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TEKNIK-TEKNIK GEOMETRI RUANG KEPELBAGAIAN DAN
TERAGIH KEPELBAGAIAN UNTUK SISTEM

PERHUBUNGAN TANPA WAYAR

ABSTRAK

Kajian ini menghasilkan satu skima kepelbagaian ruang yang tulin berdasarkan konsep

geometri yang mengoptimakan Isyarat kepada Nisbah Bunyi (SNR) untuk sistem komunika-

si sama-keuntungan Pelbagai Kemasukkan dan Satu Keluaran (MISO). Pada peringkat kedua,

kaedah ini diperluaskan kepada sistem Pelbagai Kemasukkan dan Pelbagai Keluaran (MIMO).

Kaedah-kaedah dicadangkan untuk menyelesaikan masalah utama dalam sistem konvensional

gelung tertutup MISO dan sistem MIMO seperti kerumitan yang tinggi, kelewatan maklum ba-

las, purata SNRs yang tidak diketahui, pergantungan terhadap penghantar antena, tiada penye-

suaian terhadap saluran, dan kekaburan fasa. Pada peringkat ketiga, struktur yang dicadangk-

an untuk skima Skalar Sama Penghantaran Keuntungan dan Nisbah Maksima Penggabungan

Umum (SEGT / GMRC) di ikuti untuk mencipta bentuk kod buku maklum balas terhad untuk

MISO dan MIMO sistem yang menyediakan satu kaedah yang berbeza berbanding dengan kod

buku yang terkenal sebelumnya. Cadangan kod buku terkuantum gandaan sama (QE), memer-

lukan bilangan bit maklum balas yang minima untuk menghasilkan bentuk alur vektor. Pada

peringkat ke empat, kod buku QE dicadangkan untuk menyediakan kepelbagaian ruang teragih

dalam rangkaian geganti tanpa wayar. Memandangkan antena penghantar adalah bebas dengan

sendirinya, lanjutan kepada rangkaian geganti adalah mudah. Reka bentuk baharu dinamakan

kod buku yang teragih QE (DQE), di mana setiap nod geganti menyimpan kod buku QE. Dida-

lam penyelidikan ini, peralatan memasuki tanpa wayar terbuka penyelidikan platform (WARP)

telah digunakan untuk prototaip kod buku QE yang dicadangkan. Skim baharu geometri kepel-
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bagaian sistem yang dicadangkan menghapuskan proses mencari dan berfungsi sebagai sistem

yang optima untuk penghantaran sistem MISO gandaan sama. Dengan melanjutkan kaedah ini

untuk kepelbagaian ruang teragih (DQE), masalah utama yang berkaitan dengan kaedah kon-

vensional seperti kerumitan, maklumat keadaan saluran (CSI) sejagat, maklum balas kelewat-

an, geganti nod bergantung dan tidak diketahui purata SNR telah dapat diselesaikan. Keputusan

yang memberangsangkan untuk QE dan codebooks DQE adalah seperti yang terdapat didalam

tesis. Kod buku yang dicadangkan menunjukkan bahawa QE dapat menghasilkan prestasi yang

hampir optima. Tesis ini juga telah membuktikan bahawa sistem yang mempunyai hanya sa-

tu bit maklum balas setiap sudut setiap fasa tidak boleh menghasilkan prestasi yang optima.

Jurang prestasi isyarat kod buku yang dicadangkan menggunakan QPSK dan BPSK skima

pemudalatan dengan 90 darjah kebebasan adalah kurang daripada 0.25-0.75 dB pada kadar

kesilapan simbol 10−5. Jurang ini dikurangkan untuk isyarat kod buku menggunakan 8PSK

dan 16QAM skima pemudalatan dengan 45 dan 30 darjah kebebasan masing-masing. Platform

WARP mengesahkan reka bentuk geometri kod buku QE. Ia menunjukkan bahawa kod buku

QE yang dicadangkan adalah lebih mudah untuk dilaksanakan dan kod buku QE yang lebih

rendah tahapnya adalah lebih sesuai untuk saluran yang mempunyai garis laluan penglihatan.

Rangkaian sistem komunikasi menggunakan DQE juga boleh dilaksanakan dengan kerumit-

an yang minima. Sistem komunikasi yang menggunakan Kod buku DQE telah ditunjukkan

mempunyai prestasi lebih baik daripada sistem komunikasi penghantaran terus bebas daripada

lokasi mereka dalam rangkaian mengagihkan. Bilangan nod relay memainkan peranan yang

penting terhadap prestasi rangkaian. Sebagai contoh, prestasi kesilapan untuk 3 nod relay yang

terletak berhampiran dengan sumber dan setiap daripada mereka menggunakan QPSK atau

8PSK kod buku teredar, adalah bertambah baik dengan 14 dB pada kadar kesilapan sebanyak

10−5 apabila bilangan nod relay teredar meningkat kepada 8. Ia juga menunjukkan bahawa kod

buku DQE mengatasi kod buku QE apabila nod geganti adalah dekat ke nod sumber. Jumlah

peningkatan adalah sekitar 1 dB untuk QPSK kod buku teredar dan sekitar 2 dB untuk 8PSK
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kod buku teredar. Kelebihan skima geometri yang dicadangkan berbanding dengan kerja-kerja

yang terkenal adalah seperti berikut: kaedah pencarian terhapad kecapaian yang optima bagi

bentuk alur vector yang sama dan teredar adalah dihapuskan, oleh itu kerumitan dan kelewatan

sistem menjadi rendah sementara prestasi masih optima; masalah kekaburan fasa diselesaikan;

purata SNR pada penerima antena boleh didapati; penghantar antena dan nod relay adalah be-

bas yang membolehkan penggunaan lebih daripada satu pautan maklum balas; maklum balas

yang terhad bagi bentuk alur vektor bergantung kepada skima pemodulatan, yang mengga-

lakkan reka bentuk untuk kod buku yang mudah dengan menggunakan tingkat konstilasi yang

lebih rendah; sistem baru boleh menyesuaikan diri dengan perubahan kelakuan saluran tanpa

melakukan operasi matriks.
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GEOMETRICAL SPACE DIVERSITY AND DISTRIBUTED
SPACE DIVERSITY TECHNIQUES FOR WIRELESS

COMMUNICATION SYSTEMS

ABSTRACT

This research produces a novel space diversity scheme based on geometrical concept for

optimizing the Signal to Noise Ratio (SNR) of the equal-gain Multiple Input and Single Output

(MISO) communication system. In the second stage, this method is extended to Multiple Input

and Multiple Output (MIMO) systems. These methods are proposed to solve the main problems

of the conventional closed-loop MISO and MIMO systems such as high Complexity, feedback

delay, the unknown average SNRs, dependant on transmit antennas, non-adaptivity to channels,

and phase ambiguity. In the third stage, the structure of the proposed Scalar Equal Gain Trans-

mission and Generalized Maximum Ratio Combining (SEGT/GMRC) scheme is followed to

design the limited-feedback codebooks for MISO and MIMO systems which provide a differ-

ent methodology as compared to the previous well-known codebooks. The proposed quantized

equal-gain (QE) codebooks, requires the minimum number of feedback bits to form the beam-

forming vector. In the fourth stage, the proposed QE codebooks are employed to provide the

distributed spatial diversity in a wireless relay network. Since transmit antennas are indepen-

dent, the extension to relay network is straightforward. The new design is named Distributed

QE (DQE) codebooks, in which each relay node stores a QE codebook. In this research, the

wireless open-access research platform (WARP) is employed for prototyping the proposed QE

codebooks. The proposed new geometrical space diversity system eliminates the searching

process and serves as the optimal system for equal-gain MISO transmission systems. By ex-

tending this method to the distributed space diversity (DQE), the main problem related to the
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conventional methods such as complexity, global Channel state Information (CSI), feedback

delay, dependent relay nodes, and unknown average SNR are solved. Many encouraging re-

sults are obtained for QE and DQE codebooks, where some of them are as follows. It is shown

that the proposed QE codebooks perform near optimal, and also it is proven that a system with

one bit of feedback per each phase angle cannot perform near optimal. The performance gap of

the proposed codebooks signals using QPSK and BPSK modulation schemes with 90 degrees

of freedom are less than .25-.75 dB at the symbol error rate of 10−5. This gap is reduced for

the codebooks signals using 8PSK and 16QAM modulation schemes with 45 and 30 degrees

of freedom, respectively. The Warp platform validates the geometrical design of the QE code-

books and it is shown that the proposed QE codebooks are easier to implement and the lower

order QE codebooks are more suitable for the channels with the line of sight path. The DQE

network can also be implemented easily with minimum complexity. It is shown that the pro-

posed DQE codebooks perform better than direct transmission independent of their location in

the distributed network. Number of relay nodes plays an important role on the performance of

the network. For example, the error performances of 3 relay nodes located near to the source

and each of them employing distributed QPSK or 8PSK codebook, is improved by 14 dB at

the error rate of 105 when the number of distributed relay nodes is increased to 8. It is also

shown that the DQE codebooks outperform its QE counterpart when the relay nodes are close

to the source node. The amount of improvement is around 1 dB for distributed QPSK codebook

and around 2 dB for distributed 8PSK codebook. This significance of the proposed geomet-

rical scheme as compared to the well-known works are as follows: the searching methods to

find the optimal equal gain beamforming and distributed beamforming vectors are eliminated,

therefore the complexity and the system delay become lower while the performances are still

optimal; the phase ambiguity problem is fixed; the average SNR of the receive antennas are

available; transmit antennas and the relay nodes are independent which enable the system to

employ more than one feedback link; the limited feedback beamforming vectors depend on the
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modulation scheme, which facilitates the design for more simpler codebooks using lower con-

stellation orders; the new system can adapt itself for any change in channel behaviour without

performing any matrix operations.
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CHAPTER 1

INTRODUCTION

1.1 Preface

During the past decade, many schemes have been proposed to increase the reliability of the

point-to-point digital communication systems to fulfil the quality of the data, which is required

to be increased day-by-day by the advent of new emerging applications over the internet such

as on-line voice, video, and radio/TV streams. In a wireless communication, since a wave

reaches the receiver by several paths, the combination of these replicas may result in a very

weak signal, which is not detectable at the receiver. This process is known as multipath fading.

The most exciting method to increase the reliability of the link is to employ diversity; to trans-

mit several replicas of the signal over independent channels. The most well-known diversity

schemes employ independent communication channels over time, frequency, or space. The

time diversity introduces a delay to the final detected symbol, which must be considered when

a time-sensitive applications such as on-line voice/video is streaming. The frequency diversity

requires more bandwidth resource and the Doppler effect must be considered to adjust the in-

dependent frequency channels when the end-user is mobile. The space diversity requires the

uncorrelated antennas, whose distance from each other must be several times greater than the

signal’s half wavelength. Installing more than one antenna over the end-user devices such as

smart phones or personal laptops highly depends on the antennas’ design technology. There are

also diversity schemes formed by combining these three such as space-time, space-frequency,

and time-frequency diversities.

Space diversity can provide a reliable physical layer for a point-to-point communication
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system to support data applications, which require the high quality of service (QoS). The space

diversity can be formed by installing multi transmit and/or receive antennas over the small

scale utilities (hand phones) as well as large scale utilities (base stations). Although many

advances have been in the area of frequency and space-time diversity, less attention paid to the

space diversity, where most of the proposed schemes cannot be practically installed. One of

the major drawbacks of space diversity is the time delay imposed by the conventional methods.

Naturally, the space diversity must be faster than space-time diversity in order to make it more

competitive.

Space diversity can be utilized by introducing a transmission/reception scheme when there

are multiple transmit and/or receive antennas. In general, the space diversity can be divided

into Single Input Multiple Output (SIMO) system (i.e. there is only one transmit antenna,

but there are multiple receive antennas), Multiple Input Single Output (MISO) system (i.e.

there is only one receive antenna, but there are multiple transmit antennas), and Multiple Input

Multiple Output (MIMO) system (i.e. there are multiple transmit and receive antennas). The

space diversity schemes for a SIMO system are well studied by many researchers during the

past decades. Although there have been some theoretical works available in the literature,

the practical aspects of space diversity schemes for MISO and MIMO systems are not yet

considered in depth. One of the main hindrances that make the realization of MISO and MIMO

systems complicated is the existence of a feedback link (Love and Heath, 2003a).

A transmit symbol’s phase and magnitude are adjusted by a weight for each transmit an-

tenna prior to transmission. These weights form a vector known as beamforming vector (Lo,

1999), (Anderson, 2000), (Love and Heath, 2003a). The received signal’s phase and mag-

nitude must be adjusted by another weight prior to detection as well. These weights form

a vector known as the combining vector at the receiver. To be specific, designing a MISO

or a MIMO system is referred to a beamforming/combining vector design. The combining
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vector depends on the available information about the channels after performing channel esti-

mation, and designing the beamforming vector depends on the information obtained from the

feedback link. The feedback link can include information about the phase and/or gains of the

beamforming vector. According to this information, the power must be distributed among the

beamforming vector components. When the feedback link only conveys the phase information,

the power is shared between the beamforming vector components equally. This beamforming

vector is known as Equal-Gain (EG) beamforming vector. If the receiver has a full access to

the channels (gains and phases of all channels), the corresponding combining vector is known

as Maximum Ratio (MR) combining (Lo, 1999),(Anderson, 2000). The conventional methods

to design the EG/MR (beamforming/combining) systems is based on matrix operations, non-

linear-optimizations, or other complicated searching processes. These vector-based systems

are called Equal-Gain Transmission and Maximum Ratio Combining (EGT/MRC). The output

beamforming vector has not been known prior to applying these searching processes. These

systems are not fast and accurate enough to provide the requirements of the communication

systems. The implementation of the conventional EGT/MRC system (Love and Heath, 2003a)

is impractical, since it is impossible to obtain the complete precision for the beamforming vec-

tor. Therefore, the feedback bits must be limited. Consequently, a set of possible beamforming

vectors are quantized into a codebook and the index of the desired beamforming vector is sent

to the transmitter. This is known as quantized EGT/MRC in general (Love and Heath, 2003a).

In general, there are two ways to indicate which vector of the quantized codebook is the nearest

one to the optimal beamforming vector. In the first method, the optimal beamforming vector

must be found by the employed searching scheme such as non-linear optimization. Afterwards,

the label of the vector of the quantized codebook with the minimum squared Euclidean distance

from the optimal beamforming vector is sent to the transmitter. The second scheme selects a

vector of the quantized codebook by examining all the vectors. In this scheme, each vector of

the codebook is multiplied by the channel matrix, and the label of a vector of the codebook that
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provides the maximum squared Euclidean distance is sent to the transmitter.

In the distributed space diversity (or a wireless relay network), some relays are located be-

tween the source and the destination to assist the source by forwarding its message to the desti-

nation, or assist the destination to forward its message to the source. The proposed schemes for

distributed diversity systems in a cellular network must be as simple as possible in order to pre-

vent battery drain. Since the distributed space diversity systems make a virtual SIMO, MISO,

and MIMO systems, their design’s complexity depend on the design complexity of space di-

versity schemes. Similarly, in the conventional methods as will be reviewed in the next chapter

in detail, the possible distributed beamforming vectors are quantized into a codebook and the

index of the desired distributed beamforming vector is sent to the relays. This process is highly

complicated and the searching scheme is required at the destination node.

In this thesis, the new way of designing EG beamforming and MR combining vectors based

on geometrical concepts are proposed. Unlike the conventional methods, the new method pro-

vides the fast and accurate feedback link. This method is very fast since no searching process

(matrix operations, non-linear optimization or other searching processes) is engaged, and it is

accurate since there is no phase ambiguity. The new scheme is called Scalar Equal-Gain Trans-

mission and Generalized Maximum Ratio Combing (SEGT/GMRC). Similarly, implementing

SEGT/GMRC is impractical since it requires ultimate precision. However, instead of sending

the index of the beamforming vector, the index of each of the phase regions is sent to the trans-

mitter. This has become possible, since the optimal equal-gain beamforming vector is known

at the receiver. These codebooks are called Quantized Equal-Gain (QE) codebooks.

Since the transmit antennas are independent, the new scheme (SEGT/GMRC) can be eas-

ily upgraded from point-to-point communications to point-to-relay-to-point communications,

which are known as distributed spatial diversity or wireless relay network. Therefore, the QE
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codebooks are extended to be employed in distributed spatial diversity systems, which again

do not need for any searching scheme. These codebooks are called as Distributed QE (DQE)

codebooks, which in turn reduces the complexity of the network along with providing the near-

optimal performances.

The proposed system for an optimal feedback link (SEGT/GMRC) and the limited-feedback

codebooks (QE and DQE) are examined precisely considering the exact average SNRs of the

receive antennas, which are only available by the proposed methods. The exact error perfor-

mances are achieved by the simulations along with implementing a hardware (WARP plat-

form). The examinations validate the optimality (performance, complexity) of the proposed

systems for space and distributed space diversity systems.

1.2 Problem Statement

The fundamental methods to introduce diversity are space, time, and frequency diversity schemes.

The time and frequency diversity schemes are fully investigated during the past decade and

many practical methods are proposed. Specifically, the combination of space and time diver-

sity, which is known as space-time diversity, is well studied during the past decade. However,

the space diversity design, especially the design of EG beamforming and MR combining vec-

tors in MISO and MIMO systems, still remain in an active research area (Love et al., 2008).

Although the EG has the simple power sharing policy, finding the phase angles of the beam-

forming vector components is not an easy task. The methods proposed to find these phase an-

gles are usually time-lasting, complicated, and infeasible. The EG beamforming vector is the

fundamental form of MR bemaforming vector, where receiver applies more advanced power

sharing policy to find the most optimal beamforming vector. Therefore, introducing an optimal

and practical EG beamforming vector is a first step to define the empirical MR beamforming

vector. This study, concentrates on a novel design of the EG beamforming vector and the design
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of corresponding MR combining vector. The new system can be easily installed on a real-time

hardware since there is no need for exhaustive searching at the receiver. Moreover, the new

design will try to solve some common problems in this area such as complexity of searching

the beamforming vector, the phase ambiguity of the beamforming vector, non-adaptability to

the channels, feedback delay, and the unknown receive Signal to Noise Ratio (SNR) of the

receiver antennas.

The information conveyed by the feedback link must be ready as fast as possible, since

most of the channels are not remaining constant for a long time. The main problem concerning

the conventional methods is the complexity of finding the information to be transmitted by

the feedback link. These schemes utilize matrix optimizers and non-linear searching schemes,

whose order of the complexity grows with the number of transmit antennas in an exponential

way. This computational complexity increases the feedback delay substantially.

Phase ambiguity (as will be discussed in the following chapter) is the other main problem

related to the feedback information. The phase ambiguity prevents the output of the conven-

tional optimizers to reach the transmitter. This problem is serious enough to make a practical

system’s performance very weak.

A system is said to be non-adaptive when it cannot adapt for a certain variable. In this study,

the channels are the systems’ variables. Therefore, an adaptive system must easily change the

process when channels have a certain behavior. The conventional methods are not adaptive and

cannot reduce the complexity of the operation.

The complexity of finding the beamforming vector, introduces delay for the feedback link.

This delay plays an important role in the practical communications, since the feedback infor-

mation is valid until the channel changes.
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One of the most important parameters in the communication is the average Signal to Noise

Ratio (SNR). This parameter is crucial to find the average error performance of the system.

The conventional methods have access the minimum, maximum, and the instantaneous SNR,

but the precise amount of average SNR is not known.

Moreover, a practical way of EG beamforming vector design will have a great effect on the

distributed space diversity schemes. The way of introducing the phase angles of a beamform-

ing vector components can be employed by independent relay nodes with equal transmit power.

The schemes proposed for distributed space diversity are usually suffering from the same prob-

lems as space diversity schemes and their implementations are not feasible (Mudumbai et al.,

2009). The other contribution of this thesis is to design a practical scheme of the distributed

network and also to solve the problems in this area such as complexity, non-adaptivity, full

feedback, the unknown receive SNR, and dependent relays.

1.3 Research Objective

This study introduces a novel transmission scheme with EG and distributed EG beamforming

vectors, and the corresponding reception scheme with MR combining vector. The new methods

are based on geometrical concepts and can solve the relevant problems in the area of space

diversity and distributed space diversity. The process of this investigation is described by the

following steps chronologically as follows:

1. To introduce a novel optimal transmission/reception scheme to provide maximum SNR

with minimum computational complexity as compared with the existing methods. This

system, which is based on geometrical concepts, is called SEGT/GMRC system and its

performance is analysed in MISO and MIMO communications.

2. To introduce the limited-feedback codebooks for MISO and MIMO communications,
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which are called as QE codebooks, and examine their performances.

3. To employ the proposed QE codebooks in the single-hop distributed space diversity net-

work with single-antenna relay nodes, which are called as DQE codebooks, and examine

their performances.

1.4 Scope of The Research

The proposed schemes for the space diversity spans over vast research areas. These works are

classified into three main areas according to the content of the feedback link. This study only

concentrates on the equal-gain transmission, which means that the feedback link only conveys

the phase information (Love and Heath, 2003a). The reason to choose this topic is due to the

fact that equal gain transmission is more important for practical space diversity systems (Tsai

et al., 2009).

There are also many schemes proposed for the distributed space diversity systems with

diverse configurations. This study will concentrate on the single-hop relay network with single-

antenna equal-gain relay nodes.

1.5 Outline of The Thesis

The background information about the diversity schemes, and the most important parameters

that will be required throughout this study are introduced in Section 1.1. Furthermore, the

main theory of space and distributed space diversity schemes are presented in Section 1.2, the

problem is stated in Section 1.3, and the objectives are defined in Section 1.4. The remaining

of this study and the structure of the thesis is as follows.

The second Chapter will focus on the review of the related literature, the well-known works,

and the most cited works about the space and distributed space diversity scheme, especially
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those concentrating on EGT and distributed EGT schemes.

The third Chapter includes the new design of EG beamforming for MISO and MIMO

schemes. This chapter introduces a novel geometric transmitter (SEGT), introduces the cor-

responding MR combing vector receiver, which must be employed as a receiver (GMRC),

presents the new geometrical limited-feedback codebooks (QE codebooks), and illustrates the

theoretical results.

The fourth Chapter contains a new design for distributed space diversity based on the new

geometrical scheme (SEGT/GMRC). This chapter explains the relay network; signal process-

ing and detection scheme for distributed SEGT/GMRC (optimal feedback) as well as Dis-

tributed QE codebooks (suboptimal feedback). The new theoretical results are illustrated and

discussed in this section.

The fifth Chapter is describing the implementation aspects of the QE codebooks. These

codebooks are empirically installed by employing a WARP platform and the results are pre-

sented in detail.

The last Chapter concludes the study and highlights the main results and also provides the

future works.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The space diversity is an appealing method to increase the reliability of the wireless communi-

cation system since it doesn’t need to increase the bandwidth as in frequency diversity, or time

as in time diversity. The first work recorded in the IEEE database backs to 1931 (Beverage

and Peterson, 1931), when the space diversity was employed in the radiotelegraphy wireless

system. The goal was to mitigate the effects of noise and fading in the wireless communi-

cation by installing more than one receive antenna. This scheme is named receive diversity

or Single-input and Multiple-Output (SIMO) wireless system. Following this method, several

techniques are proposed for different combining schemes in the work presented by the au-

thors in (Brennan, 1959). The SIMO communication is applicable in the uplink of the wireless

communications, where the base station can implement several receiving antennas. The well-

known works about the methods proposed for the receive diversity are collected and presented

in book (Jakes, 1974).

By the advent of new technologies, where the end-user is enabled to employ more than

one receiving antenna, the transmission/reception schemes for Multiple Input Multiple Output

(MIMO) systems are proposed by many researchers. One of the first studies about a MIMO

system is the work presented by the author of (Winters, 1987), where the fundamental limits on

the data rate of multiple antenna systems in a Rayleigh fading environment are studied. In this

work, the capacity of the MIMO system (without considering any specific MIMO transmission

scheme) is analysed to find the maximum data rate that can be provided. The early MIMO
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works such as (van Etten, 1976) and (Winters, 1987) are further organized and developed by

the most recent papers that will be presented and discussed in this chapter. The researchers also

tried to find practical schemes to implement Multiple Input Single Output (MISO) in the down-

link of a wireless communication. MISO is also considered as a degenerated form of MIMO,

which means that receiver has access to more than one antenna, but only utilizes one of them.

The studied schemes for MISO and MIMO are classified into two main groups. The studies

included in the first group propose the optimal transmission, which cannot be implemented

practically due to the requisition of an infinite number of feedback bits (Love et al., 2008). The

other group includes detailed schemes for practical implementation. These schemes are usually

known as limited-feedback MIMO or MISO codebooks (Love et al., 2008). In this chapter, the

well-known conventional methods for optimal and limited-feedback MIMO and MISO trans-

mission/reception will be presented, the difference among them will be highlighted, and the

main problems will be addressed.

Implementing a direct wireless link between two points (point-to-point communications)

are not mostly practical or the connection is too weak to be utilized (Laneman and G.W.Wornell,

2000), (Laneman et al., 2004a). In these situations, some intermediate relay nodes are needed

to make a wireless communication between two nodes. These communications refer to point-

to-relay-to-point communications or distributed space diversity in general. This branch of

telecommunication is still in the open research area and many schemes are proposed, which

are mostly based on the newly developed schemes for MISO and MIMO communications

(Love et al., 2008). There are many applications that can employ the distributed space di-

versity transmission/reception schemes. These schemes can also be divided into two groups

as well. The first group includes optimal implementations, which is impossible to implement

practically. The other group includes the works of researchers, which proposed to implement

the distributed space diversity practically by employing limited-number of feedback bits. In the
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following, the main methods for optimal and limited-feedback distributed MIMO and MISO

networks will be compared, the difference among them will be highlighted, and the main prob-

lems will be addressed.

The concentration of this study is on the equal-gain beamforming vector design scheme

for MISO and MIMO as well as equal-gain distributed beamforming vector design for dis-

tributed MISO and MIMO system in a single-hop relay network with single-antenna relay

nodes. Searching the history, there are a few works related to the equal-gain beamforming and

distributed beamforming vector design. However, since the basic design structure of the equal-

gain and maximum ratio beamforming vectors are similar (Love et al., 2008), the main design

schemes will be highlighted in the literature review chapter.

2.1.1 System Parameters

Analyzing a new theoretically proposed algorithm for wireless communication system is a

complicated process, which requires consideration of all the employed resources (such as de-

lay in time, the amount of transmit power or occupied bandwidth) and practical imperfections

(such as error in estimation of channels or the effect of noise). There are many parameters

that are used to define the efficiency of any new systems. These parameters are utilized to

compare the performance with the performances of the existing wireless systems. As stated in

the first chapter, there are many schemes that have been proposed for the space diversity and

the distributed space diversity systems. The well-known parameters that are employed in these

studies in order to compare different systems are capacity, outage, bit/symbol error rates and

finally the complexity. The first three parameters depend on SNR; thus a system with higher

SNR is expected to have the more better capacity, outage, and bit/symbol error rate (Proakis

and Salehi, 2005). There is another parameter known as ‘”diversity order” that is common in

space diversity (Love and Heath, 2003a). In general, the diversity order calculates the branch
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of independent data channels employed by a system. For example, the diversity order of a com-

munication system with five transmit and one receive antennas is less than a system with three

transmit and two receive antennas, since the latter system implements six diversity branches.

However, it is not guaranteed that the latter one has the better bit/symbol error performance,

since the average SNR of the former can be better in some systems. The error performance

has a steady relationship with the employed resources such as the number of antennas, the

amount of power, the amount of bandwidth, and the consumed time. Since counting the er-

ror performance considering all the resources is a complicated task, most researches perform

optimization over one or two of the resources (Proakis and Salehi, 2005).

2.1.2 System Simulation

The samples of the channel and noise are derived from their distribution for analyzing the sys-

tem. Therefore, the transmission scheme only considers the instantaneous values. The error

performances are achieved by assuming the noise as a complex Gaussian random variable with

zero mean and N0/2 variance per real dimension, which are affected by the amount of aver-

age Signal to Noise Ratio (SNR), which is assumed as a variable in dB. In order to mitigate

the influence of the noise and obtain the more efficient error performances, one can simply

increase the power, or any other employed resources to achieve the required SNR at the re-

ceiver. The beamforming vector design considering the instantaneous values of the channels

such as Maximum Ratio Transmission (MRT), the Equal Gain Transmission (EGT), the Selec-

tion Diversity Transmission (SDT), and the multi-user beamforming vector can be simulated

in a similar manner. The Maximum Likelihood (ML) detectors, the Maximum Ratio Com-

bining (MRC), the Equal Gain Combining (EGC), the Selection Diversity Combining (SDC)

receivers can be simulated as the receiver of the mentioned transmitters. These transceivers

are employable when the channels are slowly fading. For fast fading channels, the transceivers

include the distribution of the noise and/or channels in order to design the signals. In this
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case the optimal signals may differ from the signals designed by the deterministic transceivers.

These transiences depend on the channel matrix’s mean and covariance feedback. The details

about how to simulate a wireless communication system and analyze the different parts is well

documented and presented in (Tranter et al., 2003).

2.2 Space Diversity

The space diversity model can be divided into three configurations as MISO, SIMO, and

MIMO. In SIMO, there is no need to employ a feedback link to convey either the channel

state information or the beamforming weight back to the transmitter (Jakes, 1974) . But, the

information about the beamforming vector must be conveyed in MISO and MIMO systems. A

feedback link can convey different types of information (Love and Heath, 2003a) as follows

1. Information about the magnitudes of the beamforming vector.

2. Information about the phase angles of the beamforming vector.

3. Information about the magnitudes and phases of the beamforming vector.

The type of feedback link determines the structure of the beamforming vector (transmission

scheme), which is a unit-norm vector. When the feedback link of type one is employed, the

magnitudes of beamforming vector components are available at the transmitter, where one or

some components can have zero magnitudes (some antennas may not transmit). A special

form of this feedback link which only selects one or a subset of antennas to transmit a symbol

is known as a Selection Diversity Transmission (SDT) or transmit antenna selection in general.

One of the earliest works of transmit antenna selection backs to 1959 in the work represented

in (Smith, 1959). This scheme only considers the electronic equipments of the transmit side

without employing a feedback link from the receiver. The new transmit antenna selection
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schemes in the MIMO jargon is followed in some papers such as (Saleh and Hamouda, 2009),

in which transmitter squires a limited-feedback link.

The second type of feedback link provides the phase angles of the beamforming vector;

therefore, there is no knowledge about how to share power among the beamforming vector

components. It requires that the unit power to be equally shared between the beamforming

vector components. This transmission is known as Equal Gain Transmission (EGT). The well-

known and accepted reference for this scheme is presented in (Love and Heath, 2003a).

The third feedback link can introduce a transmission scheme known as Maximum Ratio

Transmission (MRT), which includes EGT and SDT as well. The MRT scheme have access to

the magnitudes and phases of the beamforming vector; therefore, can form an optimal beam-

forming vector according to the current Channel State Information (CSI). The unique and well-

known work for this scheme is the work presented in (Lo, 1999). When the channels are fast

fading, transmitting the components of the instantaneous beamforming vector is not a good

solution. This is usually occurring in mobile communications, where the Doppler spread is rel-

atively large. In this case, the feedback link may convey some information about the statistical

behavior of the channels such as mean and covariance.

A combining vector, can also be designed by three reception schemes (Love and Heath,

2003a). The first reception scheme is the Maximum Ratio Combining (MRC), which em-

ploys the all channels’ phases and magnitudes to perform the optimal detection. The Equal

Gain Combining (EGC) is the second reception scheme, where the receiver has only access to

the phases of the channels. The third reception scheme is the Selection Diversity Combining

(SDC), by which receiver selects a single or a subset of antennas to capture the signals. The

earliest work about the combining schemes go back to 1959 in the work presented by (Bren-

nan, 1959). In this work three combining techniques mentioned above are examined and it is
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Figure 2.1: A Space Diversity System Model

shown that the simplest form of combining (SDC) has approximately the same performance as

an optimal combining scheme such as the MRC.

The concentration of this study is on the equal-gain transmission (As stated in (Tsai, 2010),

The equal gain transmitters have more practical importance since there is no need for com-

plicated power amplifier) and maximum ratio combining systems which requires the phase

feedback.

2.2.1 MIMO

The beamforming vector in Figure 2.1 can achieve a considerable gain if a fast feedback link

is employed. For Maximum Ratio Transmission (MRT), the feedback link conveys the infor-

mation about the magnitudes and phase angles of the optimal beamforming vector. However,

for Equal-Gain transmission (EGT), the feedback link only conveys the information about the

phase angles of the optimal beamforming vector. This scheme provides rate-1 transmission

(one symbol is transmitted in one time slot) for any number of transmit and receive antennas,

and can rapidly adapt to the channel, and change the number of transmit and receive antennas
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when necessary. The MIMO and MISO systems with optimal phase and gain feedback were

studied in (Lo, 1999),(Anderson, 2000). It has been shown that the optimal MIMO beam-

forming vector is the dominant right singular vector of the channel matrix. To determine the

right singular vector corresponding to the largest singular value, the receiver has to employ

the singular value decomposition (SVD) process (Appendix A.2.1). This vector is sent to the

transmitter by the optimal feedback link, which means that the gains and the phase angles of

the right singular vector components are available at the transmitter without any distortion.

A MIMO system with optimal phase feedback was studied in (Love and Heath, 2003a). In

that study, which presents equal gain transmission/maximum ratio combing (EGT/MRC), the

receiver employs a nonlinear optimizer to determine the optimal beamforming vector. An op-

timal feedback link conveys this vector to the transmitter without any distortion. It is claimed

that the optimal equal gain beamforming vector obtained by the nonlinear optimizer is not

unique. Consequently, this scheme has difficulty in finding the exact symbol error rates. The

presented symbol error rates in (Love and Heath, 2003a) are based on the lower bound of the

overall average signal to noise ratio (SNR). However, to compare EGT/MRC with the corre-

sponding prototype system, the exact error rates must be available. The following summarizes

the work in (Love and Heath, 2003a) and mentions the problems.

A MIMO system with Nt transmit antennas and Nr receive antennas is illustrated in Fig-

ure 2.1. The transmit symbol,s, is multiplied by the beamforming vector, w = [w1 . . .wNt ]
T ,

and the data received by the antennas, y = [y1 . . .yNr ]
T , is multiplied (inner product) by c∗ =

[c∗1 . . .c
∗
Nr
]T to obtain the data x, where vector c is the basic combining vector, (.)T denotes

transposition, and (.)∗ denotes conjugation. A precise time synchronization between the trans-

mit and receive antennas must be obtained before applying the combining vectors. The noise

term, n j, is an independent complex Gaussian random variable with zero mean and N0 variance

17



per complex dimension. This process is represented as

x = (cHHw)s+ cHn (2.1)

where (.)H denotes conjugate transposition. The transmit symbol, s, is the final form of data to

be transmitted to the receiver. This symbol may experience source coding (compression, cryp-

tography, or etc.), channel coding (repetitive coding with interleaving, Reed-Solomon coding,

Trellis coding, or etc.), or multi-carrier processing (OFDM, CDMA, or etc.) prior to transmis-

sion.

The channels must be estimated at the receiver prior to define the beamforming and comb-

ing vectors. Conveying the all channel matrix back to transmitter in order to analyse the chan-

nel matrix and find the optimal beamforming vector, is almost impractical (Love et al., 2008),

(Love et al., 2004), (Love and Heath, 2003a). The most practical way is to let receiver analyse

the channel matrix and inform transmitter about the beamforming vector.

The data x goes to the maximum likelihood (ML) detector. The ML detector selects symbol

sI if and only if

d2(cHy,sI) = d2(x,sI)≤ d2(x,su) ∀I 6= u (2.2)

where d2(a,b) is the squared Euclidean distance between the signals a and b. In other words,

csI has the least squared Euclidean distance from the signal y = (Hw)s+n. Therefore, there

are M possible combining vectors that are given as

cu = csu (2.3)

where M is the number of constellation points, u ∈ {1,2, . . . ,M}. and cu refers to the set

of possible combining vectors. The overall instantaneous receive SNR can be represented as
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follows:

γ =
εs|cHHw|2

‖cH‖2
2N0

(2.4)

where ‖(.)‖2 is the two-norm, |.| is the absolute value, and εs is the transmitted symbol’s energy.

It must be mentioned that this term cannot distinguish the average SNR of each of the receive

antennas separately. That is because the term |cHHw|2 is an instantaneous value.

2.2.2 Equal-Gain MIMO

In the equal gain transmission scheme that was presented in (Love and Heath, 2003a), which

is known as EGT/MRC scheme, the equal gain beamforming vector is found as follows. The

beamforming and basic combining vectors are unit-norm vectors and the total SNR is upper

bounded by

|cHHw|2 ≤ ‖Hw‖2
2 (2.5)

This upper bound can be achieved if c = Hw/‖Hw‖2. Therefore, the optimal equal gain beam-

forming vector w = [w1 . . .wNt ]
T = 1/

√
Nt [e jϕ1 . . .e jϕNt ]T = 1/

√
Ntϕ can be found through a

nonlinear optimization as follows:

ϕ ∈ argmax ‖Hϕ‖2ϕ∈[0,2π)Nt (2.6)

where it is claimed that ϕ is not a unique beamforming vector. This nonlinear optimization

must be repeated when the channel matrix is changed. As mentioned in (Lo, 1999), the average

SNR is bounded by

Nt |h j,i|2γ0 ≤ γ ≤ NtNr|h j,i|2γ0 (2.7)

where(.) denotes the statistical expectation. The term γ0 is chi-square distributed and γ0 =

εs/σ2
n is the average SNR in the case of the single transmission antenna. The lower bound

of the overall average SNR is accepted as a metric to assess the error performance of the
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EGT/MRC and similar schemes.

In some well-known works such as Love and Heath (2003a), (Tsai, 2010), (Tsai, 2011),

(Tsai, 2009a), (Ryan et al., 2009), (Heat and Paulraj, 1998), and (Love and Heath, 2003b), the

term e jϕ1 is also factored out to reduce the feedback bits from BNt to B(Nt − 1), where B is

the number of feedback bits assigned for each phase angle. However, this scheme distorts the

optimal beamforming vector by reducing the number of feedback bits.

Proof : This scheme factors out e jϕ1 from ϕ = e jϕ1 ϕ̃ = e jϕ1 [1e jϕ2−ϕ1 . . .e jϕNt−ϕ1 ]T , and

sends ϕ̃ to the transmitter. However, ϕi−ϕ1(2 ≤ i ≤ Nt) are only phase differences and the

transmitter requires the phase angle ϕ1to reform the original beamforming vector ϕ . Therefore,

this process deletes the valuable data ϕ1since it is not discoverable at the transmitter. Let us

assume that ϕ = e jπ/4[1e j(π−π/4)]T and the vector ϕ̃ = [1e j3π/4]T is sent to the transmitter.

However, there are infinite conditions that result ϕ2−ϕ1 = 3π/4, thus ϕ1 = π/4 and ϕ2 = π

are not known at the transmitter.

Beside this crucial problem which we will refer as phase ambiguity, the conventional design

schemes, which are based on vector calculations, introduces some other serious problems,

especially when this system is empirically installed in a real-time communications as follows:

1. Computational complexity: due to the exhaustive searching in Eq (2.6). This process

is very complex as compared to the other processes such as co-phasing. Moreover, it

consumes a lot of time at the receiver to find the optimal phase angles of the beamforming

vector. The comprehensive study about the complexity of the beamforming systems are

presented in (Leung et al., 2010). The systems based on exhaustive searching are the

most complicated systems according to the computational complexity

2. Feedback Delay: Since finding the beamforming vector angles are time-lasting, the feed-
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back reaches the transmitter after a long delay. In a slow fading channels, where the

symbol duration is comparable with the coherence time of the channel, this results in

receiving an irrelevant feedback information. In other words, the feedback delay plus

the symbol duration must not exceed the coherence time of the channel.

3. Non-adaptability: The nonlinear optimization, Eq. (2.6), performs on the channel matrix.

The complexity of this operation increases when the size of the channel matrix increases.

The receiver must perform this operation once the channel matrix has been changed.

However, there could be other occasions where only some components of the channel

matrix experience change and others remain constant. The vector based schemes do not

have any solution for this case and the whole searching process must be done again for

the new channels.

4. The average SNR is not known at the receiver. In order to assess the performance of

the system, the average SNR of the receive antennas must be available. However, the

conventional schemes have only access to the instantaneous, minimum, and maximum

average SNR.

There are some other works that propose a new design for optimal equal gain MIMO sys-

tems (Tsai, 2010), (Tsai, 2011), (Choi, 2008), (Jafar and Goldsmith, 2004), and (Love and

Heath, 2005) but again these suffer from the above mentioned problems.

The work in (Tsai, 2010), offers that the phase components of the right singular vector

corresponding to the maximum singular value of H for the MIMO/EGT design. However, this

scheme requires the information about the gains of the beamforming vector along with the

phase angles of the beamforming vector. This means that the transmitter must be informed

about the transmit antennas’ selection. Moreover, this scheme suffers the same problems as

mentioned for (Love and Heath, 2003a) specially the problem of phase ambiguity.
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The work in Tsai (2011), provides transmit antenna selection scheme for EGT/MIMO de-

sign and suffers from the phase ambiguity problem.

The other works that are mentioned in Choi (2008), Jafar and Goldsmith (2004), and-Love

and Heath (2005) studied MIMO beamforming systems employing the statistical transceivers

by conveying the mean or covariance of the channel matrix back to the transmitter via the

feedback link.

2.2.3 MISO

In a MISO system with perfect channel information at the transmitter, the optimal beamform-

ing vector is w= h∗/‖h‖2 , where h is the CNt dimensional channel vector (Roh and Rao, 2006)

and (Zheng et al., 2007a). This transmission requires a feedback link to send the phase and the

magnitudes of the beamforming vector. However, as mentioned in the equal-gain MIMO the

first phase component of the beamforming vector is factored out, which causes the beamform-

ing vector to be distorted.

From another point of view, MISO was known as a special form of MIMO, where receiver

only utilizes one of the multiple receive antennas and neglects the other receive antennas in

detection. Therefore several works are conducted to examine the receive antenna selection in

the context of MIMO system such as the works presented in (Sanayei and Nosratinia, 2004),

Shen and Ghrayeb (2006), Sun et al. (2012), and (Gorokhov et al., 2003).

In the work presented in (Shen and Ghrayeb, 2006), it is assumed that 1) for a given Nr re-

ceive antennas, the receiver selects the best antennas that maximize the capacity, 2) the channel

state information is perfectly known at the receiver, but not at the transmitter, 3) the subchan-

nels fade independently, and 4) the fading coefficients change very slowly such that averaging

with respect to these coefficients is not possible. This work shows that the proposed scheme
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preserves diversity order. The authors of (Sun et al., 2012) implemented a MIMO system in the

frequency band of 2.4 GHz and showed that receive antenna selection can increase the capacity

of the system. The authors in (Gorokhov et al., 2003) developed selection algorithms for max-

imizing the channel capacity. One algorithm in particular allows tractable statistical analysis

of performance. The authors illustrated that the capacity of the system through receive antenna

selection is statistically lower bounded by the capacity of a set of parallel independent single

input multiple output (SIMO) channels, each with selection diversity. This provides the crucial

step in proving the next main result: The diversity order that is achievable through the antenna

selection is the same as that of the full system. In general, receive antenna selection does not

need any feedback, since this process is done independently at the receiver. Although the re-

ceive antenna selection does not need to employ feedback, the beamforming vector design at

the transmitter still requires some sort of feedback from the receiver.

The authors in (Blum et al., 2009), presented the joint transmit and receive antenna selec-

tion. In this study a MISO system is generated by selecting a subset of transmit antennas along

with an antenna at the receive side. The authors of (Blum et al., 2009) have followed the selec-

tion since antenna selection is a low-complexity low-cost alternative for implementing MIMO

systems. It was proposed to trade off system hardware cost and system performance by keeping

the same number of antennas and using a fewer RF chain. In this paper (Blum et al., 2009),

the authors considered the joint transmit and receive antenna selection capacity-maximization

problem in MIMO systems. The optimal joint transmit and receive antenna selection should

be achieved by exhaustively searching all the transmit and receive antenna subsets, its applica-

bility is limited due to the high computational complexity. The authors proposed suboptimal

algorithms decoupled the selection into transmit antenna selection and receive antenna selec-

tion, and exhibit a performance loss compared to the optimal method. They demonstrated that

their selection scheme performs very close to the optimal exhaustive search method.
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Up to now, there is no study about the transmission scheme where the feedback link only

conveys the phase angles of w. The nearest work is the work mentioned in (Tsai, 2009a)

which compares the performance of the MRT and EGT, but again follows the phase ambiguity

as mentioned in the previous subsection. Moreover, the MRT (Maximum Ratio Transmission)

presented in (Brennan, 1959) suffers from the same problems pointed out for equal-gain MIMO

scheme in the previous subsection. For example the amount of the average SNR of the receive

antenna is not known in this work, or the same searching process must be performed to find the

MRT vector.

There are some other works (Zheng et al., 2007a), (Vagenas et al., 2011), Vu (2011),

(Vazquez et al., 2012), (Slim et al., 2011), (Baik et al., 2012), and (Jung et al., 2011) about in-

terference MISO, mutlti-user MISO (MU-MISO), or broadcast MISO which will be described

in brief.

The paper (Zheng et al., 2007a) has developed a general framework for the analysis of

multiple-antenna systems with finite-rate feedback from a source coding perspective. The prob-

lem was formulated as a general fixed-rate vector quantization problem with side information

available at the encoder but unavailable at the decoder. The tight lower and upper bounds of

the average asymptotic distortion and sufficient conditions for the achievability of the distortion

bounds were provided. The utility of the framework was demonstrated by using the proposed

asymptotic distortion analysis to analyze a finite-rate feedback MISO beamforming system

over i.i.d. Rayleigh flat-fading channels. Numerical and simulation results were presented and

further confirmed the accuracy of the proposed asymptotic distortion bounds. In summary, this

study tries to find the optimal MISO beamforming vector employing high resolution vector

quantization codebooks, but there is no idea about the optimal and limited-feedback equal-gain

MISO beamforming vector. Moreover, the phase ambiguity problem is also prevailed in this

paper.
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