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ZINK OKSIDA, ORGANOCLAY DAN SILIKA DALAM KOMPOSIT 

POLIETILENA BERSAMBUNG SILANG UNTUK INSULASI KABEL 

 

ABSTRAK 

 

Kajian ini menyiasat prestasi pengisi nano terhadap sifat morfologi, elektrik, 

mekanikal dan fizikal matriks polietilena bersambung silang (XLPE). Dalam kajian 

ini, zink oksida (ZnO) dan silikon dioksida (SiO2) digunakan sebagai pengisi nano 

tidak terawat, manakala pengisi nano terawat adalah ZnO terawat 3-

aminopropiltrietoksilen (KH550-ZnO), SiO2 terawat 3-4-aminopropiltrietoksilen 

(KH550-SiO2) dan organoclay (OMMT). Pengisi nano dicampur dengan XLPE 

menggunakan pengadun dalaman, dan kemudian ditekan acuan pada 160 °C. 

Peratusan berat yang berlainan (1, 2, 3 dan 4 % bt.) dikompaunkan dalam pengisi 

nano tidak terawat, dan peratusan berat untuk pengisi nano terawat adalah 1 dan 2 % 

bt. Nisbah yang berbeza (75/25, 50/50 dan 25/75) dalam jumlah 2 % bt. pemuatan 

pengisi telah dikompaun dalam nanokomposit hibrid. Keputusan menunjukkan 

bahawa penambahan pengisi nano tidak terawat meningkatkan kekuatan pecah, kadar 

pembakaran dan sifat tegangan. Prestasi terbaik nanokomposit didapati pada 1 % bt. 

SiO2/ XLPE berdasarkan ciri-ciri yang paling menonjol. Pengubahsuaian permukaan 

pengisi nano meningkatkan hubungan antara pengisi dan matriks melalui ikatan 

kimia. Pengisi nano diubahsuai permukaannya juga telah meningkatkan kekuatan 

pecahan, kadar pembakaran dan sifat tegangan. Dalam kajian ini, 1 % bt. OMMT / 

XLPE menunjukkan prestasi yang lebih baik berdasarkan ciri-ciri yang paling 

menonjol jika dibandingkan dengan pengisi nano terawat yang lain. Dalam 
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nanokomposit hibrid, nisbah pengisi terbaik adalah 25/75 ZnO / OMMT. Sebagai 

perbandingan dengan XLPE tanpa pengisi, peningkatan yang ketara telah dilihat 

dalam pemalar dielektrik (4 %), kekuatan pecahan (9 %), kadar pembakaran (13 %), 

kekuatan tegangan (57 %), pemanjangan putus (54 %) dan modulus Young (36 %). 

Oleh itu, ia sesuai digunakan untuk penebat kabel. 
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ZINC OXIDE, ORGANOCLAY AND SILICA IN CROSSLINKED 

POLYETHYLENE COMPOSITE FOR CABLE INSULATION 

 

ABSTRACT 

 

This study investigates the performance of nanofillers on morphology, electrical, 

mechanical and physical properties of crosslinked polyethylene (XLPE) matrix. In 

this study, zinc oxide (ZnO) and silicone dioxide (SiO2) were used as untreated 

nanofiller, while treated nanofiller were 3-aminopropyltriethoxysilane treated ZnO 

(KH550-ZnO), 3-4-aminopropyltriethoxysilane treated SiO2 (KH550-SiO2) and 

organoclay (OMMT). The nanofillers were mixed with XLPE using internal mixer, 

and then, press-moulded at 160 °C. Different weight percentages (1, 2, 3 and 4 wt. 

%) were compounded in untreated nanofillers, and the weight percentages for treated 

were 1 and 2 wt. %. Different ratios (75/25, 50/50 and 25/75) in a total of 2 wt. % 

filler loading were compounded in hybrid nanocomposites. The results showed that 

the addition of untreated nanofillers improved breakdown strength, burning rate and 

tensile properties. The best performance of nanocomposite was found at 1 wt. % 

SiO2/XLPE based on the most prominence properties. The addition of surface 

modified nanofiller enhanced the interface interaction between the filler and the 

matrix via chemical bonding. The surface modified nanofiller also improved the 

breakdown strength, burning rate and tensile properties. In this study, 1 wt. % 

OMMT/XLPE showed better performance based on the most prominence properties 

compared to other treated nanofiller. In hybrid nanocomposites, the best filler ratio 

was 25/75 ZnO/OMMT. In comparison with unfilled XLPE, significant improvement 

is observed in dielectric constant (4 %), breakdown strength (9 %), burning rate (13 
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%), tensile strength (57 %), elongation at break (54 %) and Young’s modulus (36 %). 

Therefore, it is suitable for cable insulation. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Overview 

Electrical insulator is very important in the electric power systems for 

substations, distribution, and transmission lines. The first material that have been 

used as insulation was ceramics, glass, and then turn into porcelain. The polymeric 

insulators were introduced in 1940s and the progress in designing and manufacturing 

of the polymeric insulators nowadays has made them increasingly being used in the 

electric power utilities. The worldwide cable sheathing and insulation materials are 

polyethylene (PE) and Polyvinyl chloride (PVC). PE is commonly used as insulator, 

however, due to its structure PE cannot withstand high temperature, and made it 

insufficient in terms of the mechanical strength and hence restricted its application in 

many areas.  

Therefore, the cross-linking in PE through the intramolecular covalent bond 

which form reticular structure and able to withstand high temperature. The 

advantages of crosslinked polyethylene (XLPE) cable are small dielectric loss, easy 

installation, light weight and simple terminal processing (Mo et al., 2013). 

Furthermore, it was reported that the XLPE cable has lower degree of maintenance, 

environmental friendly system and high mechanical resistance (Hammons, 2003). 

Interestingly, the addition of organic and inorganic nanofillers will enhance the 

XLPE performance. 

Organic and inorganic nanoparticle-filled polymers are widely applied in 

XLPE insulated cables due to its resistance to degradation and improvement in 

thermo-mechanical properties without causing a reduction in dielectric strength. 
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Small amount of nanoparticles content which less than 10 wt. % has improved the 

properties of XLPE. These improvements of polymer properties was observed for 

nano-filled polymers could be due to several factors Roy et al. (2005): (1) the large 

surface area of nanoparticles which creates a large ‘interaction zone’ or region of 

altered polymer behaviour, (2) changes in the polymer morphology due to the 

particle’s surfaces, (3) a reduction in the internal field caused by decrease in size of 

the particles, (4) changes in the space charge distribution and (5) a scattering 

mechanism. 

The presence of nanocharges seems to have a strong impact on medium-long 

term degradation processes of polymers (Sami et al., 2009). The incorporation of 

nanofiller not only restricted to one type, it more than one filler can be incorporated 

which is known as hybrid nanofiller. The enhancement in properties of hybrid 

nanocomposite is depending on the dispersion of particles and aspect ratio (Nurul 

and Mariatti, 2013).  

Good dispersion of nanofiller gives tremendous effect on mechanical and 

electrical properties of polymer. In the correlation of polymer nanocomposites 

properties with nanoparticles surface modified is becoming a point of great interests 

because it produces excellent integration and improved interface between 

nanoparticles and polymer matrices. Rong et al. (2006) reported that surface 

modification of nanofiller is influences the mechanical, tribology, electrical and fire 

retardant performance of polymer based nanocomposites. 
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1.2 Problem Statement 

The cable system must prevent contact of the high-voltage conductor with 

other objects or persons, and must contain and control leakage of current. Cable 

joints and terminals must be designed to control the high-voltage stress to prevent 

breakdown of the insulation. In real application, the XLPE insulated cable are 

subjected to thermal, electrical, mechanical, oxygen, humidity, chemical, radiation or 

microorganism aging during storage and operating service which can cause 

physicochemical properties and microstructure changes and obviously affect the 

electrical and mechanical properties of the cable insulation.  

The mechanical damage such as hitting a cable while digging a trench is 

fairly obvious and the overvoltage and under voltage cause abnormal stresses within 

the insulation which can lead to cracking for the insulation (Zhang et al., 2015). 

Moreover, XLPE is a very weak conductive material which cause accumulation of 

immobile charge carrier in the insulation and produce additional electrical source 

field. The charge transport also produce molecular chain distortion which creates 

energy traps and can increase the accumulation of other charges. Thus, it changes the 

polarity, local distribution and concentration of space charge which lead to 

breakdown (Muhr et al., 2004). 

Interestingly, the incorporation of nanofillers can improve the mechanical 

properties of XLPE by their large interfacial zone. The function of ‘trap and scatter’ 

of nanofillers also may improve the electrical properties of XLPE. When the material 

is packed with nanofillers, the fillers act as scattering site. The electrons or charge 

carriers injected from high voltage electrode transfer the energy to the nanoparticles 

and reduced the mobility. The energy of charge carriers is distributed more uniformly 
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