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CHZ Confluence Hydrodynamic Zone  

DID Department of Irrigation and Drainage 

DR Discrepancy  Ratio 

EDM Electronic Distance Meter 

GA Genetic Algorithm 

GP Genetic Programming 

GPS Global Positioning System 

MAE Mean Absolute Error 

Mr Momentum ratio 

NLR Non Linear Regression  

RMSE Root Mean Square Error 

SSIIM Sediment Simulation In Intakes with Multiblock option 

SVM Support Vector Machines 

WL Water Level 

WS Water Surface  
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6 LIST OF SYMBOLS 

 

Symbol Description 

 Flow area (݉ଶ) ܣ

ܾ Section width of the channel (m) 

 River channel width (m) ܤ

Cs =(B/y0) Conveyance shape 

Cz Chezy  resistance  coefficient 

d1=θ-θcr The Shield's parameter difference 

d3= dsʋav The average flow velocity with sediment particle 
diameter(m2/s2) 

݀ହ଴, ݀,  ହ଴ Sediment diameter where 50% of bed material is finerܦ

݀௜ Size of particle intermediate axis for which i% of sample of 
bed material is finer 

d50sub Submerged median particle size  

ds Sediment particle diameter 

Dgr Dimensionless particle parameter 

E East 

f Friction factor 

fs Wilcock’s friction coefficient 

fi Proportion of each size fraction present in bed material 

Fr Froude number 

g Acceleration due to gravity 

݃௕ Sectional bed load transport rate 

Gs Sediment specific gravity = 2.65 

 ௥ Gradation coefficientܩ
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݄௦ Width of Helley-Smith sampler nozzle 

n Manning’s roughness coefficient 

N  North 

P Wetted perimeter of cross section of flow (m) 

Q Flow discharge (m3/s) 

ܳ௦ Bed material discharge for all size fractions (m3/s) 

q  Water discharge per unit width 

qb Bedload  discharge per unit width 

qbpi/fi Scale fractional transport rate  

Pi Proportion of each size fraction present in transported 
material 

R Hydraulic Radius 

R2 Coefficient of determination 

Re Reynolds number 

R/d50  Standardization with hydraulic radius 

Sf Channel slope 

ܵ଴ Water surface slope 

௕ܶ Bed load transport rate (kg/s) 

௝ܶ Total bed load transport rate (kg/s) 

௦ܶ Suspended load transport rate (kg/s) 

௧ܶ Suspended load discharge (m3/s) 

ܶ Time the bed load sampler on the bed 

u* and u*cr Shear and critical shear velocity 

U Inequality coefficient 

ܸ Average flow velocity 
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 పതതത Mean weighted bed load sample of vertical for n sectionݓ

w weights on the network connections 

, ଴ݕ  Flow depth ݕ

y/B  width scale ratio 

Z Vertical coordinate (elevation)  

αs Wiberg and Smith's coefficient 

β Standardized coefficient  

γ  and γs Specific weight of water and sediment 

Γ Diffusion coefficient  

θ and θcr Shields’ and critical Shields’ parameters for initiation of 
motion 

κ von Karman constant =0.4 

μ Dynamic viscosity of water 

П Shear stress due to relative density 

ρ and ρs Density of water and sediment 

τ and  τcr Shear and critical shear stress at the bed 

v  kinematic viscosity 

Φb  Dimensionless intensity of the bedload rate 

ωs Fall velocity of sediment particles (d50) 

ωs* Standardized fall velocity due to sediment particle 
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PENGANGKUTAN  BEBAN  ENDAPAN  DASAR  UNTUK  SUNGAI  KECIL 
DI  MALAYSIA 

 

7 ABSTRAK 

 

Pengangkutan beban endapan dasar merupakan komponen penting proses 

dinamik sungai dan pengganggaran kadar pengangkutan beban endapan dasar adalah 

penting untuk pengiraan variasi morfologi sungai untuk tujuan keselamatan umum, 

pengurusan sumber air dan alam sekitar yang mampan. Pelbagai persamaan beban 

endapan yang terkenal adalah terhad kepada kajian eksperimen saluran dalam 

makmal atau kajian tapak. Persamaan ini yang dipengaruhi oleh kebolehpercayaan 

dan perwakilan data yang digunakan dalam menentukan pembolehubah dan pemalar 

memerlukan parameter yang kompleks dalam pengganggaran pengangkutan beban 

endapan. Oleh itu, satu persamaan baru yang mudah dan tepat adalah perlu untuk 

kegunaan di sungai-sungai kecil. Dalam kajian ini, data yang mudah diperolehi 

seperti kadar alir, kedalaman sungai, kecerunan sungai dan saiz diameter zarah 

endapan permukaan d50 daripada tiga sungai kecil di Malaysia digunakan untuk 

meramal pengangkutan endapan dasar. Model genetic programming (GP) dan 

artificial neural network (ANN) adalah berguna dalam menafsir data tanpa sebarang 

had untuk pangkalan data yang luas digunakan sebagai alat untuk pemodelan 

pengangkutan beban endapan untuk sungai-sungai kecil. Keupayaan GP dan ANN 

untuk meramal data hujan adalah memuaskan. Model yang diperolehi menunjukkan 

kejituan yang tinggi dengan ketepatan keseluruhan sebanyak 97% untuk ANN dan 

93% untuk GP berbanding dengan kaedah konvensional dan persamaan empirical.  

Satu model numerikal tiga dimensi telah digunakan untuk mengkaji morfologi 

dasar dan pengangkutan beban endapan dasar sungai di pertemuan Sungai Ara dan 
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Kurau untuk jangka masa pendek dengan kadar alir tinggi pada 100 ARI. Model tiga 

dimensi SSIIM2 dengan k-epsilon aliran gelora yang merupakan model pengiraan 

bendalir dinamik dengan grid adaptif, bukan ortogon dan tidak berstruktur telah 

digunakan untuk pemodelan hidrodinamik pertemuan sungai. Model numerikal ini 

telah diuji dengan data dari kajian tapak di pertemuan Ara-Kurau. Ketepatan yang 

memuaskan telah didapati di antara data endapan dasar dan aras dasar yang dianggar 

dengan yang dicerap di tapak. Kajian menunjukkan bahawa model numerikal 

merupakan alat yang berguna dalam meramal kadar pengangkutan beban dasar di 

kawasan yang bersekitaran dinamik kompleks. Keputusan menunjukkan bahawa 

perubahan hidrologi jangka pendek boleh mempengaruhi morfo-dinamik pertemuan 

Ara-Kurau. Untuk keadaan aliran yang berbeza, pengangkutan endapan dasar 

berhampiran pinggir lapisan ricih dan juga lapisan ricih yang menyebabkan aliran 

gelora menunjukkan peningkatan aliran gelora menyumbang kepada peningkatan 

kapasiti pengangkutan endapan beban dasar sungai. Keputusan simulasi 

menunjukkan taburan saiz zarah beting pasir di tepi hilir pertemuan sungai adalah 

tidak berubah dimana saiz median tidak berubah sepanjang tempoh kajian manakala 

saiz zarah di hulu beting pasir adalah lebih dipengaruhi oleh keadaan aliran. 
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BEDLOAD TRANSPORT OF SMALL RIVERS IN MALAYSIA 

 

8 ABSTRACT 

 

Bedload transport is an essential component of river dynamics and estimation 

of bedload transport rate is important for practical computations of river 

morphological variations because the transport of sediment through river channels 

has major effects on public safety, water resources management and environmental 

sustainability. Numerous well-known bedload equations are derived from limited 

flume experiments or field conditions. These time-consuming equations, based on 

the relationship between the reliability and representativeness of the data utilized in 

defining variables and constants, require complex parameters to estimate bedload 

transport. Thus, a new simple equation based on a balance between simplicity and 

accuracy is necessary for using in small rivers. In this study the easily accessible data 

including flow discharge, water depth, slope, and surface grain diameter d50 from the 

three small rivers in Malaysia used to predict bedload transport. Genetic 

programming (GP) and artificial neural network (ANN) models that are particularly 

useful in data interpretation without any restriction to an extensive database are 

presented as complementary tools for modelling bed load transport in small streams. 

The ability of GP and ANN as precipitation predictive tools showed to be acceptable. 

The developed models demonstrate higher performance with an overall accuracy of 

97% for ANN and 93% for GP compared with other traditional methods and 

empirical equations.  

A three-dimensional numerical model was applied to study the bed 

morphology and bedload transport of the junction of Ara and Kurau rivers for short 

term event and for high flow with 100 ARI. SSIIM2 a 3D, k-epsilon turbulence 
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computational fluid dynamics model with an adaptive, non-orthogonal and 

unstructured grid has been used for modelling the hydrodynamic of confluence. The 

numerical model was tested against field data from Ara-Kurau confluence. 

Satisfactory agreement was found between computed and measured bedload and bed 

elevation in the field.  The study indicates that numerical models became a useful 

tool for predicting the bedload transport rate in such complex dynamic environment.  

The results have demonstrated that the short term hydrologic variability can 

considerably influence the morphodynamics of Ara-Kurau channel confluence and 

for the different flow conditions the bedload transported near to edge of shear layer. 

The coincidence of the shear layer that was generated the considerable turbulence 

indicated that the increasing turbulence levels contribute substantially to the required 

increase in bedload transport capacity. The simulation results showed the grain size 

distribution on the bar at the downstream junction corner is remarkably constant and 

the particle size in the upstream part of the bar is more affected by the changes in 

flow conditions than the downstream end where the median diameters not varied 

during the period. 
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1 CHAPTER  1- 

INTRODUCTION 

 

1.1 Background 

Bedload transport is an essential component of river dynamics that depends on 

water flow, river morphology and response of sediment particles to applied stress and 

their mutual interactions. Estimation of bedload transport rate is important for 

practical computations of river morphological variations because the transport of 

sediment through river channels has major effects on public safety, water resources 

management and environmental sustainability (Yeganeh-Bakhtiary et al. 2009; Frey 

and Church 2011).   

 

The relationship between bedload transport rates and hydraulic variables is 

extremely complex because of various characteristics of alluvial rivers such as 

sediment transport, the interaction between sediment supply and bed surface 

adjustment, and the hydrodynamics of bedform progress. The difficulties associated 

with bedload field measurement causes a long history of interest in developing 

equations for the prediction of bedload transport. Numerous well-known bed load 

equations were derived from limited flume experiments or field conditions (Bagnold, 

1980; Camenen and Larson, 2005; Yang, 1996). Although morphologist and 

engineers have gained profound insight into the mechanics of bedload transport ever 

since the development of the duBoys equation (du Boys, 1879) (the first physically 

based bedload transport equation) a simple question still cannot be answered: for 

given sedimentary and hydraulic characteristics, what is the rate of bedload transport 

in an alluvial channel? In other words, there is no single bedload equation that can be 

applied universally to all rivers and no completely objectively or universally 
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applicable guidelines exist to facilitate the selection of an appropriate formula as the 

bedload transport function (Almedeij and Diplas, 2003; Gomez and Church, 1989; 

Simons and Şentürk, 1992; Yang and Huang, 2001). To overcome the difficulties of 

developing the equations based on a balance between simplicity and accuracy, new 

mathematical modelling methods can be used to improve the sensitivity and 

performance of the prediction equations; the simple formula can be adopted to 

estimate the bedload transport of small streams. 

 

River flow, sediment transport and morphological processes are among the 

most complex and least understood processes or phenomena in nature. A river 

confluence has always been a challenging subject for river hydrodynamics and 

morphodynamics considerations due to complex flow phenomena and processes 

occurring in both the confluence and the downstream of confluence channel. The 

complexity of the phenomena and processes arises from the strong three dimensional 

flow effects resulting from several principal factors, including a) the discharge or 

momentum ratio between tributary and main stream b) the planform shape of 

upstream and post confluence channel and angle of the confluence c) the difference 

between the levels of tributary and main stream (Best, 1986; Leite Ribeiro et al., 

2012; Rhoads, 1996). 

 

In the last decade, the development of hydrodynamic existing methods and new 

methods and tools for investigation of complex flows especially in three dimensions 

has greatly improved the understanding of the dynamics of confluences (Biron et al., 

2004; Bradbrook et al., 2000; Weerakoon and Tamai, 1989) Therefore, laboratory 

studies combined with field observations are needed to link a global quantitative 
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model of channel confluences for better understanding of complex hydrodynamic 

and morphodynamics of river channel confluences . 

 

1.2 Problem Statement  

River sedimentation problems are assuming increasing importance in many 

Malaysian rivers and can represent a key impediment to sustainable development. 

Despite more than six decades of research, sedimentation is still probably the most 

serious technical problem faces by water resource manager and engineers. Such 

problems include accelerated soil erosion, reservoir sedimentation and the wider 

impact of sediment on aquatic ecology, river morphology and water resource 

exploitation.  

 

Sediment transport in small streams is diverse and highly variable due to the 

various characteristics of channel morphology. Numerous well-known bed load 

equations were derived from limited flume experiments or field conditions (Bagnold, 

1980; Camenen and Larson, 2005; Yang, 1996). In such conditions, equations based 

on the relationship between the reliability and representativeness of the data utilized 

in defining reference values, constants, and relevant coefficients are time consuming 

and required complex parameter to estimate bed load transport. Although a known 

equation may produce reasonable predictions of bedload transport rates in a 

particular stream reach at a particular time, the same equation usually overpredict or 

underpredict the observed bed load transport by a different order of magnitude when 

applied to a different river or even to the same river at a different time. Therefore, 

there is a real need to consider and derive a simple equation to predict bedload 

transport with easy accessible data for specific conditions.  
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Kurau River is selected as the case study due to its importance as a main 

domestic water supply and Kerian irrigation scheme areas in the state of Perak. Bukit 

Merah reservoir and the dam that was constructed approximately at the mid section 

of the Kurau River system requires the river management such as controlling the 

sediment transport and consideration changes in river morphology. 

 

Human activity includes the recently railway construction, changes in land use 

from 2004 to 2015 according to the Taiping Town Council on Larut Matang Local 

Plan 2015 (Hamidun, 2010), and increasing river sand mining makes change to river 

hydrology and increase in sediment load along the river.  The loss of river capacity 

due to sedimentation can have a serious impact on water resources development by 

reducing the supply of irrigation water, water supply, and the effectiveness of flood 

control schemes. Kurau River sedimentation becomes the main cause of frequent 

flooding in urban areas(Hamidun, 2010). The blockage of hydraulic structure of 

higher sediment yield and overflowing water cause serious damages to the 

environment, infrastructures and also has an effect on the social activity.  Therefore, 

integrated sediment management in Kurau River is one of the highest concerns of 

governments and engineers. 

 

Upstream of  Kurau River as a selected case study consisting of two main river 

tributaries namely Kurau River and Ara River. The river condition and morphology 

can be different in each section of river. One of the complex and effective place of 

the river due to sediment transport behaviour is the confluence of two river channels. 

The sediment transport in the confluences changes periodically in different flow 
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condition. Evaluation of the bedload transport in confluence requires the use of 

numerical modelling techniques as the simple empirical equation individually cannot 

evaluate such complex condition. 

 

1.3 Objective of the Investigation 

 To establish bedload particle sizes characteristic and its effect on bedload 

transport 

 To estimate the bedload transport rate in small streams by statistical analysis, 

artificial neural network and genetic programming and evaluate the prediction 

methods.  

 To evaluate the changes in bed load sediment transport, bed morphology and 

spatial pattern of bed material in response to flow discharge variability in river 

channel confluence with a 3D numerical model. 

 

1.4 Scope of Work 

This study was carried out on Kurau River, a natural stream in Perak, Malaysia.  

Herein, the genetic programming, artificial neural network and nonlinear regression 

models which are particularly useful in modelling processes with data interpretation 

without any restriction to an extensive database, are employed as a complimentary 

tool for modelling bed load transport in small streams.  

 

 Hydraulic and sediment data were taken at six locations along Kurau River 

and combine with the Lui and Semenyih Rivers data (Ariffin, 2004) for development 

of bedload transport equation.  
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The performance of the genetic programming, artificial neural network and 

statistical (nonlinear regression) models were evaluated and compared with six 

bedload transport equations such as Meyer-Peter and Müller (1948), based on energy 

slope method and Rottner (Yang, 1996), Chang (Cheng, 2002), Julien (2002) and 

vanRijn (1993) based on regression method and Wong and Parker (2006) based on 

the shear stress method.  

 

SSIIM, a three dimensional computational fluid dynamic program was used in 

this study for modelling the Ara-Kurau confluence. It solves the Navier-Stokes 

equations in a three-dimensional non-orthogonal grid for flow and the convection-

diffusion equation for sediments. SSIIM uses the "k-epsilon" model for turbulence, 

the control volume method with the SIMPLE algorithm. 

 

The field site for the modelling is the junction of the Kurau and Ara rivers in 

Pondok Tanjung at the upstream of the Bukit Merah reservoir in Perak. The study 

was carried at confluence limited in areas with approximately 141.5 m in length and 

111.5 m in width.  

 

1.5 Structure of Thesis 

The thesis consists of six chapters, organised as follows: 

Chapter 1 gives a brief introduction on the bedload transport and objective of 

study, scope of work and sedimentation problem. 

 

Chapter 2 has a brief review about the headworks and different types of 

traditional and innovative methods to estimate bedload transport rate. Selection of 
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the models and summary of model application relevant to this study was briefed in 

this section. 

 

Chapter 3 states some facts about the study for which this study has been done. 

Data collection, data analysis and some soft computing method for predicting 

bedload transport were also explained in this chapter. 

 

Chapter 4 describes bedload characteristics and results of prediction method of 

bedload transport. 

 

 Chapter 5 illustrates the theory behind the SSIIM. It is not possible to go into 

further detail due to dearth of space and time. Maximum reference has been made to 

user manual for SSIIM. Manual in itself is quite explanatory. It is readily available 

over the net. One of the nicety of this program or the liberality of the developer is 

that this program is freely available over net with manual. This chapter also provides 

the information the way the program is used herby. It includes the bedload transport 

characteristic in confluence zone, which is the main theme of this work. 

 

Chapter 6 summarized the conclusions of study and recommendations for 

future study. Bibliography and appendices are enclosed at the end of this thesis. 
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2 CHAPTER  2 -  

LITERATURE REVIEW  

 

2.1 Introduction 

Bedload transport is an important physical process in defining the 

morphological development of alluvial rivers (Barry et al., 2008). Bedload transport 

rate estimation is needed for the realistic computations of river morphological 

variations because the transport of sediment through river channels has a major 

disbursement for public safety, water resources management, and environmental 

sustainability (Frey and Church, 2011; Yeganeh-Bakhtiary et al., 2009). 

 

Sediment transport in small streams is greatly variable and different due to the 

various characteristics of channel morphology. The hydraulic geometry of channels 

in small streams is affected by various parameters. Each channel section is in many 

ways unique because it is influenced by its own particular history of flow conditions, 

sediment transport, and distribution of channel roughness elements, and management 

activities, all of which should be considered in bedload transport estimation (Beschta 

and Platts, 1986).  

 

2.2 Bedload Transport  

Streams typically carry large amount of sediment to lower elevation. This 

material is called the stream load, and it is divided into bedload, suspended load, and 

dissolved load (Figure  2.1). Bedload transport refers to the movement of bed 

sediments along the stream bed by rolling, sliding, or jumping  (Wang et al., 2011), 

and is absolutely dependent on the river’s morphological characteristics.  



Bed

the major

manage ri

channel m

river’s fun

movement

2004).  

 

Figure

 

2.3 Bed

Ove

conditions

distributio

(Niekerk e

 

load transpo

r process r

iver channe

morphology 

nction, it w

t in forming

  2.1: Schema

dload Trans

er the years

s is objecti

ons found i

et al., 1992)

ort as a fun

relation bet

el morpholo

and also to

will require

g and main

atic represen

sport Analy

s sediment 

ive by geo

in sediment

).  

9

ndamental p

tween the 

ogy. To cla

o make info

e a good kn

ntaining cha

ntation of sed

ysis  

transport s

ologists and

tary deposi

physical pro

hydraulic a

arify the ca

ormed mana

nowledge r

annel geom

diment transp

such as san

d engineers 

ts and to s

cess in allu

and sedime

auses and e

agement dec

regarding th

etry (Gome

port in a strea

nd or grav

to underst

study the s

uvial rivers p

ent conditio

ffect of cha

cisions that

he role of 

ez, 2006; G

am (Singh, 2

vel under h

tand the gr

ize sorting 

provides 

ons that 

anges in 

t affect a 

bedload 

Goodwin, 

 

2005)  

hydraulic 

rain-size 

process 



10 

Sediment size moves as bedload in rivers is important in sediment load 

calculations and stability analyses. Moreover, knowledge of sediment sorting 

patterns and processes is important because it is essential in understanding modern 

and older fluvial systems, boundary roughness and heavy mineral advancement 

(Carling and Dawson, 1996; Force et al., 1991; Robert, 1990) .  

 

Bedload size distribution and bed material particle size specifications are 

required to determine the sediment transport process (Ghoshal et al., 2010). The 

extracted parameter from affective factors on sediment transport can be used as a 

basis for the prediction of sediment transport rates. Bedload size and bed material 

demonstrate the size of material transported downstream and the size of material 

accumulating upstream. The characteristics of bed material are indicators of the 

resistance of the armoring layer and the ability of the stream to move surface 

particles (Wilcock and Kenworthy, 2002).  

 

Bedload transport in rivers is basically the process of movement of individual 

particles. The individual sediment size and the characteristic of the bed sediment 

influence sediment transport. However, the arrangement of different grain sizes 

(Buffington and Montgomery, 1997; Church, 2006) and patterns, such as sheltering, 

imbrications, armoring, and variations in sorting, can also affect the stabilities and in 

turn the critical shear stress required to carry the sediment (Charlton, 2007; Clayton, 

2010). 

 

The characteristics of particle movement courses are essential to sediment 

transport theory, the development of channel morphology, and are the basis for a 
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method of measuring the bed load transport rate (Pyrce and Ashmore, 2003). 

Measurement on the variations in transport rates between particles of different sizes 

is required when riverbed have different particle sizes, particularly in gravel bed 

rivers due to the wide range of particle size. The movement of individual particles 

depend on their relative as well as absolute size was shown by many researches that 

using the field and laboratory sediment transport data. The overall transport rate of 

mixed-sized sediments and the effects of changing sands and gravel contents were 

studied in a laboratory flume (Curran and Wilcock, 2005; Wilcock and Crowe, 2003; 

Wilcock et al., 2001). In an attempt to assess the evolution of bedload grain size, 

Kuhnle (1989) worked on a stream with sand and gravel mixture. He discovered that 

sediment size had a bimodal distribution and that sand fraction was entrained at 

lower velocities rather than gravel fraction.  

 

Fractional bedload transport has been studied in the field (Bond, 2004; Diplas, 

1992; Kuhnle, 1989; Kuhnle, 1992; Powell et al., 2001; Wathen et al., 1995) and in 

the laboratory (Wilcock and McArdell, 1993; Wilcock and Southard, 1989). A 

supplementary study was performed on sand, gravel, and sand–gravel mixture to 

determine the critical shear stress of each size fraction from five different sediment 

beds (Kuhnle, 1993). All grain sizes of sand and gravel beds start to move at a nearly 

identical shear stress. However, a constant relationship between critical shear stress 

and grain sizes was observed in sand size sediments for the beds composed of sand–

gravel mixture, but for the gravel fraction, the critical shear stress increased with the 

increase in size. Further studies show that most sand sizes may have nearly equal 

entrainment mobility in both laboratory and field studies (Church et al., 1991; Parker 

et al., 1982; Wilcock and Southard, 1989). The experiments were conducted in a 
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flume with mixed-sized sediments (Lanzoni and Tubino, 1999). Results show that 

the capacity of the sediment transport be modified by the different mobility of the 

diverse grain-size fractions in the mixture and induce a longitudinal and transverse 

pattern in sorting. 

 

Powell et al. (2001) classified a second major threshold of approximately 4.5c 

in the Nahal Eshtemo River. Below this threshold, size selective occurs and above it, 

a condition approaching equal mobility occurs. This range of threshold is about twice 

as that as in sediment mixtures with comparable sorting coefficients in flume studies 

(Wilcock and McArdell, 1993). 

 

2.4 Bed Load Transport Equations 

Bedload transport equations are usually developed based on hydraulic 

principles and attempts to relate the level of bedload transport to several parameters 

such as water discharge, shear stress or stream power (Martin, 2003; Yang, 1972).  

 

One of the main problems in measuring bed material transport is that, under 

natural conditions, bedload discharge is not a steady process and variations up to 

more than 50 percent may be expected (Dietrich and Gallinati, 1991). Because of 

difficulties in field measurements of bedload discharge, a large number of transport 

formulae have been developed for a wide range of sediment sizes and hydraulic 

conditions (Bagnold, 1980; Schoklitsch, 1934). Because of the relationship between 

the reliability and representativeness of the data utilized in defining reference values, 

constants, and other relevant coefficients and the performance of a particular 

equation, most sediment transport equations do not represent a fundamental or 
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complete correlation. Therefore it is really difficult, if not possible, to recommend a 

global equation for engineers to use in the field under all conditions (Camenen and 

Larson, 2005; Khorram and Ergil, 2010; Wu et al., 2000). 

 

Numerous bed load transport equations have been formulated under limited 

laboratory or field conditions that are available in the literature (Habersack and 

Laronne, 2002). Table  2.1 to Table  2.7 are summary of bedload equations based on 

derivation approach with their name and years and cited references. 

 

Table  2.1: Bedload transport equations, Deterministic Shear stress method  

No Name Equation  
Range of 
applicability 

Cited 
references 

1 Du Boys 
(1879)  0 0 5 0

5 0

3
4

0.173
0.0125 0.019bq d

d
 

 
   
 
 
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4.0 (mm) 
Sf > 0.00005 

(Yang, 
1996) 

2 Kalinske 
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* 50 0

b cr

s
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f
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 

 
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(Yang, 
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b
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s

q
f
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 
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(Yang, 
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4 Sato, 
Kikkawa 
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Ashida 
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(Garde 
and Raju, 
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5 Shields 
(1936) 

0

50

10 ( )

( 1)
f cr

b
s

qs
q

G d

 




      

1.56 ≤ d50 ≤ 
2.47(mm) 
1.06 < Gs< 
4.20 

(Yang, 
1996) 

6 Ribberink 
(1998) 

1.6511( )b cr     
0.088 ≤ d50 ≤ 
2.83(mm) 
 

(Ribberink
, 1998) 

7 Wilson 
(1996) 

3
212( )b cr   

 
0.088 ≤ d50 ≤ 
2.83(mm) 
 

(Wilson, 
1966) 
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Table 2.1: Continue 

No Name Equation 
Range of 
applicability 

Cited 
references 

8 Wong and 
Parker 
(2006) 

1.6

3
2

4.93( 0.047)

3.97( 0.0495)
b






    
  

0.088 ≤ d50 ≤ 
4(mm) 
 

(Wong and 
Parker, 
2006) 

9 Graf and 
Suszka 
(1987) 

2.5
1.5

2.5

0.045
12 1 0.068

10.5                             0.068

b  


 

        
  
 

0.088 ≤ d50 ≤ 4 
(mm) 
 

(Graf, 
1998) 

10 Wiberg 
and Smith 
(1989) 

3

.

2

1660

( )

9.64( )

b s cr

s

   

 

 

  

0.088≤ d35 ≤ 
5.66 
(mm) 
 

(Wiberg 
and Smith, 
1989) 

11 Paintal 
(1971) 

18 1616.56 10   
1≤ d50 ≤ 25(mm) 
0.007 < θ < 0.06 
 

(Paintal, 
1971) 

12 Low 
(1989) 

0.5
0. 05 5

6.42
( )

( 1)b cr av f
s

q d v s
G

  
  

 

0.088≤ d50 ≤ 
5.66 (mm) 
θcr=0.06 
 

(Low, 
1989) 

13 Femandez
-Luque 
and Van 
Beek 
(1976) 

    

3
25.7( )b cr   

 
0.9 ≤ d50 ≤ 3.3 
(mm) 
0.05 < θcr < 
0.058 

(Fernandez 
Luque and 
Van Beek, 
1976) 

 

Table  2.2: Bedload transport equations, Deterministic Stream power method 

No Name Equation 
Range of 
applicability 

Cited 
references 

1 Chang, 
Simons and 
Richardson 
(1967) 

0( )   b t av crq K v   

 

0.1 ≤ Kt ≤ 4(mm) 
0.19≤ d50 ≤ 0.93 
(mm) 
0.001≤ Sf ≤0.0005  
 

(Yang, 
1996) 

2 Dou (1964) 
00.01 ( )s av

b av cr
s s

v
q v v

gG

 
 

   
       

 

0.088≤ d50 ≤ 45.3 
(mm) 
 

(Wu, 
2007) 

3 Bagnold 
(1966) 0tans

b av bq v e
   


 
  
   

0.088≤ d50  ≤ 1.41 
(mm) 

(Bagnold
, 1977) 

Table  2.3: Bedload transport equations, Deterministic Energy slope method 
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No Name Equation 
Range of 
applicability 

Cited 
references 

1 Meyer -
Peter 
(1934) 

2 3 3 2
50(250 42.5 )b fq q s d 

 
3≤ d50 ≤ 29(mm)  
Gs =2.65 
Rh< 20  

(Yang, 
1996) 

2 Meyer -
Peter and 
Muller 
(1948) 

8( )3 2       

0                         
cr cr

b
cr

   


 
  

     

0.4≤ d50 ≤ 30(mm)  
0.25≤ Gs ≤3.2 
1≤ Rh ≤<120  (cm) 
0.0004≤ Sf ≤0.02 

(van Rijn, 
1993) 

3 Smart and 
Jaeggi 
(1983) 

0.06 0.590

0 *3

4 ( )av
b f cr

d v
s

d u
   

   
    

    

0.088≤ d50 ≤ 2.83 
(mm) 
0.03≤  Sf  ≤ 0.2 

(Smart 
and 
Jaeggi, 
1983) 

4 Pica 
(1972) 

0.594 1.681 0.237
5010.217b fq d s q

 
0.088≤ d50 ≤ 45.3 
(mm) 
 

(Pica, 
1972) 

 

Table  2.4: Bedload transport equations, Deterministic Regression method 

No Name Equation 
Range of 
applicability 

Cited 
references 

1 Abrahams 
and Gao 
(2006) 

1.5 4

*

3.(1 ) ( )cr av
b

v

u

 


 
 

0.088≤ d50 ≤ 
5.66 (mm) 
 

(Abraham
s and Gao, 
2006) 

2 
Nielsen 
(1992) 

1 212 ( )b cr      

0.69≤ d50 ≤ 28.7 
(mm) 
1.25≤ Gs ≤4.22 
0.001≤ Sf  ≤ 0.01 

(Nielsen, 
1992) 

3 Brown 
(1950) 
 

0.391

3

1.5

2.15          0.068

40                    0.18   0.52

15                   0.52
b

e  

  

 

 
 

   
  

 

0.088≤ d50 ≤ 
45.3 (mm) 

(Julien, 
2002) 

4 Rottner 
(1959) 

3
2 3

50

2 3

50

0.667 0.14

0.778

h

b s h a v

h

d

R
q R v

d

R



      
        
  
  

   
 

0.088≤ d50 ≤ 
45.3 (mm) 

(Yang, 
1996) 

5 England 
and 
Fredsoe 
(1976) 

 
1 2 1 218.74( ) 0.7( )b cr cr        

 

0.3 ≤ d50 ≤ 7 
(mm) 
θcr= 0.05 

(Engelund 
and 
Fredsoe, 
1982) 
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Table  2.4: Continue 

No Name Equation 
Range of 
applicability 

Cited 
references 

6 
van Rijn 
(1984,19
87,1993) 

1.5 2.1
0.3

*

0.053
( 1)cr

b D

 


 

 

0.2 ≤ d50 ≤ 2 
(mm) 
Fr <0.9 
0.31<vav <1.29 
m/s 
0.001≤ Sf  ≤ 0.01 
0.1≤ Rh ≤1  (m) 

(van 
Rijn, 
1993) 

7 England 
and 
Hansen 
(1967) *

2

5 20.05 av
b

v

u
 

 
  

   

0.088≤ d50≤ 45.3 
(mm) 
 

(Engelun
d and 
Hansen, 
1967) 

8 Fredsoe 
and 
Deigaard 
(1992) 

 1 2 1 230
( ) ( )b cr crq    


  

 

0.088≤ d50 ≤ 
45.3(mm) 
 

(Fredsøe 
and 
Deigaard, 
1992) 

9 Ashida 
and 
Michiue 
(1972) 

 1 2 1 217( ) ( )b cr crq      
 

0.088≤ d50 ≤ 45.3 
(mm) 
θcr= 0.05 
 

(Ashida, 
1972) 

10 Julien 
(2002) 

 3 2 2
50

50
3

18

( 1)
b

s

g d

g G d


 


 

0.088≤ d50 ≤ 2.83 
(mm) 
Sf  > 0.0001 
0.1<Θ< 1.0 
 

(Julien, 
2002) 

11 Lefort 
Sogreah 
(1991) 

    

  5

0.2 0.375

1.590

30

8 313
0

6
5

4.45 1

0.295 1 1.2

s lc
f

s

lc f f

Q d Q
s

Q d Q

Q s s gd


 



      
               

 

 

0.088 ≤ d50 ≤ 1.41 
(mm) 
 

(Lefort, 
1991) 

12 Madsen 
(1991) 

 0.5 0.5( ) 0.7b cr cr      
 

0.088 ≤ d50 ≤ 5.66 
(mm) 
 

(Madsen, 
1991) 

13 Smart  
(1983) 3

0.2

0.650

90

50

*

4

( )

s
b

av
f cr

q gd

d v
s

d u

 


  

  
   

   
  
  
   

d50 < 29 (mm) 
sf <0.2 
 

(van 
Rijn, 
1993) 

14 Nino and 
Garcia 
(1998) 

 0.5 0.512
( ) 0.7b cr cr

d

    


  
 

0.088 ≤ d50 ≤ 5.66 
(mm) 

d =0.23 
 

(Nino 
and 
Garcia, 
1998) 
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Table  2.4: Continue 

No Name Equation 
Range of 
applicability 

Cited 
references 

15 Rickenman 
(1990) 

0.2

0.590
0.5

30

1.13.1
( )

( 1)b cr
s

d
Fr

G d
   

 
    

 

0.088≤ d50 ≤ 5.66 
(mm) 
0.03≤ Sf  ≤ 0.2 
θcr= 0.05 

(Rickenm
ann, 1991) 

16 Chang 
(2002) 

1.5
1.5

0.05
13 expb 


   
   

0.088≤ d50 ≤ 5.66 
(mm) 
 
 

(Cheng, 
2002) 

17 Camenen 
and Larson 
(2005) 

0.512 exp 4.5 cr
b

 


   
   

0.088≤ d50 ≤ 5.66 
(mm) 
 

(Camenen 
and 
Larson, 
2005) 

18 Bhattachar
ya, Price 
and 
Solomatine 
(2007) 

0.898
*

*0.353
*

0.13
*

* *0.0673
*

0.13
*

* *0.673
*

0.072078          T 0.04

0.000182         T  0.04  181.3

0.0000124         T  0.04  181.3

b

T

D

T
and D

D

T
and D

D



 
 

 
     
 
 
  
  

 

0.088 ≤ d50 ≤ 5.66 
(mm) 
 

(Bhattacha
rya et al., 
2007) 

 

 

Table  2.5: Bedload transport equations, Deterministic Discharge and velocity method 

No Name Equation 
Range of 
applicability 

Cited 
references 

1 Casey 
(1935) 

9 8

1.8
6 50

0.5

0.367 ( )

6.5 10

f

f

b c r

c r

q S q q

d
q

s


 

 
    

   

0.0625≤ d50 ≤ 2 
(mm) 
 

(Casey, 
1935) 

2 Sckoklitsch 
(1934) 

 

3 2

1 .5
5 3 6 5 0

7 6

2 .5
( )

0 .2 6 1 1 0

b c r

c r

f
s

s
f

q S q q

d
q G

s






 
  
 

 
     

 
 

0.305≤ d50 ≤ 7.02 
(mm) 
 0.24< vav≤ 0.0876 
 
Sf  >0.003 
 
 

(Yang, 
1996) 

3 Barekyan 
(1962) 0.187 s av cr

fb
crs

v v
q qS

v


 

  
   

 

0.088≤ d50 ≤ 45.3 
(mm) 

(Barekyan, 
1962) 
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Table  2.6: Bedload transport equations, Deterministic Equal mobility method 

No Name Equation 
Range of 
applicability 

Cited 
references 

1 Pitlick  et 
al., 
(1990a,b) 
 

    

 

3
*

50

*
2

50

4.5

50
50

* 2

50 50*

50

14.2
50

*
, ,

( 1)

 =
( 1)

0.853
11.9 1      1.59 

0.00218exp 14.2 1 9.28 1

                                         1.0 1.59

0.0025   

s
b

su

cr

b

s

s

w u
q

G g

u

G gd

W

 







 





 




      
   

     

 

50                1.0                    

 
 
 
  
 
 
 
 

  
 

2.0≤ d50≤ 45.3 
(mm) 
0.79≤vav ≤ 1.13 
(m/s) 
2.9×10-4≤ Sf  ≤ 
3.3×10-3 
 

(Pitlick et 
al., 2009) 

2 Parker and 
Klingeman  
and Mclem 
(1982) 

    

 

3
*

50

*
2

50

4.5

50
50

* 2

50 50

50

14.2
50

*
, ,

( 1)

 =
( 1)

0.853
11.2 1      1.65 

0.0025exp 14.2 1 1

                                         0.95 1.65

0.0025        

s
b

s cr

ubs s

w u
q

G g

u

G gd

W

 







 





 




      
   

     

 

50           0.95                    

 
 
 
  
 
 
 
 

  
 

2≤ d50 ≤ 45.3 
(mm) 
Sf  >0.003 
θcr=0.0876 
 

(Pitlick et 
al., 2009) 

3 Parker and 
Klingeman
(1982) 

4.50.018

50

3
*
3

*

*

0
0

2

5
5

* 0.0747
= 11.2 1

 ,  =
( 1)

i

s

s
b

ucr s b

w u d
q

u d

u

G gd




 


  
     
   




 

2≤ d50 ≤ 45.3 
(mm) 
Sf  >0.003 
θcr=0.0876 
 
 

(Pitlick et 
al., 2009) 

4 Wilcock 
(2001) 

4 .5

0
0*

0
0

2

5 0

3
*

*
5 0

*

( 1)

 

1 1 .2 1 0 .8 4 6         

0 .0 0 2 5                      

= ,  
( 1)

c r
c r

g

c r
c

s
b

s

r

s u bs c r

w u
q

G g

W

u

G g d



  


  


 





  
   
    

    
  




 

2.0≤ d50 ≤ 45.3 
(mm) 
 

(Pitlick et 
al., 2009) 

5 Wilcock 
and Crowe 
(2003) 2

5 0

4 .5

5 0* 0 .5
5 0

3
*

7 .

*

5

5 0

5 0

*
, ,

( 1)

 =
( 1)

0 .8 5 3
1 4 1     1 .3 5  

0 .0 0 2                1 .3 5    

s
b

s c r

sus b

w u
q

G g

u

G g d

W

 







 

 




  
      
 

 
 

2.0≤ d50 ≤ 45.3 
 (mm) 
 

(Pitlick et 
al., 2009) 
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Table  2.7: Bedload transport equations, Deterministic Probabilistic method 

No Name Equation 
Range of 
applicability 

Cited 
references 

1 Einstein 
(1942 
and 
1950) 

3
50

1b
b

s s

q

gd


  




 

0.315≤ d50 ≤ 28.6 
(mm) 
1.25≤ Gs ≤ 4.25 

(van Rijn, 
1993) 

2 Einstein-
Brown 
(1950) 
 

3

exp( 391/ )
 0.182

0.465

40                  0.182
b

k

k

 


 

    
  

 

0.088≤ d50 ≤ 5.66 
(mm) 
 

(Yang, 
1996) 

3 Gill  
(1972) 

0

3

40 1cr
b




 
  

   

0.088≤ d50 ≤ 2.83 
(mm) 
 
 

(Gill, 
1972) 

4 Parker 
(1979) 

 4.5

3

0.03
11.20 cr

b

 






 

2.83≤ d50 ≤ 5.66 
(mm) 
0.00035≤Sf  ≤ 
0.0108 
 
 

(Pitlick et 
al., 2009) 

5 Yalin 
(1963) 

0.4

1
0.635 1 ln(1 )

1, =2.45
( )

b

cr

cr s

r r
r

r

  


 
  

     

 

 

0.315≤ d50 ≤ 28.65 
(mm) 
 

(van Rijn, 
1993) 

 

 

2.4.1 Performance of Bedload Transport Equations  

Gomez and Church (1989) used 88 bedload transport observations from 4 

natural gravel bed rivers and 45 bedload transport observation from 3 flumes to 

analyse some bedload transport equations. The authors conclude that there is no 

equation to be tested performed consistently well, due to limited data used and the 

complexity of transport occurrence. They found the best prediction of bedload 

transport under limited hydraulic information is achieved by using equations based 

on the power flow concept.  
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The performance of 13 sediment transport formula in terms of their ability to 

describe sediment transport was tested by Yang and Huang (2001) . They achieved 

that the sediment transportation formulae based on the level of energy dissipation or 

the concept of power flow, more accurately describe transported observed data. Also 

the rate formulae complexity does not always translate into increased model 

accuracy. 

 

Prior to the extensive work of Yang and Huang (2001), Barry et al. (2004) 

performed simple regressions to complex multi-parameter formulation for 24 gravel 

bed rivers with 2104 bedload transport observation in Idaho to evaluate the fitness of 

eight different formulations of four bedload transport equations. The authors 

concluded that there was no reliable relationship between formulae performance and 

degree of calibration or complication. They found that transport data were best 

described by a simple power function of discharge. They proposed a new bedload 

transport equation and identify the channel and watershed characteristics effect on 

the proposed power function by controlling the exponent and coefficient. 

 

The ability of the deterministic empirical equations of van Rijn (1984, 1993) 

and Meyer-Peter and Muller (1948) was assessed by Claude et al. (2012)   for a large 

sand–gravel bed river to determine the unit and total bedload transport rates by 

comparing bedload discharges obtained from bedload measurements with 

predictions. The authors concluded that the tested equations were unable to predict 

the daily temporal variations of the total bedload transport at low and medium flow 

conditions. The formulas described the bedload hysteresis but underestimated its 

magnitude. For high flow conditions, the best agreement was observed for the total 
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bedload discharges computed by the van Rijn equation. The obtained results 

indicated that the empirical equations only able to predict the temporal variations of 

bedload transport if the flow velocities followed a similar trend.  

 

The equations of Meyer-Peter and Mueller (1948), Einstein-Brown (1950), 

Schoklitsch (1950), Frijlink (1952), Yalin (1963), Bagnold (1980), Engelund and 

Hansen (1967), Bijker (1971), Ackers and White (1973), Parker et al. (1982), van 

Rijn (1984, 1987) and Cheng were evaluated with measured bedload by a Helley-

Smith sampler in the Node River, a gravel bed river in the northeast part of Iran 

(Haddadchi et al., 2012). The results indicated that the statistic equation such as van 

Rijn- Stochastic, Einstein and Bijker were not able to predict bed load in that gravel 

bed river. Van Rijn, Frijlink and Myer-Peter and Mueller equations based on shear 

stress achieved good results while some of them like Yalin and Cheng’s gave very 

poor results. Equations based on the energy concept including Bagnold and Engelund 

and Hansen equations tended to overestimate the real state in that river. Generally the 

equations presented by van Rijn, Meyer-Peter and Mueller, and Ackers and White 

might tolerably predict bedload transport in the range of field data of Node River. 

2.5 Regression Analysis  

2.5.1 Linear Regression 

Regression is a highly useful statistical method to determine a quantitative 

relation between one or more independent variables and a dependent variable. 

Throughout engineering, regression may be applied to correlating data in a wide 

variety of problems ranging from simple to complex physical and industrial systems. 

If nothing is known a function may be assumed and fitted to experimental data on the 



22 

system. In other cases where the result of linear regression is unacceptable other 

method such as nonlinear regression may give better results.  

Simple linear regression is a relationship between a response variable Y and a 

single explanatory variable X.  In the simplest case the proposed functional relation 

is: 

  XY 10  ( 2-1) 

In this model ε is a random error (or residual) which is the amount of variation 

in Y not accounted by linear regression. The parameters 0 and 1 , called the 

regression coefficients, are unknown and to be estimated. It will be assumed that the 

error ε is independent and have a normal distribution with mean zero and variance σ2, 

regardless of what fixed value of X is being considered. Then the value of 0 and 1

can be estimated by the method of the last squares (Bethea et al., 1995). 

 

2.5.2 Multiple Linear Regression 

The multiple linear regression is similar to simple linear regression except that 

a number of independent variables, X1,X2, …Xp, have relationship to a single 

dependent variable Y (Bethea et al., 1995). The general form of the multiple 

regression method is given by: 

  pp XXXY ...22110  ( 2-2) 

 

where the ε is random error (or residual). The general form of multiple linear 

regressions is shown below using logarithmic transformation  

122110 )(...)()(   pp XLnXLnXLnLnLnY  ( 2-3) 

 or  



23 

p

pXXXY  )(...)()( 21
210  ( 2-4) 

The regression coefficients ( i ) are same to simple regression and can be obtained 

from last square technique. 

2.5.3 Least- Square Method 

 
The least-square method is probably the most popular technique in statistics. 

The method has been adopted to find the best-fit line or curve from a given set of 

data. In the standard formulation, a set of N pairs of observations {Yi , Xi} is used to 

find a function relating the value of the dependent variable Y to the values of an 

independent variable X . Assume that the set of data points are (x1,y1), (x2,y2), …, 

(xp,yp) where x is the independent variable and y is dependent variable. The fitting 

curve f(x) has the deviation (error) of ε from each data point, i.e., ε1=y1-f(x1), ε2=y2-

f(x2),..., εp=yp-f(xp). According to the method of least squares, the best fitting curve 

has the property that:  

  minimum)(...
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If suppose the f(x) is a simple linear function then 

  minimum
1
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To determine the minimum sum of square due to error (SSE), the partial 

derivative of SSE which respect to each constant ( 0  , 1 ) is set equal to zero to yield: 
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The solutions of these equations are 

 

XY 10    ( 2-9) 
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This solution for estimation of 0  , 1 is called least-square solution. For multi 

linear regression this method can be used to determine the regression coefficients of

i . 

 

2.5.4 Polynomial Regression 

In the case of polynomial or curvilinear regression, as given by the model: 

  p
p XXXY ...2

210  ( 2-11) 

there is only one independent variable (X). Therefore the power of X can be 

considered as W1=X, W2=X2,…, Wp=Xp and the model is reduced to multiple 

regression as given by Equation (2.2). 

2.5.5 Nonlinear Regression 

Nonlinear regression is a method of finding a nonlinear model of the 

relationship between the dependent variable and a set of independent variables. The 

nonlinear regression is utilized when no linearizing transformation can be found 

(Bethea et al., 1995). This procedure estimates the parameter value that minimizes 




