be useful for MRI. When the protons are placed in an external magnetic 

field, they change their orientation and initiate a gyroscopic motion known as 

precession (Huettel et al., 2003). 
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(a) (b) 

 

Figure 2.1 (a) In the absence of magnetic field, protons are in random orientation. 

(b) When a strong magnetic field is applied, the protons precess about the direction 

of the magnetic field (Bo). Source: Simply Physics, http://www.simplyphysics.com. 

 

At the point when the protons are placed in a large magnetic field, they align 

themselves with the direction of the magnetic field and precess about the magnetic 

field direction. This behaviour is called Larmor precession (Mackiewich, 1995). The 

frequency of Larmor precession is proportional to the external magnetic field 

strength (Bo). This frequency is called Larmor frequency. Larmor equation is shown 

as following (eq. 2.1): 

 

                                                     ………………………………. (2.1) 

 

Where the ωo is the Larmor frequency in unit Hz, the ➰ is the gyromagnetic ratio  in 

MHz/T, and Bo is the external magnetic field strength in Tesla (T). The gyromagnetic 

ratio (ɤ) is a constant, 42.56 MHz/T for Hydrogen (proton) (Mackiewich, 1995; 

Huettel et al., 2003; Simply Physics, n.d.). 

 

http://www.simplyphysics.com/
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2.4.1 MRI signal detection 

In order to obtain an MR image, the body is placed in a uniform magnetic field, Bo. 

This causes the abundant hydrogen nuclei in the human body align with the magnetic 

field and create a net magnetic moment, Mo, parallel to Bo. Next the radio frequency 

(RF) pulse at a Larmor frequency is applied perpendicular (90o) to Bo. At the time the 

RF pulse is applied at Larmor frequency, the protons absorb the energy thus excite to 

a higher energy state causing the Mo to tip down. When the RF pulse is off, the 

nuclei return to equilibrium, and their net magnetic moment, Mo, is again parallel 

with Bo. This is referred to as relaxation. On their way to relaxation, the nuclei loses 

energy, emitting their own RF signal (Figure 2.2). This signal is referred to as the 

free-induction decay (FID) response signal. The FID signal is measured by a 

conductive field coil placed around the body that is being imaged, and the 

measurement will be reconstructed to produce MR greyscale images. 
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Net magnetisation of protons is 

parallel to external magnetic 

field 

Magnetic field 

No RF Pulse 



 

16 

 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

(c) 

Figure 2.2 The MRI signal detection is explained by the process involving the 

change of direction of net magnetisation of the protons when the RF pulse is turned 

on and off. (a) The equilibrium state of protons with an absence of RF pulse. The net 

magnetisation is parallel to the direction of magnetic field strength. (b) The RF pulse 

is sent perpendicular to the magnetic field resulting in the net magnetisation to 

change the angle of precession of the protons and directed away from the magnetic 

field. (c) When the RF pulse is turned off, the net magnetisation of protons return to 

its equilibrium state causing the emission of RF signal which will be detected by a 

detector coil as MR signal. Source: Amiya Sarkar, 2010. 
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2.4.2 T1 recovery 

When the RF pulse is turned off, not all of the emission energy is detectable as an RF 

pulse. Some of the energy is used to heat up the surrounding tissues, called as lattice. 

The spin system gradually loses energy causing the excited spins to go back to their 

original low energy state. This results in longitudinal relaxation or spin-lattice 

relaxation due to loss of energy to the surrounding or lattice of nuclei. The recovery 

rate of growing magnetisation is characterised by the time content T1, which is 

unique to every tissue. At a time t = T1 after the RF is turned off, 63.2% of the 

magnetisation has recovered its alignment with Bo. The relaxation time is shown by 

figure 2.3. 

 

 

 

 

 

 

Figure 2.3  The T1 recovery curve showing that at time t = T1 after the excitation 

pulse, about 63% of the Mz magnetisation has recovered alignment with Bo. Source: 

mrimaster.com 

 

 

Mz 
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http://mrimaster.com/
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2.4.3 T2 decay 

In T2 decay, the signal decays resulting from transverse or spin-spin relaxation. The 

T2 value is the time for a signal to decay after the excitation and reduces signal to 

36.8% of its original value. Note that this value is opposite of T1 where 63.2% of 

magnetisation is recovered in a duration of T1. The decay time of T2 is also known 

as transverse relaxation since it involves the decay of the magnetisation in XY plane. 

It is also called spin-spin relaxation due to the gradual loss in spins coherence 

resulting in an out of phase (Huettel et al., 2003). The T2 decay curve is shown in 

figure 2.4. 

 

 

 

 

 

 

 

 

 

Figure 2.4  The T2 decay curve showing that the signal is lost about 37% of its 

original signal intensity in T2 period. Source: mrimaster.com 

 

 

2.4.4 T2* decay 

The T2 decay occurs due to the interaction between spins nuclei. However, this is not 

the only factor that contributes to the loss of signal. Although the magnetic field is 

assumed as homogenous, in reality, there are many factors that create imperfections 

http://mrimaster.com/
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in the homogeneity of a magnetic field. The combined effects of spin-spin interaction 

and field inhomogeneity lead to signal loss known as T2* decay. T2* is always 

shorter than T2 decay time because this type of decay is considered an additional 

factor of field inhomogeneity. The T2* decay is an essential concept in forming the 

basis for BOLD-contrast fMRI. 

 

2.4.5 Blood Oxygenation Level Dependent (BOLD) 

BOLD effect is the basis of fMRI imaging.  The BOLD sensitivity of MR signal is 

due to deoxyhemoglobin which alters the magnetic susceptibility of blood. The 

hemoglobin molecule has magnetic properties that differ depending upon whether or 

not it is bound to oxygen. Oxygenated haemoglobin is diamagnetic, it has no 

unpaired electron and zero magnetic moment; while deoxygenated hemoglobin is 

paramagnetic, it has both unpaired electron and a significant magnetic moment 

(Heuttel et al., 2003).  

 

Introducing an object with magnetic susceptibility into a magnetic field causes spin 

dephasing, resulting in a decay of transverse magnetisation that depends on the time 

constant T2* (Huettel et al., 2003). When a stimulus is given, the neuronal will 

response to it and triggering a hemodynamic response. At this time, changes in blood 

oxygenation  level occurs thus changing the magnetic susceptibility. Because blood-

deoxygenation affects magnetic susceptibility, MR pulse sequences is sensitive to 

T2* (Arthurs & Boniface, 2002). The MR signal is high where blood is highly 

oxygenated and less MR signal where blood is highly deoxygenated (Huettel et al., 

2003). The deoxyhemoglobin increases the magnetic susceptibility but decreases the 

T2* thus decreases the MR signal.  Figure 2.5 explains the whole process in brief. 
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Figure 2.5 The neurons respond to a stimulus and trigger a hemodynamic response 

by changing the blood oxygenation level as well as the magnetic susceptibility along 

the blood flow.  The decrease in magnetic susceptibility (high oxygenation) will 

increase the T2*, therefore increase the MR signal. Source:  Arthurs & Boniface, 

2002. 

 

 

2.5 fMRI experimental paradigm 

In fMRI study, the experimental design is crucial in order to capture the neuronal 

activity or the BOLD signal within the brain. There are several types of designs that 

can be used to carry out an fMRI experiment such as blocked design, event-related 

and sparse design. Whatever the experimental paradigm used, the most important 

factor that should be considered as a precaution while designing an fMRI experiment 

is the method to reduce the confounding factors. The confounding factor may 

‘disturb’ the findings of the study and may result in invalid data. An approach that 

can help to prevent the confounding factor is to vary the stimulation sequence in the 

experiment randomly. This is called randomisation. However, sometimes there are 

factors that cannot be completely random. So we need to try to make sure that a 

potential confound is equally present for all conditions, which is called 

counterbalancing (Huettel et al., 2003). 
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The blocked design is a simple yet extremely powerful method in detecting 

significant fMRI activity (Huettel et al., 2003) and is used in many fMRI studies 

(Baumgartner et al., 2010; Cheng, 2010; Ahmad Nazlim et al., 2011; Brodersen et 

al., 2012; Wiech et al., 2014). Moreover, the blocked design increases statistical 

power and produces relatively large BOLD signal change related to baseline (Amaro 

et al., 2005). Based on these benefits, the present study choose to use the blocked 

design to capture the brain activation associated with pain stimuli. 

  

2.6 fMRI data processing 

An fMRI data consists of a 3D matrix of volume elements (voxels) that are 

repeatedly sampled over time. A straightforward way of analysing the fMRI data set 

would be to extract the raw time course for each voxel and compare each of these 

time course to a hypothesis using a test of significance. Prior to the statistical testing, 

a computational procedure or preprocessing step is a crucial part of fMRI data 

processing. The preprocessing has two major goals. Firstly is to remove any 

unwanted artefacts from the data and secondly to prepare the data for statistical 

analysis (Huettel et al., 2003). 

  

There are many aspects in preprocessing step to be considered. However, the most 

familiar and often used are the step of realignment, normalisation and smoothing. In 

fMRI, the aim of realignment is primarily to remove movement artefacts (Ashburner 

et al., 2011). The artefact such as head motion can be subtracted through the 

realignment analysis. Next is the normalisation which is performed by matching the 

whole of the head (including the scalp) to the template. The template images 

supplied with SPM conform to the space defined by the ICBM, NIH P-20 project, 
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and approximate that of the space described in the atlas of Talairach and Tournoux 

(1988) (Ashburner et al., 2011). Lastly the smoothing in the analysis is used to 

suppress noise and effects due to residual differences in functional and gyral 

anatomy during inter-subject averaging (Ashburner et al., 2011).  Figure 2.6 shows 

the schematic figure of the fMRI preprocessing analysis. 
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Figure 2.6 The preprocessing step of fMRI data. Source: Friston et al., 2003. 
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2.6.1 fMRI: Statistical analysis 

The statistical analysis is carried out by considering the voxels of fMRI images. 

When evaluating whether a voxel has different mean signal levels in two 

experimental conditions, the common t-test is appropriate (Huettel et al., 2003). The 

t-test can be done using specific analysis software like the one used in the current 

study, Statistical Parametric Mapping (SPM). SPM utilise the standard statistical 

inference to translate the activations in the brain during the fMRI task session 

(Friston 2004).  

 

In SPM, the statistical analysis is done based on the general linear model (GLM). 

The GLM is a class of statistical tests which assume that the experimental data are 

composed of the linear combination of different model factors, along with 

uncorrelated noise (Huettel et al., 2003). GLM model the hemodynamic stimulus 

through a design matrix (Friston, 2003; Aini, 2011). Note that the design matrix is 

the specification of how the model factors change over time (Huettel et al., 2003). 

The design matrix created by GLM is applicable for single subject analysis as well as 

for group analysis. The additional analyses such as fixed effect (FFX) and random 

effect (RFX) are only applicable upon group analysis (Aini, 2011). 

 

Whatever the analysis approach used, a problem in fMRI studies is that most of the 

statistical tests result in a false-positive finding. The standard corrections like the 

Bonferroni method are too strict and may eliminate significant activations. Therefore 

the Gaussian random field is found to be more reliable in fMRI statistical analysis 

because it deals with the properties of smooth, spatially extended data compared to 

Bonferroni correction (Huettel et al., 2003; Friston, 2003) 
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