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SIFAT-SIFAT TERMA DAN STRUKTUR KEADAAN ASAS 

NANOKLUSTER TULEN DAN PANCALOGAM MELALUI SIMULASI 

DINAMIK MOLEKUL 

ABSTRAK 

Dalam bidang fizik komputasi, sifat terma nanokluster adalah antara topik 

yang biasa dikaji melalui simulasi dinamik molekul. Walau bagaimanapun, kaedah 

pasca-proses data dan penentuan julat pra-pencairan serta peleburan nanokluster pada 

komposisi tertentu adalah berbeza bagi setiap penyelidikan. Dalam tesis ini, kajian 

mengenai sifat terma bermula dengan memperoleh struktur keadaan dasar 

nanokluster emas-platinum 38-atom          bagi pelbagai komposisi (di mana 

      ) dengan mengguna algoritma Parallel Tempering Multicanonical Basin 

Hopping plus Genetic Algorithm (PTMBHGA).  Nanokluster dwilogam         

dengan simetri D6h telah dipilih untuk perincian lanjutan sifat-sifat termanya 

memandangkan ia merupakan nanokluster dwilogam yang paling stabil dalam tesis 

ini. Kod dinamik molekul yang dikenali sebagai Brownian type isothermal molecular 

dynamics (BTIMD). Haba tentu,    dan indeks Lindemann,   yang merupakan 

penghurai-penghurai yang lazim dalam memantau kelakuan peleburan nanokluster 

telah dikira untuk        . Lengkungan    yang diperolehi menunjukkan bahawa 

peleburan nanokluster ini berlaku di antara   1000 K dan 1050 K. Kewujudan fasa 

pra-peleburan dalam kalangan nanokluster telah dibuktikan melalui lengkungan    

dan   yang menunjukkan peningkatan secara mendadak pada    700 K sehingga 

   800 K. Kod Ultrafast Shape Recognition (USR) telah diperkenalkan untuk 

memperinci fenomena pra-peleburan. Data yang terkumpul diplotkan dalam bentuk 

jarak atom dan fungsi taburan kebarangkalian bagi indeks keserupaan bentuk. 
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Kedua-dua hasil kajian tersebut telah megesahkan secara berdikari bahawa pra-

peleburan berlaku di antara    760 K dan 770 K. Berbagai-bagai pendekatan 

komputasi yang dicuba di dalam tesis ini memeperlihatkan keputusan-keputusan 

yang tertumpu untuk julat pra-peleburan dan peleburan nanokluster-nanokluster yang 

dikaji. Di antara kaedah-kaedah tersebut, pendekatan USR yang memeberi gambaran 

yang terperinci terhadap kelakuan peleburan nanokluster. Kaedah ini telah 

membuktikan ia sendiri sebagai penghurai yang lebih tepat berbanding dengan haba 

tentu,    dan indeks Lindemann,  . 
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THERMAL PROPERTIES AND GROUND-STATE STRUCTURES OF PURE 

AND ALLOY NANOCLUSTERS VIA MOLECULAR DYNAMICS 

SIMULATION 

ABSTRACT 

 The study of thermal properties of nanoclusters via molecular dynamics 

simulation is a common research topic in computational physics. However, the 

methods of post-processing and determining the pre-melting and melting range of 

nanoclusters at specific composition differ in every research. In this thesis, the study 

of thermal properties was started by obtaining the ground-state structure of 38-atoms 

gold-platinum nanoclusters          of various composition (where           ) 

using Parallel Tempering Multicanonical Basin Hopping plus Genetic Algorithm 

(PTMBHGA). Bimetallic nanocluster         with D6h symmetry has been selected 

for further investigation in the thermal properties, as it is the most stable bimetallic 

nanocluster studied in this thesis. To study the melting mechanism of the clusters, a 

molecular dynamics code known as Brownian type isothermal molecular dynamics 

(BTIMD) was used. Specific heat,    and Lindemann index,  , which are the 

common descriptors used to monitor the melting behaviour of clusters were 

calculated for        . The    curve revealed that the melting of this nanocluster 

commenced between   1000 K and 1050 K. Both    and   curves showed drastic 

increase at    700 K to    800 K, indicating the presence of pre-melting phase in 

nanoclusters. To scrutinize the pre-melting phenomena, ultrafast shape recognition 

(USR) code has been introduced. The data was plotted into atomic-distance plots and 

probability distribution function of shape similarity index. Both these two results 

independently proved that the pre-melting stage occurred between    760 K and 

770 K. Various independent computational methods attempted in this thesis shown 
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convergent results in the pre-melting and melting range of the studied nanoclusters. 

Amongst these methods, the USR approach provided the most detailed insight to the 

melting behaviour of the nanaoclusters. It has proven itself to be a more precise as 

indicator compared to specific heat,    and Lindemann index,  .  
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CHAPTER 1  

INTRODUCTION 

 

The size of an atom ranges from 1 × 10
-10

 m to 5 × 10
-10

 m, which is about 

0.1 to 0.5 nanometre. When few or more atoms group together, they form a minute 

atomic structure which is about the size of a nanometre. Due to the advancement of 

nanotechnology, these atomic structures have been studied extensively. In this thesis, 

thermal properties of atomic lattices in the nanometric scale are studied. These 

atomic lattices will then be regarded as “nanoclusters”.  

 

1.1 Nanoclusters 

 Nanocluster is a group of particles (atoms or molecules) with its size in the 

order of nanometre (10
-9

 m) formed by any countable number of atoms (2 to 10n, 

where n can be up to 6 or 7) (Johnston 2002, pp. 25) that are combined together 

(Logsdail 2011, pp. 2). Nanoclusters can be formed from identical atoms (homo-

atomic) or two or more types of atoms (hetero-atomic). An example of homo-atomic 

nanoclusters is platinum nanocluster, Pt (Saxena et al. 2011). A good example of 

hetero-atomic nanocluster is silicon carbon nanocluster,    (Pradhan et al. 2004). 

Each type of clusters has their own uniqueness that make them a worthwhile topic to 

study. 
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Nanoclusters can also be classified according to the types of element from 

which the clusters are comprised of. The classification includes metallic nanoclusters 

(metallic elements), semiconductor nanoclusters (carbon, silicon and germanium), 

ionic nanoclusters (elements that involve ionic or electrostatic bonding), rare gas 

nanoclusters (elements from helium to radon in group 18), molecular nanoclusters 

(formed from supersonic expansion of molecular vapour) and nanocluster molecules 

(inorganic and organometallic nanoclusters). The clusters to be studied in this thesis 

are specific types of metallic nanoclusters. Metallic clusters are formed by elements 

with metallic bonding, which includes the simple s-block alkali and alkaline earth 

metals (from group 1 and 2 in periodic table) and transition metals with valance d 

orbitals (Johnston 2002, pp. 26). 

Due to high surface area to volume ratio in nanoclusters, their physical 

properties generally display a size-dependence behaviour. The surface energy 

contribution is playing an important role in the study in the study of nanoclusters 

(Baletto et al. 2005). As a result, nanoclusters of different sizes will exhibit different 

properties despite being formed by the same elements. 

 

1.2 Importance of Nanoclusters  

The increasing interest in nanoclusters throughout the past decades is due to 

the possibilities of them having distinct physical and chemical properties compared 

to bulk state (Ferrando et al. 2008). The potential applications of nanocluster 

technology in physics, chemistry, biology, medicine and our daily life have 

accelerated the progress of research on nanoclusters. The application of nanocatalysis 

in industry, hydrogen storage and high sensitivity magnetic sensors have become the 
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factors that drive researchers to study further into nanoclusters (Carabineiro et al. 

2007) (Van Dijk 2011, pp. 3). The research community has been attracted by its 

ability to control the chemical reactivity and physical properties of nanoclusters to 

form new materials that can be tailored according to the requirements in industrial 

applications. 

To understand the properties of nanoclusters, researchers have searched for 

the most stable structures with the lowest potential energy (Baletto et al. 2005). After 

finding the geometrical and electronic structure of nanoclusters, the results will be 

branched out to the studies of catalytic, magnetic, optical and thermal properties. Due 

to the limitation in current technology, the bare cluster without encapsulation is not 

stable and most of the time it has to be concealed with ligands. Since the properties 

of the nanoclusters are not easily measured in experiments, theoretical studies and 

computational methods have become important tools in development and application 

of nanocluster (Johnston 2002, pp. 29).  

Most of the single element nanoclusters in periodic table had been studied 

widely. Motivated by the interest to fabricate intermetallic materials used in catalysis, 

engineering and electronics, bimetallic and trimetallic nanoclusters with the 

flexibility to control the structure and properties have drawn widespread interest 

among researchers (Ferrando et al. 2008). The range of properties for bimetallic and 

trimetallic nanoclusters can be widely enhance by tuning the size, atomic ordering 

and compositions. The structures obtained from bimetallic nanoclusters can differ 

from pure nanoclusters with the same number of atoms, hence some bimetallic 

nanoclusters with magic size and compositions will possess strong stability.   
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From theoretical point of view, the idea of “homotops” have been introduced 

to describe the isomers of bimetallic nanocluster      with fixed number of atoms 

(     ) and composition (  ⁄       )  which have identical geometrical 

arrangement but with A and B types of atoms arranged differently (Jellinek et al. 

1996). A geometrical isomer of N-atom      nanocluster will generate     
  

homotops, where 

    
  

  

      
  

  

   (    ) 
            (1.1) 

  is the total number of atoms,    and    are the number of atoms of type A and 

type B respectively. From Equation (1.1),     
  rises rapidly with the increase of  . 

As a consequence, the global optimization process to study bimetallic nanoclusters 

becomes increasingly complicated (Ferrando et al. 2008). 

 

1.3  Gold-Platinum Nanoclusters 

Gold (Au) with a filled d-orbital and atomic number 79 is a material which 

has been studied intensively due to its unique capability to hold as planar structure 

from 3 to 14 atoms in gold nanoclusters (Xiao et al. 2004a). Moreover, gold 

nanoclusters are relatively stable in acidic and alkaline solution (Tang et al. 2009). 

The stability of gold makes it unreactive in bulk form. However, it can become 

reactive in the form of a nanocluster. With the ability to resist bacterial infection, 

gold nanoclusters are widely used in medical field, including the microsurgery of 

ears and other surgery that require implants with the risk of infection (Giasuddin et al. 

2012). Besides, gold nanoclusters serve as catalyst in the electrocatalytic oxidation of 

carbon monoxide (CO) in industry (Maye et al. 2000). 
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Meanwhile, platinum (Pt) is a transition element in periodic table with atomic 

number 78. It is an important catalyst in various industries, including part of catalyst 

in automotive catalytic converters to diminish toxic pollutants (Xiao et al. 2004b), 

oxygen reduction and polymer electrolyte membrane fuel cell (Tang et al. 2009). 

However, researcher are searching for a better alternative to reduce the involvement 

of platinum due to its limited supply, high cost and susceptibility to poisoning from 

oxidation products (Tang et al. 2009).  

Gold-platinum nanoclusters are widely used in industrial as effective catalyst 

in oxygen reduction process (Wanjala et al. 2010) and fuel cell electrocatalysis 

(Maye et al. 2004). Furthermore, they have been investigated for methanol and CO 

electrooxidation (Piotrowski et al. 2012). The structures of gold-platinum 

nanoclusters have been investigated while the results show that they are immiscible 

in bulk form but experimentally proven that they can exist as nanoclusters (Mott et al. 

2007).   

 

1.4  Objective of Study  

1. As clusters consist of gold and/or platinum are widely used in industries, it 

becomes an essential piece of information as what are the temperatures at 

which gold nanoclusters undergo structural changes. In order to know how 

gold-platinum nanoclusters are affected by temperature variation, we shall 

study their possible structures at high temperatures, as they are altered, as 

well as the melting behaviour of these nanoclusters.  
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2. In order to study the thermal properties of gold platinum nanoclusters of 

choice, their stable structures, or lowest-energy states, have to be identified. 

Several compositions of bimetallic gold platinum nanoclusters have been 

studied in the literature, including those with 40 (Leppert et al. 2011) and 55 

atoms (Bochicchio et al. 2013).   

 

3. Conventional methodologies to study thermal instabilities of nanoclusters, 

such as Lindemann index and specific heat capacity curve, turn out to be not 

sufficiently sensitive to capture the melting behavior during the pre-melting 

phases. Quantifying the melting behaviour of nanoclusters during pre-melting 

phases is essential to understand the changes that occur within the nanocluster 

as temperature varies. In the thesis, a novel approach is proposed to quantify 

and capture these details.  
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CHAPTER 2  

THEORETICAL BACKGROUND AND METHODOLOGIES 

 

The main issue this thesis wishes to address is about the structural and 

thermal behaviour of gold-platinum clusters. To this end, a specific global 

optimization search algorithm named Parallel Tempering Multicanonical Basin 

Hopping plus Genetic Algorithm (PTMBHGA), is used to generate the ground state 

structure of a given atom composition starting from a random configuration. Once 

the clusters with minimal energies have been obtained as an end output from a 

completed PTMBHGA run, they will be subjected to molecular dynamics (MD) 

thermal evolution. The specific MD algorithm used is known as Brownian type 

isothermal molecular dynamics simulation. The energy calculator used to calculate 

the potential energy of the atomic configurations generated during the process of 

global minimum search in the PTMBHGA algorithm, which is also the same as that 

used in the MD simulation, is the Gupta potential. The MD evolution using a 

purpose-specific numerical algorithm known as ultrafast shape recognition. It is 

meant to abstract in a frame-by-frame manner information of the atomic 

configurations so that the detailed mechanism of the melting procedures occurring 

during the thermal evolution of the system can be statistically quantified. The overall 

flow of the calculation procedure is shown in the flow chart in Figure 2.1.  
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Figure 2.1: Flow chart of calculation procedure. 

 

The main components of the calculation procedure in the flow chart are 

explained in the following subsections.  

 

2.1 Parallel Tempering Multicanonical Basin Hopping Plus Genetic 

Algorithm (PTMBHGA) 

 The first step in the theoretical study of a nanocluster is to identify its ground-

state structure which is, by definition, its lowest energy state. Identification of 

ground-state structure is the first most important task before one can advance into 

calculating the physical properties of a cluster. In principle, all measurable 

observables of a nanoclusters can be derived theoretically if its ground state is known. 

Semi-empirical methods such genetic algorithm and basin hopping, which work as 

global energy optimizers, are commonly used in the search for ground-state structure. 

As an example, Birmingham Clusters Genetic Algorithm (BCGA) is a genetic 

algorithm developed by R.L. Johnston as global minimum search algorithm 

(Johnston 2003). BCGA have been applied in various studies from ionic clusters, 

metal clusters to bimetallic clusters, such as CuAu nanoclusters (Darby et al. 2002) 

and PdPt nanoclusters (Massen et al. 2002). Another global minimal search 

algorithm to mention here is Parallel Tempering Multicanonical Basin Hopping plus 

Parallel Tempering 

Multicanonical 

Basin Hopping plus 

Genetic Algorithm 

Ultrafast Shape 

Recognition 

Brownian type 

Isothermal 

Molecular 

Dynamics 
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Genetic Algorithm (PTMBHGA) (Hsu et al. 2006). The latter will be used in this 

thesis as the global minimum searching tool.  

Parallel Tempering Multicanonical Basin Hopping plus Genetic Algorithm 

(PTMBHGA) is a software package developed by the Complex Liquid Lab in the 

National Central University, Taiwan (Hsu et al. 2006). PTMBHGA was designed to 

compute the lowest energy geometries (ground-state structures) of bimetallic 

nanoclusters. Their searching technique combines both basin hopping and genetic 

algorithm, and is claimed to improve the potential energy surface (PES) search and 

resolve the issue of calculations being trapped in local minima.  

 

2.1.1 Gupta Many Body Potential 

 In order to calculate the interactions between many-body atoms, n-body 

Gupta potential is employed. The empirical potential is written as: 

            ∑

{
 
 

 
 ∑       (    (

   

   
( )   ))

 
   (   )  

[∑    
    (     (

   

 
  
( )   ))

 
   (   ) ]

   

}
 
 

 
 

 
                   (2.1)  

   ,    ,    ,     and    
( )

 are parameters fitted to bulk quantified data by Cleri and 

Rosato for cohesive energy, lattice constant and elastic constant for face centred 

cubic crystal structure at 0 K (Cleri et al. 1993).      is coefficient of repulsive pair 

term,      is the effective hopping integral between   and  ,     and     describe the 

dependence on the repulsive and attractive interatomic distance between   and  ,    
( )

 

is the equilibrium first neighbour distance. 
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The parameters used in this work, including those for gold atoms (Au-Au), 

platinum atoms (Pt-Pt) and gold platinum atoms (Au-Pt), are listed in Table 2.1. 

Table 2.1: Gupta parameters for gold, platinum and gold platinum atoms. 

 
     (  )  (  )   ( ) 

Au-Au 12.229 4.036 0.2061 1.79 2.884 

Pt-Pt 10.621 4.004 0.2795 2.695 2.7747 

Au-Pt 10.42 4.02 0.25 2.2 2.8294 

 

 

2.1.2 Genetic Algorithm 

Genetic algorithm (GA) is a global minimum search algorithm developed 

from the inspiration of evolution process. It was first used in the 1970s by John 

Holland from University of Michigan (Borbόn 2011). He proposed four basic 

elements for a generic GA algorithm, namely, encoding scheme, fitness function, 

selection methods and lastly the genetic operator (Yen 2015).  

The particular flavour of GA as implemented in the PTMBHGA code follows 

the scheme as described below. The process starts from encoding a three dimensional 

coordinates of initial population ( ,  ,  ) into one dimensional coordinates (  , 

  ,…,  ), with      the number of atoms of the initial population. It is then 

followed by the calculation of the potential energy using Gupta potential and the 

computation of local minima using conjugate gradient minimization (L-BFGS) 

method. The local minima obtained will then undergo the fitness evaluation (for 

certain populations) using the equation: 

            (       ) (         )⁄                       (2.2) 

      
  

∑   
  
   

              (2.3) 
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where      and      are the maximum and minimum energy cluster in the 

population and    is the normalized fitness. The statistics obtained are used in the 

formation of “children” (next generation) of the GA calculations. 75% of the 

“parents” individuals will be retained for the creation of next generation individuals. 

The “parents” individuals with higher fitness will undergo five genetic operators 

which include inversion, arithmetic mean, geometric mean, n-point crossover and 2-

point crossover to sort out the “children” individuals (Lai et al. 2002).   

The GA process is repeated until it fulfils either one of the criterion, which is, 

the potential energies obtained remains unchanged for a few steps, or, the 

simulations end with the steps fixed at the beginning of the GA process 

configurations.  

 

 

 

 

 

 

 

 

 

 

 



12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Flow chart of genetic algorithm in PTMBHGA. 
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2.1.3  Basin Hopping 

Basin hopping is a potential energy surface analysis which searches for a 

global minimum across the potential energy landscape of a system formed by a lot of 

local minima (Zhan et al. 2004). This algorithm was proposed in 1997 by Wales and 

Doye to locate the global minimum structure for Lennard-Jones Clusters up to 110 

atoms (Wales et al. 1997).  

The end results of the potential energy surface analysis can be represented by 

the following equation: 

 ̃( )     * ( )+             (2.4) 

where     denote the local-energy minimization and  ( ) represents the potential 

energy (Lai et al. 2002). 

In the basin hoping algorithm, an initial random arrangement of the 

nanocluster is calculated numerically to obtain the local minimum energy of the 

nanocluster. The simulation starts with the calculation of the local minimum energy 

for the initial random coordinate generated. The local minimum energy,      

obtained is then fit into equation: 

  
 

 
∑  ( ) 
                (2.5) 

where    indicates the potential of  th atom caused by the interaction with all atoms 

in the nanocluster. The potential   , where           are inspected. The 

  (highest potential) and    (lowest potential) are sorted out. If        where   is a 

constant initially set at 0.4,    is considered as the potential for atoms farthest away 

from the centre of mass and the potential for all the other atoms (   ) are displaced 
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by  , which is also a constant initially set as 0.36. Whereas if       , all the atoms 

are displaced by  . 

After getting a new sets of potential, the local minimum energy      is 

calculated again with Equation (2.5). If the      calculated is smaller than     , it 

will directly replace      to be the local minimum energy used for the analysis part.  

The results are then tested if it falls within a certain confidence level,  , where 

     . The suitability of parameters   and   are tested until an optimum value 

of   and   are obtained. The process is repeated until it reached the pre-set maximum 

steps. 

However, there are times where the simulation is unable to satisfy even the 

lowest confidence level due to the huge energy difference.  To overcome this issue, 

genetic algorithm is introduced to the system in order to rearrange the system 

configuration.  
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Figure 2.3: Flow chart of basin hopping in PTMBHGA. 
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2.1.4  Multicanonical Basin Hopping 

 For system involving large number of atoms, the chances of the basin 

hopping search to fall into a deep potential well in PES is high. Multicanonical basin 

hopping is introduced to overcome this issue. It is modified from the Boltzmannian 

Monte Carlo scheme. In terms of multidimensional staircase topography  ̃( ), the 

non-Boltzmann multicanonical weight factor can be written as: 

   ( ̃)   
    ( ̃) ̃    ( ̃)            (2.6) 

where    ( ̃) is an effective inverse temperature while     ( ̃) is a multicanonical 

parameter (Hsu et al. 2006).  

  By applying the weigh factor into basin hopping simulation will help to 

flatten out the PES and raise the probability for the global minimum search to obtain 

structure with lower potential energy. The application of multicanonical basin 

hopping enable the lowest potential energy search to cover wider area in potential 

energy surface and thus increase the credibility of local potential minimum search. 

 

2.1.5 PTMBHGA Working Parameters 

In the PTMBHGA code developed by Hsu (Lai et al. 2002), the empirical 

Gupta many-body potential is used as the energy calculator. The calculation process 

involves 3 cycles of basin hopping and multicanonical basin hopping: 

First cycle: BH for 100 steps and MBH for 10 steps 

Second cycle: BH for 100 steps and MBH for 20 steps 

Third cycle: BH for 100 steps and MBH for 30 steps                                                                                                
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For the genetic algorithm simulations, PTMBHGA only preserve 75% of the parents‟ 

individuals and replace the remaining 25% with children individuals. The genetic 

operators used have been weighed as below: 

Inversion: 5  

Arithmetic mean: 1  

Geometric mean: 1  

N-point crossover: 5  

2-point crossover: 5 

The process is repeated with the formation of 20 parents‟ individuals (5 newly 

regenerated) to calculate the lowest potential energy. The simulations ended after 

500 steps of GA, which is deemed sufficient for the simulation to obtain the global 

minimum energy.  
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Figure 2.4: Flow chart of PTMBHGA. 

 

2.2 Thermal Properties of Nanoclusters  

Thermal properties of nanoclusters have been studied and observed since 

early of 20th century when Pawlaw explained the reduction in melting temperature 

of finite system. Thermal properties of a cluster can be studied through melting 
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process that involves the change in physical state of a matter as temperature varies. 

Exotic thermal properties found in certain clusters can find applications in e.g., 

biomedical field where the drugs can be encapsulated into substance made of small 

particles that melts just above human body temperature (Westesen 2000). 

Experimental studies on the melting of nanoclusters have been carried out at the end 

of 20th century by Schmidt et al. using sodium nanocluster (Kusche et al. 1999). In 

their studies, the nanocluster was heated and the results were compared with sodium 

in bulk form. The results proved that the melting temperature for nanocluster is lower 

than in bulk form (Schmidt et al. 1997). Besides, it was proven that the melting 

transitions of nanocluster does not happen at a finite temperature but spreading out to 

a finite temperature range. Meanwhile, in the theoretical front, molecular dynamics 

studies have suggested that melting in nanoclusters could display some unusual 

behaviour, e.g., emergence of pre-peaks in the melting curves and an extended 

temperature range throughout which melting is happening. 

 

2.2.1 Brownian Type Isothermal Molecular Dynamics Simulations  

In this section, the theoretical basis of Brownian type isothermal MD, will be 

discussed. Implementation of this MD approach in the form of a software package 

has been developed by S. K. Lai‟s team in National Central University, Taiwan. The 

team developed the code in year 2007 -  based on the ideas inspired by Nose, Hoover 

and Kusnezov (Bulgac et al. 1990). The Brownian Type Isothermal Molecular 

Dynamics code (abbreviated BTIMD) used in this thesis is provided by the NCU 

group with kind courtesy.  
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The basic idea of this MD simulation approach is built upon canonical 

ensemble at classical level, and is designed with the intention to study melting 

behaviour of clusters (Yen et al. 2007). As in most MD approach to model 

thermodynamically related simulations, such as melting phenomena, temperature of 

the system has to be stipulated in a controlled manner. To this end, heat bath is 

coupled to the system to heat it up to a desired temperature. The temperature-tuning 

control in the MD simulation will require additional degree of freedom. In the case of 

BTIMD, the additional degree of freedom come in the form of pseudofriction terms 

that couple the heat bath to the simulated system via a cubic coupling scheme (CCS) 

which provides superiority over other MD approaches. The application of CCS 

managed to overcome the downsides of Nose-Hoover method, which are the 

dependency on (1) the assumption that the motion is ergodic, (2) the reliance of 

initial conditions, (3) algorithm parameters and, (4) pseudofriction terms (Kusnezov 

et al. 1990). The phase space of the system can be explored at fast exploration rate 

and ergodicity can be ensured (reproduced the canonical ensemble averages) with the 

involvement of CCS. The modified CCS involved three pseudofriction terms, which 

are sufficient to produce ergodic condition for free particles in contact with a thermal 

bath. The technical details of the CCS is compactly summarised in the equation 

below: 

          ̇ ( )  
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In the equations 2.7 to 2.11,   ( ) and   ( ) are the x-component position coordinate, 

  ( )  and   ( )  are the x-component momentum,    is the potential energy defined 

from the Gupta many-body potential,     ,     , and      are the x-component 

pseudofriction coefficient,    is the atomic mas,      √     is the average 

thermal momentum at temperature  ,    is the dimensionless constant,    is a 

constant with dimension of length,      is the energy constant with value estimated 

from            
   

  (   ) , while    is the Debye frequency, 

               ,
    

 

    
 -
    , in which         . 

 

2.2.2 Procedures of Molecular Dynamics Simulations  

All the MD simulations in this thesis were conducted using the BTIMD code 

provided by the NCU group. Throughout all simulations, time step of    which is 

fixed between         to         s was used. For lower temperature (  

     ), the simulation runs were carried out for a total of       steps so that the 

effect of large fluctuations during the melting can be circumvented by sampling a 

large amount of data via a lengthy simulation. Meanwhile, for gold-platinum 

nanocluster at higher temperatures (               ),       steps were 

performed to produce smoothened resulting graphs and improve the reliability of the 
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simulation results. At the end of       steps run for case of temperature,   

     K, an additional       steps were carried out. The total elapsed time      for 

a complete simulation was always fixed at        s.  

The MD simulations were run at an interval of 50 K throughout all 

temperatures. However, in pre-melting and melting regions, which generally lies in 

the range of                , a more refined interval of 10 K is adopted. 

 

2.3 Ultrafast Shape Recognition  

 Molecular shape recognition technique is widely applied in chemistry field to 

categorize molecular structures, especially proteins structure. It has been 

experimentally proven to be an important tool to discover new materials (Bostrӧm et 

al. 2006). There are currently 2 types of shape recognition algorithm, namely, 

superposition-based shape comparison and superposition free algorithm (Ebalunode 

et al. 2010). The superposition-based shape similarity comparison algorithm was 

introduced in 1991 (Meyer et al. 1991). The downside of this algorithm is the time-

consuming optimization process. To overcome this weak point, superposition-free 

algorithm that is based on the interatomic distance has been invented.  This technique 

was named as Ultrafast Shape Recognition (USR) in a paper published in 2007 by 

Ballester et al. The technique has successfully speeded up the process of fast virtual 

screening (Ballester et al. 2009). The idea of USR ideology was inspired S. K. Lai‟s 

team from National Central University, Taiwan to come up with a novel approach for 

analysing metallic clusters undergoing thermodynamic transition.   

The analysing process of USR involved the shape similarity index and 

probability of shape similarity function. It compares the reference ground-state 
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configuration of the original nanocluster at 0 K against the configuration at each time 

step during the simulation. The shape similarity index   is the quantifier used to 

measure the difference between the structures of the nanoclusters    . Referring to 

Ballester et al., shape similarity index is defined as  

        [  ∑ |         |  
 
   ]

  
         (2.12) 

where   refers to the  th structural arrangement of the system at a given instance in a 

MD simulations.   is the total number of statistical moment descriptors to be 

included in the definition of  . The reference structure has the value      when 

   . Therefore, the value of    is less than 1 for any  th structure arrangements that 

is different from the reference structure. *    ,     , … ,     + refer to the moments 

of atomic distance distribution of the reference structure, while *    ,     , … ,     +  

refer to that of the  th arrangement.  

Given the collection of a cluster‟s statistical data generated in a MD 

simulation, 4 different statistical moments, which are defined based on the 3D spatial 

coordinates of the atoms, can be defined, namely, 

(i) Mean value 

(ii) Variance 

(iii) Skewness 

(iv) Kurtosis 
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These moments in turns can be calculated by referring to 4 different reference sites 

(origins), namely, 

(i) Centre of mass (COM) 

(ii) Atom closest to the centre of mass (CCM) 

(iii) Atom farthest from the centre of mass (FCM) 

(iv) Atom farthest to atom farthest from the centre of mass (FTF) 

Hence, overall, 16 different statistical moment descriptors can be discerned 

(only 12 moments are formally identified in Ballester et al. 2007). In other words, 

     as appear in the summation in Equation (2.12).  

The definitions of 4 reference sites are given below, along with illustrating 

examples to facilitate the explanation. 

(i) Centre of mass (COM) 

 

Figure 2.5: The location of COM in         ground-state structure. (Olive green 

represents platinum atoms and pink represents gold atoms) 

 

Centre of mass refers to the mean position of all the individual atoms in the 

nanocluster. Generally, COM of a given cluster may not coincide with any particular 

atom sitting inside the cluster. Rather, it may fall on a spatial point located in an 

COM 


