STUDY OF LOW DIMENSIONAL TUNGSTEN OXIDE BY ANODIZATION AND SOL-GEL METHODS

by

CHAI YINGQI

Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

June 2018

ACKNOWLEDGEMENT

First of all, I would like to thank my supervisor, Dr. Yam Fong Kwong, and my cosupervisor, Prof. Zainuriah Hassan, for their easygoing supervision and guidance throughout this project. Their advice, dedication and energy to me are appreciated.

I would also like to show my gratitude to the lab assistants of Institute of Nano-Optoeletronics Research and Technology as well as the School of Physics of University Sains of Malaysia (USM). Their help in providing a convenient working environment and experimental equipments allowed me to run my experiments smoothly. Besides, I would also like to thank my colleagues and other researchers from NOR lab for the great discussions and suggestions.

Finally and mostly, I would also like to thank my family and friends for their support and motivation.

TABLE OF CONTENTS

ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	xiv
ABSTRAK	xvi
ABSTRACT	xviii
CHAPTER 1: INTRODUCTION	1
1.1 Introduction	1
1.2 Why Tungsten Oxide	1
1.3 Fabrication methods of nanostructured tungsten oxide	3
1.3.1 Anodization	4
1.3.2 Sol gel	6
1.4 Current research and problem statements	7
1.5 Research Objectives	10
1.6 Research Novelties	10
1.7 Outline of Thesis	10
CHAPTER 2: LITERATURE REVIEW AND RESEARCH BACKGROUND	12
2.1 Introduction	12
2.2 Fundamental properties of tungsten oxide	12
2.3 Anodic growth mechanism of nanostructured WO ₃	15

2.4	Fabrication of WO ₃ by sol-gel method	19
	2.4.1 Type of precursors	19
	2.4.2 Sol-gel process	20
2.5	Photoelectrochemical water splitting	22
	2.5.1 Principle and efficiency of photo-electrode water splitting	23
	2.5.2 Requirement of the Photo-electrode for Water Splitting	25
	2.5.3 Challenge of the Photo-electrode for Water Splitting	26
2.6	Humidity Sensor	28
	2.6.1 Humidity sensing mechanism	30
	2.6.2 Current research on humidity sensor	33
CHAI	PTER 3: EXPERIMENTAL PROCEDURE	37
3.1	Introduction	37
3.2	Growth and characterization of WO ₃ by anodization method	37
	3.2.1 Growth of WO ₃ by anodization method	37
	3.2.2 Characterization of the anodic growth WO ₃	41
3.3	Growth and characterization of WO3 by sol-gel method	43
	3.3.1 Growth of WO ₃ by sol-gel method	43
	3.3.2 Fabrication of WO ₃ humidity sensor	45
	3.3.3 Characterization of the sol-gel-made WO ₃	47
CHAI	PTER 4: TUNGSTEN OXIDE GROWN BY ANODIZATION METHOD	49
4.1	Introduction	49
4.2	Anodization in oxalic acid electrolyte	49
	4.2.1 Effect of voltage on the WO ₃ formed in oxalic acid	49

	4.2.2 Effect of duration on the WO ₃ formed in oxalic acid	52
	4.2.3 Formation mechanism of nanopores	54
	4.2.4 Effect of post-annealing on the WO ₃ formed in oxalic acid	56
4.3	Anodization in HCl electrolyte	61
	4.3.1 Effect of voltage on WO ₃ formed in HCl	61
	4.3.2 Effect of anodization duration on WO ₃ formed in HCl	63
	4.3.3 Effect of anodization temperature on WO ₃ formed in HCl	64
	4.3.4 Formation mechanism of nanoplates	67
4.4	Anodization in H ₂ SO ₄ electrolyte	69
	4.4.1 Effect of concentration on WO ₃ formed in H ₂ SO ₄	69
	4.4.2 Effect of voltage on WO ₃ formed in H ₂ SO ₄	70
	4.4.3 Effect of anodization duration on WO_3 formed in H_2SO_4	72
	4.4.4 Effect of anodization temperature on WO_3 formed in H_2SO_4	73
4.5	Photoelectrochemical measurement	76
	4.5.1 Photoelectrochemical measurement of WO ₃ formed in oxalic acid	76
	4.5.2 Photoelectrochemical measurement of WO ₃ formed in HCl	77
	4.5.3 Photoelectrochemical measurement of WO_3 formed in H_2SO_4	79
	4.5.4 Comparison of the photoelectrochemical measurement of WO ₃ formed with different methods and their efficiency	80
4.6	Summary	83
CHAI	PTER 5: TUNGSTEN OXIDE GROWN BY SOL-GEL METHOD	84
5.1	Introduction	84
5.2	Visual inspection of the sol-gel-made tungsten oxide	84
	5.2.1 Visual inspection of the sol-gel-made tungsten oxide with different acid volumes and ageing durations	85

	5.2.2	Visual inspection of the sol-gel-made of tungsten oxide with different mixing rates	88
5.3	Morp	phological property of the sol-gel-made tungsten oxide	89
	5.3.1	Effect of the acid concentration on the morphological property	90
	5.3.2	Effect of the ageing duration on the morphological property	93
	5.3.3	Effect of the mixing flow rate on the morphological property	94
5.4	Struc	tural and vibrational properties of the sol-gel-made tungsten oxide	96
	5.4.1	Effect of the acid volume on the structural and vibrational properties of tungsten oxide	96
	5.4.2	Effect of the ageing durations on the structural and vibrational properties of tungsten oxide	100
	5.4.3	Effect of the mixing rate on the structural and vibrational properties of tungsten oxide	103
5.5	Hum	idity sensing properties of the sol-gel-made tungsten oxide	105
	5.5.1	Effect of acid concentration on the sensitivity of tungsten oxide humidity sensor	105
	5.5.2	Effect of ageing duration on the sensitivity of tungsten oxide humidity sensor	107
	5.5.3	Effect of flow rates on the sensitivity of tungsten oxide humidity sensor	107
	5.5.4	Comparison of the humidity sensing property of the samples	108
5.6	Sum	mary	109
CHA	PTER	6: CONCLUSION AND FUTURE WORK	111
6.1	Conc	lusion	111
6.2	Prop	osed future works	112
REF	EREN	CES	113
APPE	ENDIC	CES	

LIST OF PUBLICATIONS

LIST OF TABLES

Page

Table 2.1	Recent works on humidity sensors since 2003	35
Table 3.1	Anodization parameters for the samples prepared in 0.3 M oxalic acid.	39
Table 3.2	Anodization parameters for the samples prepared in 1 M HCl.	40
Table 3.3	Anodization parameters for the samples prepared in H ₂ SO ₄ .	41
Table 3.4	Experimental parameters for WO ₃ fabricated by sol-gel technique.	44
Table 5.1	Calculated lateral and crystallite size for the samples prepared with different sol-gel parameters.	92

LIST OF FIGURES

Figure 2.1	Stability of polymorphs of WO ₃ at different temperatures. Source: Ref. [82].	13
Figure 2.2	(a) Crystalline WO ₃ structure with corner-sharing WO ₆ octahedra layers. (b) $W_{18}O_{49}$ structure with both corner- and edge- sharing WO ₆ octahedra layers. Source: Ref. [89].	14
Figure 2.3	(a) Plane view and (b) cross section view of SEM images of anodic growth alumina in 0.5 M oxalic acid at 15 °C for 1h. Source: Ref. [99].	17
Figure 2.4	Cross sectional view of SEM image of titanium oxide nanotubes formed in mixture of glycerol and water (50:50 vol. %) + 0.5 wt. % NH ₄ F. Inset shows the corresponding plane view image. Source: Ref. [100].	18
Figure 2.5	(a) Plane view and (b) cross sectional view SEM images of WO_3 grown in 0.5 wt % NaF + 1 M H ₂ SO ₄ . Source: Ref. [15].	18
Figure 2.6	SEM image of WO ₃ formed in $H_3PO_4 + 8$ M HF. Inset depicts the cross sectional image of the corresponding image. Source: Ref. [58].	18
Figure 2.7	Photoelectrochemical water splitting systems using n-type semiconductor photoanode. C.B., B.G., and V.B. represent energy level of the conductor band, band gap and valence band respectively. Source: Ref. [109].	23
Figure 2.8	Illustration of the energetic criteria for water splitting. Source: Ref. [109].	25
Figure 2.9	The bandgap positions for various semiconductors relative to the redox potential of water. NHE stands for normal hydrogen electrode. Source: Ref. [115]	27
Figure 2.10	Adsorption process of water molecules on sensing materials in different stages: (a) metal oxide surface (b) chemisorbed water (c) physisorbed water (d) multi-layer structure of condense water. Source: Ref. [144, 145].	31
Figure 2.11	Illustration of the Grotthuss mechanism. The arrows indicate hopping of protons. Source: Ref. [142].	31

Figure 2.12	Illustration of the electronic conduction mechanism. E_c , E_F , and E_v represent lowest energy of conduction band, Fermi energy level, and highest energy of valence band respectively. Source: Ref [142]	32
		52
Figure 2.13	Requirements of the humidity sensor. Source: Ref. [138].	34
Figure 3.1	Process flow for the growth of WO ₃ by anodization method.	37
Figure 3.2	Schematic diagram of the experimental setup for anodization.	38
Figure 3.3	Experimental setup for the photoelectrochemical measurement.	42
Figure 3.4	Process flow for the fabrication of WO ₃ by sol-gel method.	43
Figure 3.5	Schematic diagram of the experimental setup to grow WO ₃ by sol-gel method.	44
Figure 3.6	Process flow for the fabrication of tin plated IDE on PCB.	46
Figure 3.7	Design of the IDE pattern.	46
Figure 3.8	(a)Plane view and (b) cross-sectional view of the humidity sensor.	47
Figure 3.9	Experimental setup for the characterization of humidity sensor.	48
Figure 4.1	FESEM images of the films which are grown in 0.3 M oxalic acid for 30 min at (a) 20, (b) 40, (c) 60, (d) 80, (e) 100 V and (f) 110 V respectively. The insets show the cross sectional view of the respective images.	50
Figure 4.2	Pore layer thickness and pore diameter as a function of anodization voltage.	51
Figure 4.3	Current transients during anodization at different voltages. The inset shows the detail of the curve patterns in the low current density range.	51
Figure 4.4	FESEM top-view images of porous tungsten oxide films which are anodized in 0.3 M oxalic acid at 40 V for different durations. The inset in (e)-(i) shows the cross-sectional view images.	54
Figure 4.5	Schematic diagram of the porous tungsten oxide formation: (a) compact oxide layer formation, (b) growth of the pits, (c) growth of the pore, (d) precipitation of the soluble tungsten species and nucleation of small pore in the existing pore, (e) voids formation beneath the surface, (f) regular porous WO ₃ structure.	55

Figure 4.6	FESEM top view images of (a) as-grown and post-annealed films at (b) 400 $^{\circ}$ C, (c) 500 $^{\circ}$ C and (d) 600 $^{\circ}$ C for 2 hrs. Cross sectional view of film (e) without annealing and (f) film annealed at 600 $^{\circ}$ C.	57
Figure 4.7	(a) XRD patterns of WO ₃ films post-annealed at different temperatures. (b) Magnified patterns in the range of $22.5^{\circ}-25^{\circ}$. (c) XRD patterns for compact and porous films annealed at 400 °C for 2 h. Symbol ' ϵ ' indicates monoclinic phase of WO ₃ while ' ω ' indicates tungsten substrate.	58
Figure 4.8	(a) Raman spectra of films annealed at different temperatures. (b) Magnified spectra of (a) in the range of 800 -1000 cm ⁻¹ . (c) Changes of intensity and FWHM of peak at 807 cm ⁻¹ as the function of annealing temperature.	60
Figure 4.9	Current transients of the samples anodized in 1 M HCl at different potentials for 4 h. The inset shows the shift of the peak positions with the variation of applied potentials.	62
Figure 4.10	Selected FESEM top-view images of nanostructured film anodized at (a) 2 V, (b) 10 V and (c) 15 V in HCl for 4 h. Insets (a) and (b) are the cross-sectional images of the respective films. Inset (c) is the magnified view of the samples.	62
Figure 4.11	Current transients of the sample anodized in 1 M HCL at 10 V for 15 h.	63
Figure 4.12	Selected FESEM top-view images of samples anodized at 10 V in 1 M HCl for (a) 1 h, (b) 2 h and (c) 15 h which correspond to point I-III as labeled in figure 4.11. The insets are the cross-sectional images of the respective samples.	64
Figure 4.13	Current transients of the samples anodized in 1 M HCl at different temperatures for 4 h. The inset shows the local maximum of current density and shifting of the peak positions as a function of anodization temperature.	65
Figure 4.14	FESEM top-view images of samples anodized at (a) 25° C (b) 40 °C, (c) 60 °C and (d) 80 °C at 10 V in 1 M HCl for 4 h. The insets are the cross-sectional images of the respective films.	65
Figure 4.15	XRD patterns of WO ₃ films anodized at different temperatures in 1 M HCl. Symbols '**', '*', ' τ ' and ' ω ' refer to WO ₃ ·2H ₂ O, WO ₃ ·H ₂ O, WO ₃ ·1/ ₃ H ₂ O and W peaks.	66
Figure 4.16	Schematic diagram of the formation mechanism of nanostructured WO ₃ film (not in scale): (a) formation of the oxide layer by field-assisted oxidation, (b) formation of $WO_2^{2^+}$ by field-assisted dissolution, (c) formation of $WO_2^{2^+}$ by chemical dissolution, (d)	

X

	precipitation of saturated $WO_2^{2^+}$, (e) formation of closely packed flower-like structure (f) corresponding FESEM image of the closely packed flower-like structure.	68
Figure 4.17	FESEM top-view images of films anodized at 50 V for 1 h in (a) 0.5 M, (b) 1 M, (c) 3 M H ₂ SO ₄ .	70
Figure 4.18	Current transients of the selected samples anodized in 1 M H_2SO_4 at different potentials for 4 h.	71
Figure 4.19	Selected FESEM top-view images of the samples anodized in 1 M H_2SO_4 for 4 h at (a) 5 V, (b) 40 V, (c) 60 V. The insets are the cross-sectional images of the respective films.	72
Figure 4.20	FESEM top-view images of samples anodized at 20 V in 1 M H_2SO_4 for (a) 4 h, (b) 8 h, (c) 23 h.	73
Figure 4.21	Current transients of the samples anodized in $1 \text{ M H}_2\text{SO}_4$ at 20 V for 4 h at different temperatures. The inset shows the local maximum of current density and shifting of the peak positions as a function of anodization temperature.	74
Figure 4.22	FESEM images of the samples anodized at 20 V for 4 h at (a) 40 $^{\circ}$ C, (b) 60 $^{\circ}$ C and (c) 80 $^{\circ}$ C.	75
Figure 4.23	XRD patterns of WO ₃ films anodized at different temperatures in 1 M H_2SO_4 . Symbols '**', '*' and ' ω ' refer to WO ₃ ·2H ₂ O, WO ₃ ·H ₂ O and W peaks respectively.	75
Figure 4.24	Photoresponse measurement with 40 s light on/off interval time with 1 V applied potential in 0.1 M Na_2SO_4 for the samples annealed at different temperatures.	76
Figure 4.25	Photocurrent responses of the selected samples under AM 1.5 light source at (a) 1 V and (b) 0 V biased voltage in 0.1 M Na_2SO_4 . The switch on/off interval duration is 40s.	78
Figure 4.26	Photocurrent responses of the selected samples under AM 1.5 light source at 1 v biased voltage in 0.1 M Na_2SO_4 . The switch on/off period is 40s.	80
Figure 4.27	Linear sweep voltammograms of the selected samples. Oxalic, $25^{\circ}C$ (400 °C) is the sample anodized at 25 °C and annealed at 400 °C. HCl, 40 °C (400 °C) and H ₂ SO ₄ , 80 °C (400 °C) are the samples anodized at 40 and 80 °C respectively and annealed at 400 °C.	81

Figure 4.28	Efficiency of the selected samples. Oxalic, 25° C (400 °C) is the sample anodized at 25 °C and annealed at 400 °C. HCl, 40 °C (400 °C) and H ₂ SO ₄ , 80 °C (400 °C) are the samples anodized at 40 and 80 °C respectively and annealed at 400 °C.	82
Figure 5.1	Images of the sample prepared with 120 ml acid during mixing of HNO_3 into Na_2WO_4 where the sample changed gradually from (a) transparent, (b) yellowish transparent, to (c) milky yellow color.	84
Figure 5.2	Images of the samples prepared with normal flow rate (~2.3 ml/min) at different volumes of nitric acid (a) right after mixing process, (b) after 1-day ageing and (c) after 10-day ageing.	85
Figure 5.3	Sol-gel condensation polymerization reaction and cluster condensation. Source: Ref. [39].	87
Figure 5.4	Images of the samples prepared with different mixing rates (a) right after the experiment and (b) after 1 day.	89
Figure 5.5	FESEM plane view images for samples prepared with different volumes of nitric acid (40, 80, 120, 160 ml) after 1-day ageing.	91
Figure 5.6	(a) Lateral size distributions of the nanoplates over various acid volumes. (b) Plot of the mean size of nanoplates as a function of acid volume.	92
Figure 5.7	FESEM plane view images for samples prepared with different volumes of nitric acid ((a)40, (b)80, (c)120, (d)160 ml) after 10-day ageing.	93
Figure 5.8	(a) Lateral size distributions of the nanoplates over various acid volumes after 10-day ageing. (b) Plot of the mean size of nanoplate as a function of acid volume.	94
Figure 5.9	FESEM plane view images for the samples prepared with 120 ml acid using (a) slow, (b) normal and (c) fast mixing rate after 1-day ageing.	95
Figure 5.10	(a) Lateral size distributions of the nanoplates over different flow rates after 1-day ageing. (b) Plot of the mean size of nanoplate as a function of flow rate.	96
Figure 5.11	XRD patterns of (a) the as-grown samples prepared with different acid volumes. (b) Magnified patterns in the range of 22- 28°. Symbols '**', '*' and ' ϵ ' represent WO ₃ •2H ₂ O, WO ₃ •H ₂ O and WO ₃ respectively.	97

Figure 5.12	Raman spectra of the as-grown samples prepared with different acid volumes.	98
Figure 5.13	XRD patterns of the samples prepared with 40 ml acid for different ageing durations from 1 to 20 days. Symbols '**', '*' and ' ϵ ' represent WO ₃ •2H ₂ O, WO ₃ •H ₂ O and WO ₃ respectively.	101
Figure 5.14	XRD patterns of the samples prepared with 40-160 ml acid after 10-day ageing. Symbols '**', '*' and 'ε' represent WO ₃ •2H ₂ O, WO ₃ •H ₂ O and WO ₃ respectively.	102
Figure 5.15	Raman spectra of the samples prepared with 40-160 ml acid after 10-day ageing.	102
Figure 5.16	XRD patterns of the samples prepared with different flow rates. (b) Magnified patterns in the range of 22°- 28°. Symbols '**', '*' and ' ϵ ' represent WO ₃ •2H ₂ O, WO ₃ •H ₂ O and WO ₃ respectively.	103
Figure 5.17	Raman spectra of the samples prepared with different flow rates.	104
Figure 5.18	(a) Resistance and (b) sensitivity versus relative humidity for the samples prepared with different acid volumes after 1-day ageing.	106
Figure 5.19	(a) Resistance and (b) sensitivity versus relative humidity for the samples prepared with different acid volumes after 10-day ageing.	107
Figure 5.20	(a) Resistance and (b) sensitivity versus relative humidity for the samples prepared with different flow rates after 1-day ageing.	108

LIST OF ABBREVIATIONS

CVD	Chemical vapour deposition
EC	Electrochromic
FTO	Fluorine doped tin oxide
GPTS	2-(2,3 epoxypropxy)propyl-trimethoxysilane
HFCVD	Hot filament chemical vapour deposition
IDE	Interdigitated electrode
IPA	Isopropanol
IPCE	Incident photon to electron conversion efficiency
ITO	Indium tin oxide
IUPAC	International Union of Pure and Applied Chemistry
MPECVD	Microwave plasma-enhanced chemical vapour deposition
NPs	Nanoparticles
OLED	Organic light emitting diodes
РА	Polyacrylic acid
PAA	Porous anodic alumina
РСВ	Printed circuit board
PEC	Photoelectrochemical

- PET Polyester
- POA Poly(o-anisidine)
- PMAPTAC Poly-[3-(methacrylamino)propyl]trimethyl ammonium chloride
- PPy Polypyrrole
- PTA Peroxopolytungstic acid
- PTN 2,4-pentanedione
- PVA Poly(vinylalcohol)
- RH Relative humidity
- RTP Room temperature (~25°C)
- SMOLED Small molecule organic light emitting diodes
- SMU Source measure unit
- TCTA 4,4',4"-tris(carbazol-9yl)-triphenylamine
- TEG Tetraethyleneglycol
- TEOS Tetraethoxysilane
- TiO₂ titanium dioxide
- Vol. Volume
- WO₃ Tungsten trioxide
- $WO_{\leq 3}$ Tungsten oxide
- Wt. Weight

PENGAJIAN TUNGSTEN OKSIDA DIMENSI RENDAH DENGAN KAEDAH PENGANODAN DAN SOL-GEL

ABSTRAK

Low dimensi tungsten oksida (WO_{≤3}) dapat menarik perhatian penyelidikan sebab aplikasi ia sebagai peranti elektrokromik, sensor gas, peranti fotokatalis untuk pembahagian molekul air, sel solar secara pencelupan dan sensor kelembapan. Penggunaan tungsten oksida sebagai peranti permukaan-sensitif memerlukan fabrikasi tungsten oksida yang berkos efektif dan berkawalan morfologi. Kaedah penganodan dan sol-gel menawarkan cara-cara sintesis nanostruktur tungsten trioksida (WO₃) yang mudah. Akan tetapi, pengajian tentang penggunaan kaedah penganodan dan sol-gel untuk mengfabrikasi nanostruktur WO₃ adalah tidak mencukupi. Tesis ini mengkaji penggunaan kaedah penganodan dan sol-gel untuk pembentukan nanostruktur WO3. Kesan-kesan parameter penganodan (elektrolit, voltan, tempoh, dan suhu) dan parameter sol-gel (isipadu asid, tempoh penuaan, dan kadar pencampuran asid) pada ciri-ciri WO₃ disamping ciri-ciri sensor fotoelektrokimia dan kelembapannya juga diperiksa masing-masing. Penganodan dalam electrolit yang berbeza menghasilkan nanostruktur yang berbeza. Lapisan nanoliang (~400 nm) dapat dibentukkan dalam asid oksalik sementara lapisan nanopiring (>1 μ m) telah ditunjukkan oleh penganodan dalam HCl dan H₂SO₄. Daripada keputusan eksperimen, mekanisme penumbuhan nanoliang dan nanopiring telah dicadangkan. Pengukuran arus foto menunjukkan bahawa struktur nanoliang mempunyai keputusan pengukuran arus foto yang lebih baik berbanding dengan struktur nanopiring. Dalam penumbuhan WO₃ dengan sol-gel teknik, nanopiring

dapat dibentukkan. Penggunaan isipadu asid yang lebih tinggi, tempoh penuaan yang lebih pendek, dan kadar pencampuran asid yang lebih lambat didapati akan mengecilkan saiz nanopiring. Sampel yang ditumbuhkan dengan isipadu acid yang tinggi (>40 ml) menunjukkan struktur kristal tungsten trioksida terhidrat (WO₃•2H₂O and WO₃•H₂O) dan WO₃. Sensor kelembapan jenis rintangan yang sangat sensitif dapat difabrikasikan dengan penyalutan sampel WO₃ ke atas interdigital elektrod yang diperbuat sendiri. Kepekaan sensor kelembapan yang tinggi (~190000) telah diperolehi oleh sampel yang mempunyai dimensi nanopiring yang kecil, susunan krystal yang bagus dan pemukaan kumpulan-oxo.

STUDY OF LOW DIMENSIONAL TUNGSTEN OXIDE BY ANODIZATION AND SOL-GEL METHODS

ABSTRACT

Low dimensional tungsten oxides (WO₃) have attracted considerable research attention due to potential applications such as electrochromic devices, gas sensors, photocatalysts for water splitting, dye-sensitized solar cells and humidity sensors. The use of tungsten oxide for surface-sensitive device applications requires cost-effective fabrication of tungsten oxide with controllable morphological property. Both anodization and sol-gel methods offer facile ways to synthesize nanostructured tungsten trioxide (WO₃). However, inadequate works have been done to employ anodization and sol-gel techniques for the fabrication of nanostructured WO₃. In this thesis, investigations of the use of anodization and sol-gel methods for the formation of nanostructured WO₃ are presented. The effects of anodization parameters (electrolyte, voltage, duration, and temperature) and sol-gel parameters (acid volume, ageing duration, and mixing rate) on the properties of the WO₃ as well as their photoelectrochemical and humidity sensing properties were also examined respectively. Anodization in different electrolytes resulted in different nanostructures. Nanoporous layer of ~400 nm could be formed in oxalic acid while nanoplates layer of >1 μ m were demonstrated by anodization in HCl and H₂SO₄. From our experimental results, growth mechanisms of nanopores and nanoplates were both proposed. Photocurrent measurements revealed that nanoporous structure had better photoelectrochemical response as compared to the nanoplate structure. For the fabrication of WO₃ by sol-gel method, nanoplates could be formed. Higher volume of acid, shorter ageing duration and slower mixing rate were found to decrease the size of nanoplates. As-grown sample in high acidic volume (>40 ml) could exist in crystalline structure of hydrated tungsten trioxide (WO₃•2H₂O and WO₃•H₂O) and WO₃. Resistive type humidity sensors with high sensitivity were successfully fabricated by coating WO₃ samples on the self-synthesized interdigitated electrode. High humidity sensitivity of ~190000 was achieved by the sample with smaller nanoplates, good crystallinity and surface oxo-group.

CHAPTER 1: INTRODUCTION

1.1 Introduction

This chapter gives a general overview of tungsten oxide by briefly introducing the potential applications of tungsten oxide as well as various fabrication methods. Fabrication techniques based on anodization and sol-gel methods will be discussed, followed by review of the fields and problem statements. In addition, the objectives and the novelties of the project are presented.

1.2 Why Tungsten Oxide

Tungsten oxide (WO₅₃) is an n-type semiconductor with the indirect bandgap of (2.60 - 3.25 eV) [1, 2]. Apart from the stable and popular tungsten trioxide (WO₃), tungsten oxides could exist as oxygen deficient oxides as WO_{2.92}, WO_{2.9}, WO_{2.83}, WO_{2.77}, WO_{2.72}, WO_{2.67} and WO_{2.63} due to the non-stoichiometeric property of WO₃ [1]. It has been reported that tungsten oxide has high chemical stability at appropriate pH value, good electric conductivity ranging from 10 to 10^{-4} Scm^{-1} depending on the stoichiometry, modulated optical property where the physical color can change from yellow to dark blue with the presence of external stimuli (applied voltage and reducing gases) and charge-storage/delivery properties due to the valence change between W⁶⁺ and W⁵⁺ [1-4]. Owing to these properties, tungsten oxide has attracted considerable research attention particular for the green and renewable energy related applications (e.g. electrochromic window [5], dye-sensitized solar cell [6], photocatalyst for water splitting [7]) and other applicants (e.g. gas sensor [8] and humidity sensor [9]).

Since the invention of electrochromic device by Deb in 1969 [10], tungsten oxide has become one of the most promising materials for the study of electrochromic property which can change the transparency of windows by applying voltage [11]. Electrochromic windows could help save energy consumption in buildings by controlling the transparency of the windows. According to the research, > 1 % of the United States annual energy consumption, or more than \$10 billion energy waste could be saved by using electrochromic windows [12].

From the literature, Zheng and co-authors have demonstrated the fabrication of dye-sensitized solar cell based on WO₃ [6]. At the forefront of research on photovoltaic devices, dye-sensitized solar cell has the advantage of low level requirement of material processing and the simplicity of cell assembly. Dye-sensitized solar cells based on titanium dioxide could achieve efficiency approaching 12 % [13]. Tungsten oxide, a more stable material in the exposure of strong acids and carrier mobility (10.2 - $2.8 \text{ cm}^2/\text{Vs}$) with the range of titanium dioxide, is believed to have potential to act as photoanode for electron transport material in dye sensitized solar cells with acceptable efficiency [6].

Yafeng et al. [14] and Berger et al. [15] have demonstrated the photoelectrochemical water splitting property of WO₃ for hydrogen production. This application allows the conversion of solar energy directly to the hydrogen gas which could be used as renewable energy with zero pollution in the process of energy generation.

1.3 Fabrication methods of nanostructured tungsten oxide

Considering the applications of tungsten oxide, fabrications of low dimensional tungsten oxide have been attracting great scientific interests. Compared with their bulk tungsten oxide counterparts, nanostructured tungsten oxide has high surface aspect ratio which could significantly enhance their sensitivity. For example, with the estimated porosity of 65 %, Berger et al. demonstrated that four-fold increase of the photocurrent was achieved by the nanoporous film compared to the thick film [15]. Besides, nanomaterials could have different physical, chemical and electronic properties from the thick film due to quantum confinement effect. For instance, increase of the band gap energy was detected with the reduction of the grain size [16]. Owing to these advantages, various techniques used for the fabrication of nanostructured tungsten oxide have been developed to improve the performance of their applications. Appendix A shows the table of the various techniques used for fabrication of nanostructured tungsten oxides.

Nguyen et al. fabricated tungsten oxides nanowires with the length of a few micrometers and diameters of 90-1000 nm using thermal evaporation technique where the pressure and temperature were controlled at 10^{-2} -10 Torr and 950 - 1050 °C [17]. The improvement of NO₂ gas sensing performance was demonstrated and they pointed out that this could be due to the formation of nanowires structure. Zhang et al. grew platinum-activated tungsten oxides with the grain sizes of ~30 nm using radio frequency sputtering in 0.2 Pascal [18]. Their results showed high gas sensor response of 4 s in 200 ppm H₂ at 220 °C. Tesfamichael et al. synthesized tungsten oxide nanoparticles with the diamaters of 2.6 -12 nm using electron beam evaporation technique operating at 4 kV in the pressure of 10^{-5} - 10^{-4} Pa and tested for

the gas sensing response [19]. They attributed the high sensitivity (450) of the gas sensor in 5 ppm NO_2 to the small grain sizes and high porosity of the film.

These fabrication methods of low-dimensional tungsten oxides require sophisticated machines like sputtering machine, electron gun, and thermal evaporation system with the vacuum system and often operating at high temperature condition which will increase the production cost for the device applications. Electrochromic device has been synthesized using sputtering machine and commercialized for the automobile window, however, it can't be utilized for the window of the building because of the the limitation of the sputtering system to fabricate the film in large size. As a result of these, attempts to fabricate nanostructured tungsten oxide have been made by other methods, such as sol-gel and anodization which are able to grow nanostructure in large scale and size with only simple experiment tools and setups such as chemical, electrolyte, power supply and glassware. This motivates our present work to synthesize nanostructured tungsten oxide by anodization and sol-gel techniques.

1.3.1 Anodization

Anodization is a very simple and cheap process employed in fabricating nanostructure which requires only electrochemical cell consisting of power supply, electrolyte, target sample as anode and cathode. When the power is turned on in the electrochemical cell, oxygen ions from the electrolyte will react with anode to form metal oxide while hydrogen ions will receive the electrons from the inert cathode to form hydrogen gas. Anodization process has been first employed as a method to grow thick protective oxide layer on the metal to prevent it from corrosion. It was then used as a process to grow nanostructure for porous anodic alumina by using suitable parameters [20]. After research for 5 decades, anodic growth of alumina could achieve tunable size (pore diameter: 25 -420 nm; cell size: 25 -42 nm; thickness of the porous layer: 350 nm -80 μ m) and shape (close-packed array of hexagonal cells with a cylindrical central) [21-25]. Owing to the abundancy of alumina and well control of the porous structure, anodic growth alumina has been widely used as a template to assist the growth of nanostructure of other materials [26, 27].

Following the successful to grow porous alumina, huge efforts have been exerted to study fabrication of nanostructure by anodization method on other valve metals, especially on titanium [28-31]. Grimes et al. synthesized titanium dioxide nanotube using hydrofluoric acid [32]. However, they failed to control the size of nanotubes where only tube lengths of ~250 nm were achieved which were too short for applications as the photoelectrohemical device and dyed-sensitized cell. After enormous efforts were devoted, significant improvements have been made. By using different electrolytes such as mixing of fluoride based electrolytes with buffer electrolytes (sodium fluoride), polar organic electrolytes (ethylene glycol) or using non-fluoride based electrolytes (hydrochloric acid, hydrogen peroxide and perchloric acid) to control the pH, water content of the solution and concentration of the acid, precisely controllable and self-ordered nanoscale could be achieved [33-36]. Anodization has a huge advantage for the fabrication of nanostructure where desired dimension of nanotubes of titanium dioxide or nanopores of alumina could be obtained by tuning the anodization parameters (e.g. applied source, type of electrolyte, electrolyte concentration/temperature, and duration). Great achievements to form self-ordered nanostructure on alumina and titanium dioxide have given

researcher confidence and driven them to explore the formation of nanostructured WO₃ using anodization method.

1.3.2 Sol gel

Sol-gel process is a wet chemical method for the fabrication of solid inorganic polymers/ceramic (silicon oxide[37], titanium oxide[38], tungsten oxide[39] and etc[40, 41]) from the transformation of liquid precursors to a sol and gel through hydrolysis and condensation processes. Sol-gel method requires only chemicals reactants and glass wares which are free of any sophisicated and high cost machine. This offers a low cost and simple technique to produce ceramic and complex inorganic materials at low temperatures while the conventional way to produce ceramic requires high temperature condition at their melting point.

Sol-gel method was first introduced in 1845 for the synthesis of hydrous silica which could be used to produce fibers and optical lenses [42]. In spite of early discovery, sol-gel chemistry only attracted interest in 20 century because of the deficiency of the sol-gel technology at that moment where long drying period of 1 year was required to avoid fracture of silica gels [43, 44]. As time goes by, knowledge and technologies on the sol-gel science were gained and improved gradually where ultralight aerogels had been invented in 1932 [45] while homogeneous powders of aluminum oxide, silicon oxide, titanium oxide, zirconium oxide were successfully prepared in 1950 [44]. It was until 1960, sol-gel science has attracted great interest of studies [44, 46, 47]. With the ability to control the size and morphology, sol-gel technology was extended into many other materials like oxide, hydroxides, sulfides to prepare glass, ceramic fibers, ITO coating and etc [48-52].

interconnected small molecules starting from precursors, the homogeneity of the solution could be achieved at molecular level. In addition, the purity and properties (crystal phase and refractive index) can also be controlled by choosing refined precursors and types of ligands of the precursors [53].

1.4 Current research and problem statements

Fabrication by anodization and sol-gel methods are both facile and inexpensive techniques to fabricate nanostructured WO₃. As the material properties are dependent on the synthesis condition, as-grown WO₃ samples with these different techniques have different properties and particular interest of applications.

Development of the formation of WO₃ by anodization method is shown in Appendix B. Fabricating on the conductive tungsten metal contact, anodic growth of WO₃ is widely studied for their application as photoelectrochemical response [14, 15, 54] but not for gas sensing and electrochromic applications which require nonconductive or transparent substrate. As the photoelectrochemical device requires illumination of sun light on the film to function, control of the morphological property of the sample plays a crucial role. Majority of the anodic growth of WO₃ films used fluoride based electrolytes and result in thin porous layer (< 500 nm) [14, 15, 28, 55, 56]. To improve the performance of the device application, control of the thickness of the nanostructured layer is essential. As shown by Shankar et al., increase of the thickness of nanotube array of titanium dioxide from 8.2 μ m to 14.4 μ m increase the length of the nanotubes will decrease the photoconversion efficiency due to the recombination of the photogenerated charges. In the attempt to increase the thickness of nanostructured layer of WO₃, Watcharenwong et al. employed viscous solutions as electrolyte in the anodization [54]. While this method was found to be workable for the anodization of titanium to control the thickness and length of the tubes, they reported no significant improvement of the thickness in the case of WO₃.

Yang et al. successfully synthesized WO₃ with the nanostructured layer thickness of $\sim 2 \mu m$ by anodization [58]. However, concentrated hydrofluoric acid (40%) and phosphoric acid (85%) were utilized in order to form the thick nanostructured layer. Lee et al. fabricated nanoporous WO_3 with the thickness of the porous layer up to 9 µm using potassium hydrogen phosphate in glycerol at 80 - 100 °C [59]. Although they successfully grew thick porous layer, they still failed to control the size of the pores and erosion of the wall of the pores. No notable improvement of the morphological properties of the anodic growth of WO₃ was reported in recent year. We suggest that this is due to the inadequate understanding of the mechanism of the anodic growth of WO₃. Further work is necessary to control the morphological property of the nanostructured WO₃ for device applications. Exploration on the formation of nanostructured WO₃ using non-fluoride based electrolyte could be beneficial to control the morphological property of the WO₃ as the formation of nanostructures utilizing fluoride based electrolytes have yet to achieve the goal while attempts to use non-fluoride based electrolytes for the formation of self-ordered titanium dioxide nanotubes have been proven to be successful.

Fabrication of WO₃ by sol-gel method on the other hand, often studies for their electrochromic properties [60-64]. (Appendix C shows the development of the growth of WO₃ by sol-gel method.) For example, Soliman et al. improved the electrochromic properties by obtaining a stable solution with the addition of oxalic acid, H_2O_2 [65] or using different precursors (WOCl₄) [61]. In addition, lithium

based compound was added to improve the bleaching process while polystrene microspheres template was used to produce high density pores [66]. Apart from that, gold particle was incorporated to improve faster diffusion and charge transfer rates [64].

The study of the formation of nanostructure WO₃ using sol-gel method or exploration of the sol-gel synthesized WO₃ for the other applications such as photoelectrochemical (PEC) water splitting device [67], gas sensor [68], gasochromic device [69], OLED [70] and humidity sensor [71] has not been emphasized. In the research on the formation of nanostructure by sol-gel method, effects of different acids, pHs, mixing rates on the spin coater, and humidity of the drying environments on the morphological properties of the WO₃ have been studied and examined for their NO_2 gas sensing properties [39, 68]. However, the research on the formation of nanostructured WO₃ from sol-gel method is still inadequate where the detail study of the effects of the sol-gel parameters such as type of the precursor, concentration of the precursor, mixing rate, ageing duration, additive and temperature of synthesis on the formation of nanostructure are remain unclear. To the best of our knowledge, only Dai et al. utilized sol-gel-made WO3 to synthesize humidity sensor [71]. However, their research focused on the architecture of the humidity sensor which was integrated with micro-heater and inverting amplifier circuit on chip manufactured using complementary metal oxide semiconductor and micro-electromechanical systems (CMOS-MEM) while no study was made on the effect of the nanostructure on the sensing properties. Sundaram et al. and Patil et al. fabricated humidity sensor based on WO3 but their research focused on the compositions of lead, zinc or poly(o-anisidine) to the purchased WO₃ to improve the sensitivity of the sensor [72, 73]. None of them has investigated the effect of the properties of the nanostructured WO_3 on the humidity sensor.

1.5 Research Objectives

- 1. To study the effect of anodization parameters using non-fluoride based electrolytes on the morphological property of WO₃ and their photoelectrochemical property.
- To investigate and examine the effect of sol-gel parameters on the growth of lowdimensional WO₃.
- 3. To explore and develop the application of sol-gel fabricated WO₃ as humidity sensor.

1.6 Research Novelties

- 1. Fabrication of thick nanoplate structure by anodization method using H₂SO₄ and HCl.
- 2. Proposed growth mechanisms of the WO₃ nanopores and nanoplates formed by anodization method.
- 3. Dimensionality control of nanostructured WO₃ by tuning sol-gel parameters.
- Development of extremely high sensitivity humidity sensor based on pristine WO₃ grown by sol-gel method.

1.7 Outline of Thesis

Chapter 1 shows applications of tungsten oxide, fabrication methods of nanostructured tungsten oxide including anodization and sol-gel methods, review of

the fields, problem statements, research objectives and the novelties of the research works.

Chapter 2 describes the fundamental properties of tungsten oxide, the theories of the growth of tungsten oxide by anodization and sol-gel methods. In addition, theories and overview of their applications as photoelectrochemical cell and humidity sensor are also presented.

Chapter 3 presents the experimental procedure to grow WO₃ by both anodization and sol-gel methods. Experimental procedures to fabricate photocatalytic water splitting device and humidity sensor are also described.

Chapter 4 discusses the fabrication and characterization of the WO₃ samples grown by anodization method. Their photocatalytic properties are also examined.

Chapter 5 covers the results and discussion of the sol-gel-made WO₃ and their humidity sensing property.

Finally, chapter 6 provides a summary of the current research and suggestion for future research.

CHAPTER 2: LITERATURE REVIEW AND RESEARCH BACKGROUND

2.1 Introduction

This chapter provides information of the fundamental properties of tungsten oxide. Literature reviews and theories of the fabrication of tungsten oxide by anodization and sol-gel technniques are discussed. Apart from these, theories and background of the applications of tungsten oxide as photoelectrochemical water splitting and humidity sensor are also presented.

2.2 Fundamental properties of tungsten oxide

Tungsten oxide is an n-type semiconductor which has a 2.60- 3.25 eV indirect bandgap [1, 2] and 10 to 10^{-4} Scm⁻¹ electrical conductivity where their bandgap and electrical conductivity could be largely varied by crystallinity, grain size, grain boundary, stoichiometry/oxygen vacancy and film thickness [1, 2, 74-80]. For example, the large bandgap of 3.25 eV reported for the WO₃ in the amorphous stage with large grain size can be reduced to 2.62 eV in the crystalline structure [81]. Besides the bandgap of WO₃ can also be decreased with an increase of oxygen vacancy [1] or a decrease in grain size [79]. On the other hand, electron mobility of WO₃ was reported to be 6.5 cm²V⁻¹s⁻¹ [77], which has significantly improved to 40 cm²V⁻¹S⁻¹ for the case of W₁₈O₄₉ with the oxygen vacancies acting as the donors [80].

WO₃ is formed by corner-sharing of WO₆ octahedra which could be arranged in the crystalline form with different tilting angles and rotation order as triclinic, monoclinic, orthorhombic, tetragonal, cubic and hexagonal phase, as shown in figure 2.1 [82]. Each of these phases is stable at the specific temperatures as shown in figure 2.1 which are partially reversible [83]. It should be noted that the change of

the phase does not suddenly happen at the distinct temperature [84] and the stability of the phase in the temperature as shown in figure 2.1 is reported for bulk WO_3 , which could be varied for low dimensional WO_3 and fabrication techniques [85].

Figure 2.1 Stability of polymorphs of WO_3 at different temperatures. Source: Ref. [82].

Fabrications of tungsten oxides could result in WO₃, WO_{x<3} (x = 2.92, 2.9, 2.83, 2.77, 2.72, 2.67 and 2.63) with oxygen vacancies and WO₃•xH₂O (i.e. WO₃•2H₂O, WO₃•H₂O, WO₃•0.33H₂O) [1]. WO_{x<3} are usually obtained by fabrication using thermal evaporation techniques or annealing of any form of tungsten oxide in oxygen deficient environment at high temperature [17, 86] while annealing in oxygen environment would result in WO₃ [87]. The presence of WO_x with oxygen vacancies could be attributed to the removal of oxygen from WO₃ by transforming the corner-

sharing WO₆ (figure 2.2(a)) to both corner- and edge-sharing structure (figure 2.2(b)), according to crystal-shear mechanism [88, 89]. These WO_x with the oxygen vacancies as a shallow donor have different properties as compared to WO₃ as discussed earlier.

WO₃•xH₂O or hydrated tungsten oxides are usually formed by liquid related synthesis method (hydrothermal, sol-gel) which could transform to WO₃ by annealing [39, 90]. WO₃•H₂O could be formed by substitution of one oxygen from the WO₆ octahedra by H₂O or by intercalation of H₂O between the sheets of the layered structure and not bonded to W⁶⁺ [91]. WO₃•2H₂O consists layers of octahedra similar to WO₃•H₂O. The intercalation of the second water molecule between the layers was found to increase the layer distance by ~23 % [92]. WO₃•0.33H₂O is formed by stacking layers of WO₆ octahedra where part of the oxygen atoms from WO₆ are replaced by W=O and W-(OH)₂ bonding [93]. WO₃•xH₂O could be found in both amorphous and crystal phases [39].

Figure 2.2 (a) Crystalline WO₃ structure with corner-sharing WO₆ octahedra layers. (b) $W_{18}O_{49}$ structure with both corner- and edge-sharing WO₆ octahedra layers. Source: Ref. [89].

2.3 Anodic growth mechanism of nanostructured WO₃

Formation of nanostructure through anodization method was first started on porous alumina and then applied to other valve metals such as titanium. After the research groups working on anodization of titanium have successfully grown titanium dioxide nanotubes, they applied this anodization technology on tungsten to form nanostructured tungsten oxide. The presence anodization technology for the formation of nanostructured WO₃ is still in the process of development and yet to be well documented. However, well studied anodization processes of WO₃ in different pHs were provided by Johnson et al. [45] and Anik et al.[94]. In this section, mechanism of the formation of nanostructured WO₃ are proposed by combining the general information of the formations of nanostructures by anodization from other valve metals (Al, Ti) and chemical dissolution mechanisms of WO₃ in the anodization process.

Generally, nanostructure formation from the anodization technique is usually driven by 3 processes: electrochemical oxidation, electrochemical dissolution and chemical dissolution [32]. When the power supply is turned on, both electrochemical oxidation (equation 2.1 and 2.2) and dissolution processes (equation 2.3) begin simultaneously in acidic condition [45, 95].

$$2W + 5H_2O \to W_2O_5 + 10H^+ + 10e^-$$
(2.1)

$$W_2O_5 + H_2O \to 2WO_3 + 2H^+ + 2e^-$$
 (2.2)

$$W + 2H_2O \rightarrow WO_2^{2+} + 4H^+ + 6e^-$$
 (2.3)

The strength of the electrochemical dissolution is affected by both the applied potential and the oxide barrier layer. Considering this, etching rate at the thin oxide layer of the pit/holes is much higher than the the bulk oxide surface, resulting of the growth of the thickness of the porous layer [32]. The initial formation of small pits could be explained by the localized dissolution of the oxide layer [96].

After the formation of oxide layer, chemical dissolution also takes part to etch away the oxide layer other than electrochemical dissolution [97]. Unlike anodization of other metals (Al, Ti), chemical dissolution process of WO₃ is very complex due to the stoichiometry of WO₃ and various tungstate ions [94]. Chemical dissolution of WO₃ could be classified in three catagories: H⁺ assisted, water molecules assisted and OH⁻ assisted chemical dissolution [94]. While all three types of chemical dissolutions could happen simultaneously, each of the processes is dominant in a specific pH value. Under high acidic condition, H⁺ assisted chemical dissolution as shown in equation 2.4 is dominant while in less acidic condition, water molecules assisted dissolution is the main process as shown in equation 2.5 [94]. On the other hand, under high pH condition, OH⁻ assisted chemical process as shown in equation 2.6 is more dominant [94].

$$WO_3 + 2H^+ \to WO_2^{2+} + H_2O$$
 (2.4)

$$WO_3 + H_2O \rightarrow H_2WO_4(aqueous)$$
 (2.5)

$$WO_3 + OH^- \to WO_4^{2-} + H^+ \tag{2.6}$$

It is believed that the complicated chemical dissolution of WO_3 is the reason of the poor control of the morphology of anodic growth WO_3 . In order to control the morphology of nanostructure, the electrochemical oxidation and dissolution as well as the chemical dissolution have to be well controlled. In the case of porous anodic growth alumina, electrochemical dissolution is dominant compared to chemical

dissolution where the effect of chemical dissolution could be ignored [32]. Rate of the field assisted dissolution at the pits is much higher than the bulk oxide layer due to the high field effect at thin oxide layer of the pit [98, 99]. This results in the continuous growth of the pit/pores, leading to the self-organized PAA with controllable thickness by tuning the potential, as shown in figure 2.3 [99].

Figure 2.3 (a) Plane view and (b) cross section view of SEM images of anodic growth alumina in 0.5 M oxalic acid at 15 °C for 1h. Source: Ref. [99].

In the case of the anodic growth titanium dioxide nanotubes, the rate of chemical dissolution is comparable or even higher than the rate of electrochemical dissolution where chemical dissolution etches both the porous oxide layer and oxide barrier on the the film surface, hindering the growth of the porous layer thickness [97]. To control the chemical dissolution, high viscosity electrolytes like ethylene glycol and glycerol are employed to restrict the chemical dissolution at the oxide barrier on the film surface while allows the chemical dissolution at the pores, resulting in the self-organized nanotubes, as shown in figure 2.4 [100]. Considering the formation of thin porous layer (figure 2.5(b)) and the uncontrolled etching of the porous wall (figure 2.5, figure 2.6), it is believe that anodic growth WO₃ has higher chemical dissolution rate than the electrochemical dissolution rate [15, 58].

Figure 2.4 Cross sectional view of SEM image of titanium oxide nanotubes formed in mixture of glycerol and water (50:50 vol. %) + 0.5 wt. % NH_4F . Inset shows the corresponding plane view image. Source: Ref. [100].

Figure 2.5 (a) Plane view and (b) cross sectional view SEM images of WO₃ grown in 0.5 wt % NaF + 1 M H_2SO_4 . Source: Ref.[15].

Figure 2.6 SEM image of WO_3 formed in $H_3PO_4 + 8$ M HF. Inset depicts the cross sectional image of the corresponding image. Source: Ref. [58].

Apart than the porous structure, platelet structure could also be attained due to the precipitation of the soluble tungstate charge $(WO_2^{2^+})$. As described by Ng et al., with

the assistance of electric field and presence of water molecules, the saturated $WO_2^{2^+}$ in the suitable pH could precipitate on the W surface as shown in equation 2.7, 2.8 and 2.9 [95]. Formation of nanoplates by precipitation is also demonstrated by Widenkvist et al., in the chemical bath method [101].

$$WO_2^{2+} + 3H_2O \Leftrightarrow WO_3 \bullet 2H_2O + 2H^+$$
 (2.7)

$$WO_2^{2+} + 2H_2O \Leftrightarrow WO_3 \bullet H_2O + 2H^+$$
 (2.8)

$$WO_2^{2+} + H_2O \Leftrightarrow WO_3 + 2H^+ \tag{2.9}$$

2.4 Fabrication of WO₃ by sol-gel method

2.4.1 Type of precursors

Sol-gel-made WO₃ can be formed by five different types of precursors which are: 1) colloidal tungstic solutions (Na₂WO₄) [60, 102], 2) Peroxotungstic acid (PPTA/PTA) [103, 104], 3) tungsten hexachlorides (WCl₆) [53], 4) tungsten oxychloride (WOCl₄) [61], and 5) tungsten alkoxides [70].

Colloidal tungstic solution is usually formed by acidification of Na_2WO_4 (mixing with acid or passing through ion exchange resin). This precursor was firstly used in 1983 by Chemseddin to test for electrochromic property [60]. It is the most frequently used precursors to synthesize WO₃ by sol-gel method, however, formation of sol-gel using Na_2WO_4 precursor is not stable [102]. Unstable sol will transform to gel and precipitate very fast which is not suitable for electrochromic device [102]. To overcome this, stabilizing agents like oxalic acid, H_2O_2 , acetic acid and alcohol are added into the solution [65, 102]. Owing to this deficiency, this precursor is replaced by WCl₆ and PPTA. Both WCl₆ and PPTA are inexpensive starting materials (PPTA could be formed by mixing of W powder with H_2O_2) which could form stable sol-gel compared to Na_2WO_4 precursor. Fabrication of WO_3 from $WOCl_4$ is stable and shows good electrochromic properties [61]. However, it requires dry atmosphere and suffers from long term stability problem. Among all the precursors, tungsten alkoxide is the least studied precursor due to the high material cost and fast reaction with moisture [103].

2.4.2 Sol-gel process

There are 5 sol-gel processes, which are: 1) Mixing of precursors and formation of sol; 2) gelation; 3) ageing; 4) drying/syneresis; 5) dehydration and densification [44, 105]. The product of the sol-gel is highly dependent on the sol-gel process parameters, for example: selection of the type of precursors, ligands of the precursors, types of additive used, duration and condition of ageing and heat treatment temperature [44].

1) Mixing of precursors and formation of sol:

In sol-gel chemistry, precursor is the starting compound which comprises of two components (metal or metalloid bonds with number of ligands). At the first step, precursor is mixed with water at certain pH. This step leads to hydrolysis and condensation of the precursor, resulting in the formation of sol. Hydrolysis is a reaction involving the breaking of a bond in a molecule using water. For an example, hydrolysis of metal alkoxides is shown in equation 2.10 [105]:

where M and R could be any metal/metalloid and ligand respectively. Hydrolyzed molecules can connect to each other in condensation reaction to liberate small molecules, as shown in equation 2.11 [105]:

$$\begin{array}{ccccccccc} OH & OH & OH & OH \\ | & | & | & | \\ OH-M-OH + OH-M-OH \longrightarrow OH-M-O-M-OH + H_20 \\ | & | & | \\ OH & OH & OH & OH \end{array}$$
(2.11)

Through continuous hydrolysis and polycondensation reactions, M-O-M bonds interconnect with each other forming larger particles. As the particles size reach submicrometer size, sol is formed. According to IUPAC, sol is a colloidal suspension (solid particles with diameters of 1-1000 nm) in a liquid. Considering the small size of the sol, gravitational forces are negligible and the sols could move randomly in the solution according to Brownian motion.

2) Gelation:

Gel is a single giant cluster network which is formed from further condensation of several sols or polymers [105]. No change of bonding and latent heat is involved in gelation process. However, formation of gel could be easily recognized as the viscosity of the gel increase significantly from sol due to the large cluster network of gel, as shown in Appendix D. The structure of gel is determined by the hydrolysis and condensation processes [106].

3) Ageing:

Ageing allows the gel or the sample immerses in liquid for a time span, allowing further polycondensation and precipitation of the gel network which increases the thickness of interparticle necks and decreases the porosity [105].

4) Drying/Syneresis

Drying process expel the liquid from the gel/ precipitate. Drying process has to be controlled to prevent cracking due to the capillary stress[105].

5) Dehydration and densification

Dehydration process removes the hydroxyl bonds from the pore network by heat treatment [105].

2.5 Photoelectrochemical water splitting

Water splitting is the process to split water molecule to obtain both hydrogen and oxygen gases. It is currently received tremendous research focus because hydrogen is considered as unlimited source from water or renewable energy, which can replace our current fossil fuel to provide zero pollution fuel with high thermodynamic conversion efficiency. This solves the two of the main problems of our current living issues: pollution and depletion of the fossil fuel.

Currently, hydrogen energy is mostly provided by coal gasification and biomass materials [107]. However, both of these methods produce byproducts of pollutant gases (CO₂, CH₄) [107] which is not desirable. Therefore, there is an urgent need to develop photoelectrochemical water splitting which is still in the research stage. Photoelectrochemical water splitting was first reported by Fujishima and Honda in 1972, which employs solar energy to split the water molecules in order to obtain hydrogen gas [108].

2.5.1 Principle and efficiency of photo-electrode water splitting

Figure 2.7 shows the experimental setup of the photoelectrochemical water splitting system based on n-type semiconductor photoelectrode [109]. The mechanisms of the photoelectrochemical water splitting process are also illustrated in the figure 2.7. There are three main steps for the photoelectrode water splitting to occur in photoelectrochemical cell (PEC) [109, 110]:

Figure 2.7 Photoelectrochemical water splitting systems using n-type semiconductor photoanode. C.B., B.G. and V.B. represent of the conductor band, band gap and valence band respectively. Source: Ref. [109].

- 1st: generation of electron hole pair after absorption of photons by photoelectrode.
- 2nd: tranportation of these photo-generated carriers to the interface of photoelectrode/electrolyte and counter electrode/electrolyte interface

3rd: Catalytic reaction with water molecules where holes (h^+) oxidize water to form O₂ at photo-electrode (equation 2.12) while electrons reduce H⁺ to generate H₂ at Pt cathode (equation 2.13).

Photo-electrode:
$$H_2 O + 2h^+ \to 2H^+ + \frac{1}{2}O_2$$
; $E^0_{ox} = -1.23V$ (2.12)

Cathode :
$$2H^+ + 2e^- \rightarrow H_2$$
 ; $E^0_{red} = 0V$ (2.13)

The performance of the water photoelectrolysis cell can be determined by the photoconversion efficiency (n) which is the efficiency to convert light energy to chemical energy with the applied potential. The photoconversion efficiency is defined as [111, 112]:

$$n = \frac{J_{photo} (1.23 - V_{bias})}{P_{light}} \times 100\%$$
(2.14)

where J_{photo} , V_{bias} , and P_{light} represent photocurrent density, applied potential and intensity of the light respectively.

Apart from photoconversion efficiency, the performance of the photoelectrolysis cell could also be evaluated by photon to current conversion efficiency (IPCE) which measures the efficiency to convert photon's incident on the cell to photocurrent flowing between the working and counter electrodes. The IPCE is defined as [113]:

$$IPCE = \frac{I_{ph}(\lambda)}{qP(\lambda)} \times 100\%$$
(2.15)

where $I_{ph}(\lambda)$ is the photocurrent density at wavelength λ ; q is the electronic charge; $P(\lambda)$ is the incident photon flux densitiy of certain wavelength at the photoelectrode.