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BIOSINTESIS LIPID ENDOSOM-SPESIFIK 

BIS(MONOASILGLISERO)FOSFAT 

 

ABSTRAK 

 

Hipotesis menyatakan laluan biosintetik de novo endosom-spesifik 

bis(monoasilglisero)fosfat (BMP) daripada perintis fosfatidylgliserol (PG) endogen 

melalui perantara lysofosfatidylgliserol (LPG) telah dipertimbangkan. Dalam kajian 

ini, laluan biosintetik alternatif BMP daripada PG melalui perantara 

asilfosfatidylgliserol (AcPG) dicadangkan. Suatu kuantiti AcPG yang agak ketara 

didapati berada dalam dan luar sel sepanjang 24 jam pengeraman dengan PG 

eksogen. Enzim transasilase adalah diperlukan untuk memindah suatu rantai asil 

daripada penderma PG kepada penerima PG, maka menukarkan penerima PG kepada 

AcPG dan penderma PG kepada LPG. Untuk melengkapkan biosintesis BMP yang 

melibatkan laluan AcPG, langkah orientasi semula moieti gliserol dwi-asil mesti 

berlaku seiring dengan kehilangan sisa asil. Cadangan laluan penukaran PG kepada 

BMP melalui activiti transasilase yang menghasilkan AcPG telah disahkan melalui 

assai in vitro dengan menggunakan serum foetal bovin (FBS). Aktiviti transasilase 

yang menyerupai fosfolipase A1 dikenalpasti dengan menggunakan PO PG yang 

tidak simetri sebagai penerima dan penderma, maka menghasilkan PO-P AcPG : PO-

O AcPG pada nisbah 10:1. Selanjutnya, aktiviti transasilase dicirikan dari segi ion 

dwivalen, pH dan spesifikasi substrat. Eksperimen-eksperimen in vitro menggunakan 

koktel enzim yang dirembes daripada sel RAW 264.7 dalam keadaan kebuluran 

menunjukkan kehadiran kedua-dua aktiviti enzim yang dicadangkan, aktiviti 

transasilase dan orientasi semula. Pada masa pertengahan, jumlah kuantiti PG, BMP 

dan AcPG adalah kurang secara ketara berbanding dengan kuantiti PG yang 

dibekalkan pada masa permulaan atau jumlah BMP yang dihasilkan selepas 
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pengeraman selama 24 jam. Peningkatan kuantiti TAG dalam sel menandakan PG 

boleh ditukarkan kepada TAG melalui DAG untuk menyimpan asid-asid lemak 

berlebihan yang disalurkan kepada sel. Pada peringkat yang seterusnya, sebahagian 

TAG digunakan untuk sintesis de novo BMP. Langkah-langkah pemecahan yang 

bersiri telah dikenalpasti untuk menulenkan aktiviti transasilase daripada FBS, 

bermula daripada pemendakan ammonium sulfat, kromatografi turus oktil sefaros 

dan Q sefaros. Identiti protein daripada pecahan yang diperkaya dengan activiti 

transasilase dilakukan melalui analisis proteomik LC-MS dan permadanan 

berdasarkan database bovin dilakukan. Calon protein yang teramat dikenalpasti 

sebagai vanin 1 dan berberat molekul ialah 56.9 kDa. Secara menariknya, analisis 

proteomik supernatan sel RAW 264.7 dalam keadaan kebuluran menunjukkan 

kehadiran sekumpulan lipase yang dirembes, seperti fosfolipase A2, fosfolipase C 

dan fosfolipase D.   
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BIOSYNTHESIS OF ENDOSOME-SPECIFIC LIPID 

BIS(MONOACYLGLYCERO)PHOSPHATE 

 

ABSTRACT 

 

The hypothetical de novo biosynthetic pathway of endosome-specific 

phospholipid, bis(monoacylglycero)phosphate (BMP) from endogenous 

phosphatidylglycerol (PG) precursor via lysophosphatidylglycerol (LPG) 

intermediate had been considered. In the present study, an alternative BMP 

biosynthetic route from PG via acylphosphatidylglycerol (AcPG) intermediate was 

proposed. A considerable amount of AcPG was found present in and outside the 

RAW 264.7 cells during 24 hours of incubation with exogenous PG. A transacylase 

is required to transfer an acyl chain from a PG donor to a PG acceptor, transforming 

the acceptor PG into AcPG and the donor PG into LPG. To complete the BMP 

biosynthesis following the AcPG route, a reorientation step of the diacylated glycerol 

moiety has to occur with concomitant loss of an acyl residue. The new pathway of 

PG conversion to BMP via AcPG forming transacylase activity was established by 

an original in vitro assay utilizing fetal bovine serum (FBS) as enzymatic source. A 

phospholipase A1 displaying a transacylase activity was revealed by utilizing 

asymmetric PO PG as acceptor and donor, yielding a PO-P AcPG:PO-O AcPG ratio 

of 10:1. This transacylase activity was further characterized in terms of divalent ions, 

pH and substrate specificity. In vitro experiments utilizing the secreted enzyme 

complex from RAW 264.7 cells grown under starvation conditions indicated that 

both proposed enzymatic activities, transacylase and reorientation, were present. At 

intermediate time points, the combined amount of PG, BMP and AcPG was 

significantly less compared to the amount of supplied PG at the beginning or the total 

BMP amount produced after 24 hours of incubation. An elevation in triacylglycerol 
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amount in the cell after 8 hours of incubation indicated that PG could be converted to 

triacylglycerol via diacylglycerol to store temporarily the excessive amount of fatty 

acids provided to the cells. At a later stage, a part of the stored triacylglycerol is used 

for the de novo synthesis of BMP. Fractionation steps were established to purify the 

extracellular transacylase activity from FBS, using ammonium sulfate precipitation, 

octyl sepharose and Q sepharose column chromatography. Protein identification of 

the fractions enriched with transacylase activity was performed by LC-MS 

proteomics analysis and matched against a bovine database. The most potent 

candidate protein was identified as vanin 1 with a molecular weight of 56.9 kDa. 

Interestingly, proteomics analysis of the supernatant of starved RAW 264.7 cells 

disclosed the presence of a pool of secreted lipases such as phospholipase A2, 

phospholipase C and phospholipase D. 
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CHAPTER 1 

LITERATURE REVIEW 

 

1.1 Lipid overview  

Lipids are naturally occurring organic compounds which are soluble in 

organic solvent but are immiscible in water (Fahy et al., 2005). Lipids are often 

referred to as fat if their physical appearance at room temperature is solid and called 

oil if it is liquid (Kent, 2000; Caballero, 2006). Lipids are distinct from proteins, 

carbohydrates and nucleic acids with respect to the incredible heterogeneity of their 

molecular structure. In principle, cellular metabolites are categorized predominantly 

according to their solubility as lipids rather than due to specific structural features 

(O’Keefe, 2002; Fahy et al., 2005; Stoffel, 2012). As lipids are at the intersection of 

biology and chemistry, an unambiguously nomenclature suitable for both fields is 

important. Consequently, lipid nomenclature is jointly defined by the International 

Union of Pure and Applied Chemistry (IUPAC) and International Union of 

Biochemistry and Molecular Biology (IUBMB) and outlined at 

http://www.chem.qmul.ac.uk/iupac/ website (Fahy et al., 2005; Fahy et al., 2009).  

Lipids are categorized into eight major classes, including fatty acyls/fatty 

acids, glycerolipids, glycerophospholipids, sphingolipids, sterol lipids, prenol lipids, 

saccharolipids and polyketides. The representative structure for each of the lipid 

class is depicted in figure 1.1. While fatty acids exhibit limited complexity, 

polyketides, sterols and saccharolipids exhibit a significant level of complexity.  
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(1) Fatty acids: hexadecanoic acid 

 

 

(2) Glycerolipids: 1-hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycerol 

 

       

(3) Glycerophospholipids: 1-hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-
phosphocholine   

 
 

 
 

(4) Sphingolipids: N-(tetradecanoyl)-sphing-4-enine    
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(5) Sterol lipids: cholest-5-en-3β-ol             

 

(6) Prenol lipids: 2E, 6E-farnesol 

    

(7) Saccharolipids: UDP-3-O-(3R-hydroxy-Tetradecanoyl)-αD-N-acetylglucosamine 

 

 

(8) Polyketides: aflatoxin B1 

 

Figure 1.1: Representative structure for each of the lipid classes (Fahy et al., 2005)
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Based on the lipid nomenclature as defined by the IUPAC-IUBMB, it is 

noteworthy to highlight few key features relevant to this study as follows:  

1. The stereospecific numbering (sn) is applied to describe glycerolipids and 

glycerophospholipids. Commonly, the sn-1 and/or sn-2 position are 

acylated, while the sn-3 position is phosphorylated in mammalian and 

bacterial glycerolipids. 

2. The employment of R/S nomenclature (as opposed to α/β) is utilized to 

emphasize difference in the stereochemical configuration of the glycerol 

backbone. 

3. The common term “lyso”, implying that one of the acyl/alkyl groups is 

not present in glycerolipids and glycerophospholipids, it will not be 

utilized in systematic names, but will be included as a synonym to 

improve readability (Moss, 1976; Fahy et al., 2005). 

The definition of stereospecific numbering is as follows: The carbon atom at 

the top in the Fischer projection of the glycerol backbone with the hydroxyl group at 

carbon-2 pointing to the left is designated as C-1. To distinguish stereospecific 

numbering from conventional numbering lacking steric information, the prefix “sn” 

is used. Importantly, the use of stereospecific numbering is only limited to 

glycerolipids and glycerophospholipids (Moss, 1976).  

In general, each carbon atom with different substituent is considered a chiral 

center. A chiral molecule can have one or more chiral centers. A molecule with 

multiple chiral centers is a chiral if it is not superimposable with its mirror image. 

Two molecules which are the exact mirror image of each other are considered 

enantiomer. To clearly define the molecular structure in a standardized manner, 
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Cahn-Ingold-Prelog (CIP) rule should be applied to differentiate between R and S 

configuration of the stereocenter under consideration. The steps are:  

1. The order of the substituents is according to the priority from 1 to 4 (or ‘a’ to 

‘d’ as shown in the example below), with 1 assigned to the substituent with 

the highest molecular weight, and 4 with the lowest. Break ties by taking 

substituents of equal atoms in a stepwise procedure into consideration. 

2. Rotate the molecules so that the substituent of lowest molecular weight is 

facing away from you, thus the molecule is viewed down the bond from the 

chiral center to the lowest priority group. 

3. The handedness is assigned based on the sequence of priority read around the 

chiral carbon atom. If the priority of the atoms from 1-3 is read in a 

counterclockwise direction, the chiral carbon atom is considered left handed 

and named as S enantiomer. S stands for ‘sinister’, meaning in Latin is left. If 

the priority of the atoms from 1-3 are read in a clockwise direction, the center 

is considered right handed and named as R enantiomer. R stands for ‘rectus’, 

meaning in Latin is right. 

A practical example how to determine S and R enantiomers is shown in 

figure 1.2 (Willock, 2009).  
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Figure 1.2: Assignment of S and R enantiomers following CIP rules. In this example 
the priority groups are read a >b >c >d (Willock, 2009) 

 

Commonly, lipid structures tend to be drawn from left to right. In case of 

simple fatty acids or prenol building blocks, the acid carboxyl or hydroxyl group is 

thus drawn on the right and the hydrophobic hydrocarbon tail is drawn on the left, as 

shown in figure 1.1. Similarly, in glycerolipids and glycerophospholipids, the 

hydrocarbon chains tend to be drawn on the left and the glycerol moiety is drawn 

horizontally, similar to Fischer projection, providing direct visualization of the 

stereochemistry (if known). In contrast to glycerophospholipids, sphingolipids lack a 

glycerol moiety. Nonetheless, the head groups of glycerophospholipids and 

sphingolipids tend to be depicted on the right and the hydrocarbon tails tend to be 
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depicted on the left. Inevitably, structurally complex lipids cannot adhere to this 

common guideline, such as sterol, saccharolipids and polyketides (Fahy et al., 2005). 

Nevertheless, liberal exception can and will be applied throughout this dissertation. 

To support advances in lipid biology and lipidomics large repertoires such as 

LIPIDAT and Lipid Bank have been established. LIPIDAT and Lipid Bank provide 

catalog, annotation and functional classification of lipids (Fahy et al., 2005). 

Lipids serve as the primary energy storage in living organisms by supplying 

more than twice the energy per gram compared to carbohydrates (van Meer et al., 

2008). In addition, lipids function as heat insulation, shock absorption and buoyancy 

(Kent, 2000). Lipids play crucial roles as mediators for signal transmission in many 

cellular pathways. Lipids are also involved in cell differentiation as well as hormone 

and cytokine synthesis (Caballero, 2006; Eyster, 2007). 

Fatty acids are the simplest molecules among lipids. Their structure and 

nomenclature are illustrated in figure 1.3 and table 1.1, respectively (Fahy et al., 

2005). 
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Figure 1.3: Structure of a fatty acid chain which consists of a carboxyl head group 
and a hydrocarbon tail (Fahy et al., 2005) 

 

Table 1.1 Physiologically relevant fatty acids (Fahy et al., 2005) 

Number of 
carbons 

Number of 
double bonds 

Numerical Symbol/ 
Shorthand 

Common name 

14 0 14:0 Myristic acid/ Myristate 
16 0 16:0 Palmitic acid/ Palmitate 
16 1 16:1Δ9 Palmitoleic acid/ Palmitoleate 
18 0 18:0 Stearic acid/ Stearate 
18 1 18:1Δ9 Oleic acid/ Oleate 
18 2 18:2Δ9,12 Linoleic acid/ Linoleate 
18 3 18:3Δ9,12,15 α-Linolenic acid (ALA)/ 

Linolenate 
20 4 20:4Δ5,8,11,14 Arachidonic acid/ 

Arachidonate 
20 5 20:5Δ5,8,11,14,17 Eicosapentaenoic acid (EPA) 
22 6 22:6Δ4,7,10,13,16,19 Docosahexaenoic acid (DHA) 
 

Note: The position of double bonds is indicated by Δn, where n indicates lower 
numbered carbon of each pair. 

 

Most mammalian fatty acids have an even number of carbon atoms and 

ranging between 12-22 carbons. DHA is an example of a common polyunsaturated 

fatty acid. In general, fatty acids are denoted by a numerical symbol or shorthand 

description, as shown in table 1.1. For example, 18:1 for oleic acid which implies 18 

carbon atoms and 1 double bond in the acid chain, commonly at position delta 9. The 

non polar hydrocarbon chain and the polar carboxyl group confer the amphipathic 

Carboxyl 
group 

Hydrocarbon 
tail 
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nature of lipids, resulting in the spontaneous self assembly of lipids and the 

formation of small vesicular or lamellar arrangements in aqueous environment (van 

Meer et al., 2008; Bohdanowicz and Grinstein, 2013). Not all lipids exhibit polar 

amphipathic nature. For example, the uncharged neutral lipids include fatty acid 

esters (carbon atom more than 12), mono-, di-, triacylglycerols, sterols, sterol esters 

and prenols (O’Keefe, 2002). 

Liposomes are artificial vesicles that exhibit a phospholipid bilayer 

arrangement, mimicking the biological membrane up to a certain degree. Importantly, 

the lipid composition can be changed easily according to the experimental design. 

Figure 1.4 displays the schematic illustration of liposomes of different sizes, 

including small unilamellar vesicle (SUV), large unilamellar vesicle (LUV), 

multilamellar vesicle (MLV) and multivesicular vesicle (MVV). The liposomal sizes 

of SUV and LUV are 20-100 nm and 100-400 nm, respectively. Whereas the 

liposomal sizes of MLV and MVV fall in the range of 200 nm to approximately 3000 

µm. 
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Figure 1.4: Schematic illustration of liposomes of different sizes, including small  
unilamellar vesicle (SUV), large unilamellar vesicle (LUV), 
multilamellar vesicle (MLV) and multivesicular vesicle (MVV) 
(http://www.azonano.com/article.aspx?ArticleID=1243) 

 

 

1.2 Membrane phospholipids 

The fluid mosaic model of the structure of cell membranes proposed by 

Singer and Nicolson was the first step towards a better understanding of the 

importance of lipids and has been widely accepted (Singer and Nicolson, 1972). 

Lipids, proteins and carbohydrates are the biological molecules which form the 

architecture of the plasma membranes. At the most rudimentary level, the cell 

membrane is constituted of a lipid bilayer with the polar hydrophilic head of each 

lipid molecule facing either towards the cytoplasm or extracellular matrix, while 

their hydrophobic tails face towards each other. Integral membrane proteins are 

embedded in this membrane bilayer, while peripheral proteins form transient 

interactions with lipid bilayer. Carbohydrates are either covalently attached to the 

protein as glycoproteins or to lipids as glycolipids (saccharolipids) and are involved 

in cellular physiology (Singer and Nicolson, 1972; Eyster, 2007).   

Bilayer of 
phospholipids 

10 
 

http://www.azonano.com/article.aspx?ArticleID=1243


The lipid composition of each subcellular organelle and the plasma 

membrane varies according to the specific task performed at each of the subcellular 

compartment. For instances, plasma membranes are enriched in sterols and 

sphingolipids, less abundant in phospholipids in order to confer mechanical strength 

to the cells (van Meer et al., 2008). The heterogeneous distribution of lipids and 

proteins over the membranes and the spatial and temporal lipid-protein interaction 

attributed to the function of membranes in living cells (Smith, 2012). Lipid-lipid 

immiscibility results in lateral heterogeneity of the membrane leaflet, often called 

lipid raft. Lipid rafts or microdomains are broadly defined as liquid-ordered 

membrane domains in which the lipids are more tightly packed compared to the 

surrounding non-raft bilayer. The high packing of raft is due to the saturated 

hydrocarbon chains in raft phospholipids and sphingolipids (Rajendran and Simons, 

2005).    

Glycerophospholipids or in short, phospholipids are one of the main 

constituents of all cell membranes displaying a great diversity (Hermansson et al., 

2011). Phospholipids constitute the bulk of the cellular membrane lipids, including 

phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), 

phosphatidylserine (PS), phosphatidylglycerol (PG), phosphatidylinositol (PI), 

cardiolipin (CL), lysophosphatidic acid (LPA) and lysobisphosphatidic acid (LBPA), 

also known as bis(monoacylglycero)phosphate (BMP) (van Meer et al., 2008). The 

amphipathic nature of phospholipids allows cells and subcellular organelles to be 

separated or compartmentalized by membranes. Lipid membranes act not merely as 

highly selective physical barrier in and between cells, but play a central role in 

numerous metabolic processes (Escriba et al., 2008; van Meer et al., 2008). Figure 

1.5 displays the representative structure of common phospholipids. The glycerol 
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backbone of phospholipids (as outlined with green box) is usually esterified with two 

fatty acyl chains at sn-1 and sn-2 position, respectively (highlighted by a purple box). 

The head group (represented by “X”) is linked via a phosphate residue (outlined with 

a blue box) to the sn-3 position of the glycerol backbone. The head group of 

phospholipids gives rise to the name of each phospholipid. The phospholipids shown 

in figure 1.5 encompass PA, PC (also called lecithin), PE, PS, PI and PG (Kelly and 

Jacobs, 2016). Two letter abbreviations are commonly used to identify phospholipid 

subclasses.  

 

Figure 1.5: Representative structures of common phospholipids (Kelly and Jacobs, 

2016) 

 

1.3 Biosynthesis of phospholipids  

Lipids are produced, transported, recognized and degraded by a variety of 

enzymes, binding proteins and receptors (Fahy et al., 2005). Within the eukaryotic 

12 
 



cells, the synthesis of a particular lipid is often organelle-specific. The endoplasmic 

reticulum (ER) is the primary location for the synthesis of a large number of lipids 

such as functional phospholipids and cholesterol. CL and BMP are considered 

exclusively synthesized in the mitochondrial and endosomal membrane, respectively. 

Triacylglycerol (TAG) and cholesteryl ester (CE) are produced at the ER. 

Sphingolipid synthesis is completed in the Golgi apparatus. As phospholipids and 

sphingolipids are found in all cellular membranes, these lipids have to be exported 

from their site of synthesis to their target organelles, requiring an efficient packing 

and sorting mechanism. The Golgi apparatus acts as the major lipid sorting site (van 

Meer et al., 2008). 

The biosynthesis of the main constituents of the phospholipid membrane is 

very different between archaea, bacteria and eukaryotes, as deciphered in figure 1.6 

(Lombard et al., 2012). 
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Figure 1.6: Comparison of the biosynthetic pathways of phospholipids in archaea,       
bacteria and eukaryotes (Lombard et al., 2012) 
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In bacteria and eukaryotes, phospholipids are composed of glycerol-3-

phosphate (G3P) derivatives. On contrary, phospholipids in archaeal membrane are 

derived from glycerol-1-phosphate (G1P) (Lombard et al., 2012). The 

stereoconfiguration of the glycerophosphoglycerol backbone has attracted special 

interest due to its cellular physiological roles and involvement in the evolution of life 

(Taniguchi et al., 2015). The protein-phospholipid interaction is based on 

electrostatic interaction, which in turn strongly depends on the actual 

stereoconfiguration of both chiral partners. While some phospholipids act as 

substrate, requiring a key-lock type interaction with special emphasize on their 

stereoconfiguration, others act as ligands during signaling processes or are functional 

independent of their interaction with proteins (Bohdanowicz and Grinstein, 2013). 

The phospholipid BMP, the main focus of this dissertation is primarily of 

eukaryotic origin. Consequently, BMP is derived from a G3P precursor. Therefore, 

special emphasis will be put on the biosynthesis of phospholipids derived from G3P.  

 

1.4 Bis(monoacylglycero)phosphate (BMP) 

     1.4.1 Structure and de novo biosynthesis of BMP 

The structure of BMP is depicted in figure 1.7. BMP features a 

glycerophosphoglycerol backbone and both of the glycerol moieties are esterified to 

the central phosphate residue at carbon number-1. Consequently, the BMP backbone 

is featuring a stereoconfiguration number (sn) of sn-1,1’ diglycerophosphate that was 

confirmed recently (Brotherus et al., 1974; Jouti et al., 1976; Jouti and Renkonen, 

1979; Tan et al., 2012). The absence of any cationic charge renders BMP an anionic 

phospholipid, carrying a negative charge on its phosphate head group. Additionally, 
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each side of the glycerol is esterified with a single acyl chain. The length of the acyl 

chains and their saturation degree vary according to the cell type. In cultured 

mammalian cells, the main acyl chain species of BMP is oleic acid, featuring 18 

carbon atoms and a double bond (18:1) (Mason et al., 1972; Brotherus and Renkonen, 

1974; Huterer and Wherrett, 1979; Cochran et al., 1985; Kobayashi et al., 2002; 

Akgoc et al., 2015). The exact location of the acyl chains on both of the glycerol 

moieties of natural BMP is still unclear (Wherrett and Huterer, 1973; Amidon et al., 

1996).   

BMP is a peculiar mammalian phospholipid exclusively displaying an sn-1,1’ 

diglycerophosphate backbone, resembling the phospholipids of the archaeal domain 

(Tan el al., 2012). The unique stereoconfiguration is likely one of the reasons why 

BMP exhibits a considerable stability under the highly acidic lysosomal environment, 

which is rich in lytic enzymes (Appelqvist et al., 2013). In general, the lysosomes are 

regarded as the digestive stomach of cell, based on their ability to digest cellular 

metabolites, such as proteins, nucleotides and lipids into their building blocks 

(Schulze et al., 2009). Not surprisingly, BMP has been reported to be resistant 

against degradation by phospholipases (Matsuzawa and Hostetler, 1979). The 

turnover of the BMP backbone is much slower than the turnover of its acyl chains, 

particularly in case of polyunsaturated fatty acids (Huterer and Wherrett, 1990). The 

unusual stereoconfiguration of BMP reflects its unique physiological roles and 

likewise, its biosynthesis must differ considerably from other phospholipids of  

mammalian origin.  
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Figure 1.7: Stereoconfiguration of BMP: sn-1,1’ diglycerophosphate 

 
 

LPA formation is the first step from G3P during the de novo biosynthesis of 

mammalian phospholipids. Next, LPA is converted to PA by a LPA acyltransferase 

(AGPAT, also known as LPAAT), a short lived key intermediate in phospholipid 

biosynthesis. PA is mainly metabolized into two types of glycerol derivatives. Firstly, 

diacylglycerol (DAG), which is converted to TAG, PC, and PE. PS in turn is 

synthesized from PC or PE. Secondly, cytidine diphosphate-diacylglycerol (CDP-

DAG) is processed into PI, PG, CL, and BMP. The de novo biosynthesis of BMP 

from PA is depicted in figure 1.8, involving CDP-DAG synthase, 

phosphatidylglycerophosphate (PGP) synthase and PGP phosphatase.  

 

HO O
P

O OH

OO

OO

R

O O

R

17 
 



 
 
 

                                    

                           

 

 

Figure 1.8: The de novo biosynthesis of BMP from PA. The enzymes catalysing the  
       successive steps from PG to BMP have not been characterized yet. Red    
       squares indicate the altered backbone configuration between PG and   
       BMP 
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Special attention should be paid to the backbone of PG and BMP which is 

highlighted in red dotted line as shown in figure 1.8. The backbone of naturally 

occurring PG is sn-3,1’ diglycerophosphate. Notably, BMP exhibits an sn-1,1’ 

diglycerophosphate backbone (Hullin-Matsuda et al., 2009). Nevertheless, BMP is 

not just a simple structural isomer of PG and the conversion of PG to BMP is not a 

straight forward process (Thornburg et al., 1991; Hullin-Matsuda et al., 2014). 

Extended scientific interest and discussion clarified that the reorientation of the 

glycerol backbone of PG precursor or more likely one of the synthesis intermediates 

is the key step leading to the biosynthesis of BMP with its unusual 

stereoconfiguration (Somerharju and Renkonen, 1980; Frentzen-Bertrams and 

Debuch, 1981; Amidon et al., 1995). To-date it is not clear whether the mechanism 

resulting in glycerol backbone reorientation is facilitated by a single or a set of 

enzymes (Thornburg et al., 1991).  

 

1.4.2 Cellular localization and biological roles of BMP 

BMP is an endosome-specific phospholipid which is found primarily in the 

late endosomal and lysosomal organelles of mammalian cells (Kobayashi et al., 

1998). BMP is highly enriched in the internal membranes of late endosomes 

accounting for up to 15 % of total late endosomal phospholipids (Kobayashi et al, 

2002; Hullin-Matsuda et al., 2009). BMP content, which is less than 1 % of total 

cellular phospholipids, strongly depends on the culture conditions and cell line or 

tissue types (Frederick et al., 2009; Akgoc et al, 2015). Late endosomes play a 

decisive role for incoming material in the endocytic pathway and outgoing 

components to the lysosomes, the Golgi complex or the plasma membrane, as shown 

in figure 1.9 (Scott et al., 2014). Endocytosis is the general term defined as the 
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internalization process of solutes, fluid, macromolecules and plasma membrane 

components. The endocytosis mechanism is initiated by plasma membrane 

invagination, followed by membrane fission, budding off the membrane and 

transport of the resulting vesicle via early endosomes, multivesicular bodies to late 

endosomes, and finally lysosomes (Huotari and Helenius, 2011).   

 

Figure 1.9: Endocytosis via early endosome, late endosome and lysosome (Scott et 
al., 2014) 

 

Mounting evidence indicates that BMP-rich domains play a crucial role 

during cholesterol homeostasis and glycolipids degradation in late endosomes 

(Chevallier et al., 2008; Schulze et al., 2009). BMP is involved in the lipid and 

protein transport within the endosomal system after their delivery via endocytosis or 

autophagy (Kobayashi and Hirabayashi, 2000; Hullin-Matsuda et al., 2009). 

Additionally, BMP is involved in the formation of the archetypal multivesicular 

bodies during the endosomal maturation. These internal membranes are rich in BMP 

and are considered to exhibit specific properties favoring digestion based on the 

physical properties of BMP. Additionally, BMP provides structural organization for 
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formation and stability of multivesicular bodies (Frederick et al., 2009; Kolter and 

Sandhoff, 2010). 

 

1.4.3 Proposed biosynthetic pathway of BMP from PG  

1.4.3(a) Phospholipase and transacylase 

Hydrolases are an important class of enzymes and represent a significant 

proportion of cellular proteins. They are generally implicated in degradative process 

but also in many physiological processes, such as signaling. Utilizing a molecule of 

water as acceptor, hydrolases cleave carbon-hetero atom bonds such as esters, ethers 

and acetyls. Depending on substrate specificity, hydrolases are subcategorized into 

nucleases (nucleic acids), proteases (proteins), glycosidases (carbohydrates or sugars), 

phosphatases (phosphate esters) and lipases (lipids). Additionally, hydrolases can be 

classified according to the functional group affected, such as carbon ester hydrolases, 

phosphate ester hydrolases, pyrophosphate ester hydrolases, phosphodiester 

hydrolases and amide hydrolases (Dennis, 2015).  

The first step involved in the biosynthetic pathway of BMP from its PG 

precursor is the cleavage of the sn-2 acyl chain of PG by a phospholipase (PLA) 

(Waite et al., 1990; Amidon et al., 1995). Phospholipases belong to the large group 

of hydrolases and catalyze the hydrolysis of acyl esters (acyl hydrolases) or 

phosphate esters (phosphodiesterase) on phospholipids (Dennis, 2015). 

Phospholipases are further classified according to the position they hydrolyze on the 

phospholipid backbone. Phospholipase A1 (PLA1), phospholipase A2 (PLA2), 

phospholipase B (PLB) and lysophospholipase A1/2 (lysoPLA1/2) are the acyl 

hydrolases, whereas phospholipase C (PLC) and phospholipase D (PLD) constitute 
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the phosphodiesterases, as shown in figure 1.10. PLA1, PLA2 and PLC cleave the 

ester bonds connecting to carbon at sn-1, sn-2 or sn-3 position, respectively. PLD 

catalyzes the hydrolysis of phospholipids at the phosphodiester bond, adjacent to the 

PLC sensitive phosphate ester bond. PLB hydrolyzes both the sn-1 and sn-2 ester 

bonds, while lysoPLA1/2 can be either specific for the sn-1 or sn-2 ester bond or 

cleave both with same affinity, but in any case they utilize only lysophospholipids as 

substrate (Richmond and Smith, 2011). 

Phospholipases are ubiquitously expressed in all tissues and take a variety of 

forms, such as soluble proteins usually secreted from cells, membrane associated or 

restrained to specific intracellular compartments. While some require cofactors for 

activity, others are activated at specific pH environment. Phospholipases exhibit 

large variety of functions and can be categorized into three main functions: (1) as 

digestive enzymes breaking down phospholipids and thus regulating the turnover of 

phospholipids; (2) as phospholipases responsible to maintain membrane integrity by 

acyl remodeling. The exchange of acyl chains between phospholipids occurs 

frequently in living cells and is catalyzed by acyl hydrolases or acyltransacylases. 

Consequently, transfer of acyl chains between phospholipids increases phospholipid 

diversity and can play a decisive role in cellular physiological pathways; (3) as 

phospholipases contributing to the production of bioactive lipid mediators, such as 

for signal transduction. Among phospholipases, PLA2, PLC and PLD are the most 

established lipases involved in the formation of bioactive lipid molecules (Richmond 

and Smith, 2011). 
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Figure 1.10: Ester bond specificity of phospholipases (Richmond and Smith, 2011) 

 

In addition to phospholipase-dependent hydrolysis, acylation takes place 

during the biosynthesis of BMP from PG and is catalyzed by transacylase (TA) and 

acyltransferase. Transacylase is generally defined as the enzyme catalyzing the 

transfer of acyl groups esterified in phospholipids to lysophospholipids without the 

generation of free fatty acids (Yamashita et al., 1997; Yamashita et al., 2014). 

Transacylases are CoA-dependent or CoA-independent. Acyltransferase catalyzes 

the transfer of an acyl group from an acyl-CoA to any of various acceptors (Shindou 

and Shimizu, 2009; Hishikawa et al., 2014; Yamashita et al., 2014).  

The proposed pathway for the biosynthesis of BMP from PG is shown in 

figure 1.11. A PLA2 cleaves the sn-2 acyl chain of PG (as highlighted in the green 

box) to form sn-3:sn-1’LPG (step 1). Next, LPG is acylated at the head group 

glycerol by a transacylase, using a phospholipid as the acyl donor to form sn-3:sn-

1’BMP (step 2). Subsequently, the backbone of BMP is reoriented from sn-3:sn-

1’BMP to sn-1:sn-1’LPG (step 3), but the mechanism is still largely elusive. Next, 

sn-1:sn-1’LPG is acylated by a transacylase to yield sn-1:sn-1’BMP (step 4) 

(Amidon et al., 1995). 

PLA1 PLC 

PLA2 PLD 

PLB/ 
LysoPLA 
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Figure 1.11: Proposed biosynthetic pathway of BMP from PG. PLA2: Phospholipase 
A2; TA: Transacylase; PL: Phospholipid; LPL: Lysophospholipid; ROE: 
Reorientation of enzyme (Amidon et al., 1995) 

 

Additionally, alternatives route for the biosynthesis of BMP have been 

proposed as depicted in figure 1.12. In hypothesis (1), deacylation/hydrolysis of PG 

leads to the formation of LPG, followed by the transfer of an acyl chain to the head 

group glycerol of LPG to form BMP, while the reorientation of the backbone occurs 

either during the first or second step. In hypothesis (2), an acyl chain is first 

transferred from an acyl donor to the head group glycerol of PG yielding an acyl 

phosphatidylglycerol (AcPG), followed by deacylation and concomitant re-

orientation to form BMP. The acylation process would be independent of acyl-CoA. 

Hypothesis (3) seems possible, though no experimental evidence to-date has been 

presented in its support (Poorthuis and Hostetler, 1976). 
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