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REKA BENTUK OPTIMUM CARTA X  PENSAMPELAN GANDA DUA 
BERDASARKAN PENGANGGARAN PARAMETER 

 

ABSTRAK 
  

Carta kawalan yang dilihat sebagai alat yang paling berkuasa dan paling mudah 

dalam Kawalan Proses Berstatistik (SPC) digunakan secara meluas dalam industri 

pembuatan dan perkhidmatan. Carta X  pensampelan ganda dua (DS) mengesan 

anjakan min proses yang kecil hingga sederhana dengan berkesan, di samping 

mengurangkan saiz sampel. Aplikasi lazim carta X  DS biasanya disiasat dengan 

anggapan bahawa parameter-parameter proses adalah diketahui. Walau 

bagaimanapun, parameter-parameter proses biasanya tidak diketahui dalam aplikasi 

praktikal; justeru, parameter-parameter ini dianggarkan daripada data Fasa-I yang 

terkawal. Dalam tesis ini, kesan penganggaran parameter terhadap prestasi carta X  

DS diperiksa. Dengan mempertimbangkan penganggaran parameter, sifat-sifat 

panjang larian carta X  DS diperoleh. Oleh sebab bentuk dan kepencongan taburan 

panjang larian berubah dengan magnitud anjakan min proses, bilangan sampel Fasa-

I dan saiz sampel, ukuran prestasi yang digunakan secara meluas, iaitu purata 

panjang larian (ARL), tidak harus digunakan sebagai ukuran tunggal prestasi carta. 

Oleh hal yang demikian, ARL, sisihan piawai panjang larian (SDRL), median 

panjang larian (MRL), persentil taburan panjang larian dan purata saiz sampel (ASS) 

disyorkan untuk menilai carta X  DS berdasarkan panganggaran parameter yang 

dicadangkan ini dengan berkesan. Idea utama tesis ini terdiri daripada cadangan 

empat reka bentuk optimum yang baru untuk carta X  DS berasaskan ARL dan 

MRL dengan parameter-parameter yang dianggarkan. Secara khususnya, reka 

bentuk optimum baru yang dicadangkan ini ialah carta X  DS berasaskan ARL 
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dengan parameter-parameter yang dianggarkan untuk meminimumkan (i) ARL 

terluar kawal ( 1ARL ) dan (ii) ASS terkawal ( 0ASS ), serta carta X  DS berasaskan 

MRL dengan parameter-parameter yang dianggarkan untuk meminimumkan (iii) 

MRL terluar kawal ( 1MRL ) dan (iv) 0ASS . Tambahan pula, bagi memudahkan 

pelaksanaan, tesis ini membekalkan parameter-parameter carta optimum yang direka 

khas untuk carta X  DS berdasarkan penganggaran parameter. Parameter-parameter 

carta optimum diperoleh berdasarkan bilangan sampel Fasa-I yang biasanya 

digunakan dalam amalan. Program-program pengoptimuman untuk reka bentuk 

optimum carta X  DS berdasarkan penganggaran parameter juga dibekalkan dalam 

tesis ini. Program-program pengoptimuman ini memudahkan pengamal dalam 

menentukan parameter-parameter carta optimum untuk situasi yang dikehendaki 

oleh mereka, diikuti dengan penggunaan carta optimum yang dicadangkan dengan 

serta-merta untuk data mereka sendiri. Selain itu, garis panduan empirikal tentang 

pembinaan carta optimum X  DS berdasarkan penganggaran parameter diberikan 

dalam tesis ini.   

 

 

 

 

 

 

 

 

 

 



xxxiii 
 

OPTIMAL DESIGNS OF THE DOUBLE SAMPLING X  CHART BASED 
ON PARAMETER ESTIMATION 

 

ABSTRACT 
  

Control charts, viewed as the most powerful and simplest tool in Statistical Process 

Control (SPC), are widely used in manufacturing and service industries. The double 

sampling (DS) X  chart detects small to moderate process mean shifts effectively, 

while reduces the sample size. The conventional application of the DS X  chart is 

usually investigated assuming that the process parameters are known. Nevertheless, 

the process parameters are usually unknown in practical applications; thus, they are 

estimated from an in-control Phase-I dataset. In this thesis, the effects of parameter 

estimation on the DS X  chart’s performance are examined. By taking into 

consideration of the parameter estimation, the run length properties of the DS X  

chart are derived. Since the shape and the skewness of the run length distribution 

change with the magnitude of the process mean shift, the number of Phase-I samples 

and sample size, the widely applicable performance measure, i.e. the average run 

length (ARL) should not be used as a sole measure of a chart’s performance. For this 

reason, the ARL, the standard deviation of the run length (SDRL), the median run 

length (MRL), the percentiles of the run length distributions and the average sample 

size (ASS) are recommended to effectively evaluate the proposed DS X  chart with 

estimated parameters. The key idea of this thesis consists of proposing four new 

optimal designs for the ARL-based and MRL-based DS X  chart with estimated 

parameters. In particular, these newly developed optimal designs are the ARL-based 

DS X  chart with estimated parameters obtained by minimizing (i) the out-of-control 

ARL ( 1ARL ) and (ii) the in-control ASS ( 0ASS ), as well as the MRL-based DS X  
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chart with estimated parameters obtained by minimizing (iii) the out-of-control 

MRL ( 1MRL ) and (iv) 0ASS . Furthermore, for the ease of implementation, this 

thesis provides specific optimal chart parameters specially designed for the DS X  

chart with estimated parameters, based on the number of Phase-I samples commonly 

used in practice. Crucially, optimization programs for optimally designing the DS 

X  chart with estimated parameters are available in this thesis. These optimization 

programs facilitate the practitioners in determining the optimal chart parameters for 

their desired situations, followed by applying the proposed optimal chart to their 

own data instantaneously. Also, empirical guidelines on the construction of the 

optimal DS X  chart with estimated parameters are given in this thesis.  
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CHAPTER 1 
INTRODUCTION 

 

1.1 Statistical Process Control (SPC) 

 Customers’ satisfaction is very important in the world today. Improving 

quality and productivity of a production process are the key factors leading to a 

successful and competitive business. Statistical Process Control (SPC) is a collection 

of powerful statistical techniques that is used to reduce variability in the key 

parameters, to ensure improvement in the process performance and to maintain a 

higher quality control in the production process (Smith, 1998). Garrity (1993) 

claimed that SPC is not only the better way, but also the only way of running a 

thriving business. The attractiveness of SPC is rooted in its valuable tools that lead 

to many process improvements and thus, allowing the manufacturing of higher 

quality and uniformity outputs with fewer defects to rework and less scrap. SPC also 

enables a significant reduction in machine downtime, an increase in profit, a lower 

average production cost, as well as an improved competitive position (Smith, 1998). 

In view of these appealing properties, SPC is adopted to solve problems in 

production, inspection, engineering, service, management and accounting. 

 The existence of variations in any manufacturing processes is inevitable. The 

process variations can be classified into two categories, i.e. common causes of 

variation and assignable causes of variation. Gitlow et al. (1995) stated that the 

common causes of variation are inherent in a process, whereas the assignable causes 

of variation lie outside the system and thus, it is not part of the chance causes. In 

addition, Shewhart (1931) recognized that the common causes of variation are 

uncontrollable and are due to unidentifiable sources; hence, such causes cannot be 

rectified from the process without very expensive measures. Contrarily, the 
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assignable causes of variation arise from identifiable sources, which can be 

systematically detected and eliminated from the process. There are three sources 

contributing to this variation, which comprise defective raw materials, operator 

errors, as well as improper adjustments of machines (Montgomery, 2009). A process 

is in a state of statistical control if only common causes of variation are present in 

the process. If the process is operating under both the common and assignable 

causes, it is considered unstable and out of statistical control (Gupta & Walker, 

2007). 

 SPC consists of seven important statistical tools which are used to achieve 

process stability and improve process capability by reducing process variations. 

These tools are known as the “Magnificent Seven”, which include the Pareto chart, 

check sheet, cause-and-effect diagram, defect concentration diagram, histogram, 

control chart and scatter diagram (Montgomery, 2009). Among these tools, the 

control chart is an excellent and irreplaceable process monitoring technique adopted 

in manufacturing and service processes, for keeping a process predictable (see 

Thompson & Koronacki, 2002; Gupta & Walker, 2007; Montgomery, 2009).  

A control chart is a graphical tool for controlling, analyzing and 

understanding a process; thus, it assures the production of conforming products by 

that particular process (Ledolter & Burrill, 1999). It is a time-sequence plot of 

crucial product characteristics with “decision lines” added. Moreover, Ryan (2000) 

stated that statistical principles are employed in the construction of a control chart. 

Specifically, it is based on some statistical distributions. Control charts are classified 

into two main types, i.e. variables control charts and attributes control charts. A 

variables control chart is used to monitor characteristics that can be expressed in 

terms of continuous values and numerical measurements. This type of control chart 
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allows for a continuous reduction in process variations and a never-ending process 

improvement (Gitlow et al., 1995). An attribute control chart, on the other hand, is 

used to monitor characteristics that are in the form of discrete counts. Therefore, the 

inspected items are categorized as either conforming or nonconforming units. This 

type of control chart is generally used for defects prevention so that a zero-defects 

process will be achieved (Gitlow et al., 1995). 

Knowledge about process variations is the foundation of a control chart’s 

analysis. To reduce variation in a process and to attain a stable process, the common 

steps in constructing a control chart in practice can be illustrated as follows (Xie et 

al., 2002):  

Step 1. Collect a sequence of measurements representing a quality characteristic 

from a process over time. 

Step 2. Estimate the process mean   and set it as the center line CL of the chart. 

Step 3. Estimate the process standard deviation  . 

Step 4. Establish the upper control limit UCL and the lower control limit LCL, 

based on the “  3” standard deviation width from the CL. 

Step 5. Plot the sequence of measurements on the chart and then connect the 

consecutive points with straight-line segments. 

Step 6. If any sample point falls outside the control limits, the process is classified 

as out-of-control. Then find and eliminate the assignable cause(s) 

corresponding to this behaviour. 

Step 7. Revise and modify the CL, UCL and LCL, if necessary. Then reconstruct 

the revised chart. 

Step 8. Continue plotting whenever a new measurement is acquired. 



4 
 

 In practice, control charts are generally divided into Phase-I and Phase-II 

applications. In Phase-I analysis, control charts are employed retrospectively to 

analyze a set of collected process data, define the in-control state of the process and 

assess process stability. Once an in-control reference Phase-I dataset is ensured, the 

process parameters are estimated from this dataset. In Phase-II analysis, control 

charts are adopted prospectively to detect any changes in the process being 

monitored. It must be emphasized that process monitoring is the main goal of Phase-

II analysis so that an out-of-control process can be brought into statistical control 

(Jensen et al., 2006; Montgomery, 2009). In the literature, most of the SPC control 

charts are used for Phase-II process monitoring, which is also the focus of this 

thesis. 

 

1.2 Problem Statement 

 Traditionally, the evaluation and development of Phase-II control charts are 

based on the indispensable assumption of known parameters. In practical 

applications, it is rarely the case that the process parameters are known to the 

practitioners and hence, they are usually estimated from an in-control reference 

Phase-I dataset. When parameters are estimated based on a small number of Phase-I 

samples, the variability of the estimators gives rise to some undesirable and 

unexpected control chart’s performance. Quesenberry (1993) pointed out that a chart 

with parameters estimated from only a few number of Phase-I samples will produce 

a greater number of false alarms and thus, ultimately resulting in a higher production 

cost. Therefore, there is a need for more research in the area of control charts with 

estimated parameters as identified by Woodall and Montgomery (1999) and Jensen 

et al. (2006). 
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 Hawkins et al. (2003) hypothesized that the charts with a desirable property 

of being sensitive to smaller shifts are more severely affected by parameter 

estimation. In view of this fact, Jensen et al. (2006) accentuated that future research 

is essential to be conducted on the development of new charting procedures for these 

types of control charts with estimated parameters. The DS X  chart is eminent for its 

remarkable improvement in statistical efficiency, in terms of sensitizing the 

detection of small and moderate mean shifts while reducing the sample size, thus 

leading to the reduction of sampling and inspection costs. To the best of the author’s 

knowledge, all the existing literature on the DS type charts depend on the 

fundamental assumption of known process parameters. To solve the above 

problems, it is vital to develop new theoretical and optimization methods for the DS 

X  chart, correctly accounting for parameter estimation.  

 It is known that when parameters are estimated, the run length no longer 

follows a geometric distribution, but its distribution is highly right-skewed. In this 

regard, the dependence on the average run length (ARL), as a sole measure of 

performance of a control chart with estimated parameters, has been subjected to 

criticisms in recent years (see Quesenberry, 1993; Jones et al., 2004, Jensen et al., 

2006; Bischak & Trietsch, 2007). Yet, to date, there has been little literature 

focusing on other performance measures in evaluating a control chart with estimated 

parameters. Thus, for a thorough study on the effects of parameter estimations on a 

control chart’s performance, it is crucial that various performance measures, 

including the ARL, standard deviation of the run length (SDRL), median run length 

(MRL), percentiles of the run length distribution and average sample size (ASS), are 

used to effectively evaluate the control charts with estimated parameters. 
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 In real-world applications, quality practitioners are interested to use only a 

small number of Phase-I samples to estimate the process parameters and proceed to 

the Phase-II process monitoring at an earlier stage. For optimum and effective 

implementation, practitioners also desire to find out the control chart’s optimal 

parameters. In order to establish a more economically feasible process monitoring, it 

is important to develop optimization algorithms for a control chart with estimated 

parameters, especially devoted to the practical number of Phase-I samples. 

 

1.3 Objectives of the Thesis 

 The primary objectives of this thesis are as follows: 

(i) To derive the run length properties of the DS X  chart with estimated 

parameters. 

(ii) To examine the impact of parameter estimation on the performances of the 

ARL-based and MRL-based DS X  chart. 

(iii) To develop two new optimization algorithms by minimizing (a) the out-of-

control average run length ( 1ARL ) and (b) the in-control average sample 

size ( 0ASS ), for the ARL-based DS X  chart with estimated parameters. 

(iv) To develop two new optimization algorithms by minimizing (a) the out-of-

control median run length ( 1MRL ) and (b) the 0ASS , for the MRL-based DS 

X  chart with estimated parameters. 

(v) To provide new optimal-parameter combinations, for both the ARL-based 

and MRL-based DS X  chart with estimated parameters, particularly 

dedicated to the number of Phase-I samples used in industries. 
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(vi) To provide some empirical guidelines for quality practitioners to construct 

the optimal ARL-based and MRL-based DS X  chart with estimated 

parameters. 

 Note that the optimal designs of the DS X  chart with estimated parameters 

for minimizing 0ASS  require the application of some properties of the Shewhart X  

chart with estimated parameters. Because of this reason, the secondary objectives of 

this thesis are stated as follows:  

(i) To derive the run length properties of the Shewhart X  chart with estimated 

parameters. 

(ii) To provide new charting constants for the ARL-based and MRL-based 

Shewhart X  chart with estimated parameters. 

(iii) To develop new design models for both the ARL-based and MRL-based 

Shewhart X  chart with known and estimated parameters. These design 

models are part of the optimal designs of the ARL-based and MRL-based DS 

X  charts with estimated parameters for minimizing 0ASS . 

 

1.4 Organization of the Thesis 

 Chapter 1 presents an overview of SPC, as well as highlights the problem 

statement and objectives of this research. In Chapter 2, we turn to the literature 

review on the development of the DS type charts and control charts with estimated 

parameters. The operation of the DS X  chart is briefly outlined in this chapter as 

well. Short explanations on the intuitive appealing measures of a control chart’s 

performance, are also provided. Additionally, Chapter 2 demonstrates the run length 

properties of the univariate control charts with known parameters. It introduces three 



8 
 

main control charts, including the Shewhart X  chart, the DS X  chart and the 

EWMA X  chart. 

 Chapter 3 details the derivations of the run length properties of the Shewhart 

X  and DS X  charts with estimated parameters. In Chapter 4, the designs of the 

Shewhart X  chart with known and estimated parameters are suggested. Note that 

this chapter is mainly aimed at facilitating the optimal designs of the DS X  chart 

with estimated parameters by minimizing 0ASS , which will be detailed in Chapters 

5 and 6.  

 The ARL-based and MRL-based DS X  charts with estimated parameters are 

presented in Chapters 5 and 6, respectively. The comparative studies of these charts 

for both the cases with known and estimated parameters are discussed. When 

estimates are used in place of known parameters, the problems for the bewildering 

measurement of ARL as the sole criterion of the DS X  chart, is shown numerically 

and graphically in Chapter 6. Chapter 5 focuses on the two new optimal designs of 

the ARL-based DS X  chart with estimated parameters, for minimizing (a) 1ARL  

and (b) 0ASS ; whereas Chapter 6 focuses on another two new optimal designs of the 

MRL-based DS X  chart with estimated parameters, for minimizing (a) 1MRL  and 

(b) 0ASS . By considering the number of Phase-I samples used in practice, specific 

optimal-parameter combinations are tabulated in both Chapters 5 and 6. To illustrate 

a successful application of the DS X  chart with estimated parameters, both chapters 

conclude with an example. Finally, the foremost contributions of this research and 

some recommendations for future research are summarized in Chapter 7. 

 Numerous programs and optimization programs written in the ScicosLab 

software, Statistical Analysis Software (SAS) and MATLAB software are provided 
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in Appendices A to G. These computer programs are used to compute the run length 

properties (ARLs, SDRLs, MRLs, percentiles of the run length distribution and 

ASSs) and the optimal parameters of the charts under study, i.e. the DS X  chart, the 

Shewhart X  chart and the EWMA X  chart. Also, additional results for the DS X  

chart with estimated parameters are tabulated in Appendices D to G.  
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CHAPTER 2 
LITERATURE REVIEW 

 

2.1 Introduction 

 In this chapter, we review the relevant literature on this study. Despite the 

availability of advanced computer systems, the Shewhart X  chart is still extensively 

used in most of today’s manufacturing industries (Yang et al., 2012). Nevertheless, 

it is relatively insensitive towards small and moderate process mean shifts. The DS 

type charts are widely investigated in the literature as alternative methods to 

improve the Shewhart type charts’ performances. The development of the DS type 

charts is discussed in Section 2.2. In addition, the operation of the DS X  chart is 

demonstrated in Section 2.3. 

 As aforementioned in the problem-statement section of Chapter 1, the 

statistical properties of the control charts with estimated parameters are receiving 

growing attention among researchers. The related studies on control charts with 

estimated parameters are discussed in Section 2.4. 

 Section 2.5 defines and provides some explanations on the ARL, SDRL, 

percentiles of the run length distribution, MRL and ASS, which are used as the 

performance or design criteria of a control chart. In Section 2.6, the run length 

properties of three univariate control charts with known parameters are provided. 

These charts include the Shewhart X  chart, the DS X  chart and the EWMA X  

chart.  

 

2.2 Development of the Double Sampling (DS) Type Control Charts 

 Croasdale (1974) first introduced the DS X  chart, where rejection is 

prohibited at the first sample. The first sample provides information as to whether 
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the second sample needs to be taken, but the process is then sentenced based on only 

the information provided by the second sample. By applying the concept of double 

sampling plans, Daudin (1992) suggested a modified DS X  chart, where the 

information from both samples is used to determine the out-of-control decision at 

the combined-sample stage. This DS procedure incorporates both the ideas of the 

variable sampling interval (VSI) and variable sample size (VSS). Unlike the VSI 

procedure, two successive samples are taken in the DS procedure without any 

intervening time and thus, both the first and second samples are taken from the same 

population. Both Croasdale (1974) and Daudin (1992) suggested the minimization 

of the 0ASS . Irianto and Shinozaki (1998) showed that Daudin’s procedure is better 

than that of Croasdale’s. 

 The advantage of the DS X  chart is that it maintains the simplicity in 

computing the Shewhart X  chart’s statistics, while improving the effectiveness in 

process monitoring without increasing the sample size (Torng et al., 2009a). Daudin 

(1992) and Costa (1994) showed that some of the properties of the DS chart are 

superior to those of the Shewhart, EWMA, CUSUM, VSI and VSS charts. 

Compared with the Shewhart X  chart, Daudin (1992) concluded that the DS X  

chart has a notable gain in statistical efficiency, for detecting small and moderate 

mean shifts. Furthermore, the sample size dramatically decreases to nearly 50% 

when the process is in-control, via the use of the DS X  chart. As stated by Daudin 

(1992), the DS X  chart outperforms the VSI X  chart when the time needed to 

collect and measure the samples can be neglected. Moreover, the DS X  chart 

surpasses both the EWMA and CUSUM charts in detecting moderate and large 

process mean shifts (Daudin, 1992). Although both the EWMA and CUSUM charts 

are more sensitive to detect small process mean shifts, the control procedures of 
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these two charts are not as simple as that of the DS X  chart (Torng et al., 2010). 

When the detection of small and moderate mean shifts are the goal of a process 

monitoring, Costa (1994) pointed out that the sample size of the DS X  chart is more 

economical than that of the VSS X  chart. In addition, when the incoming quality is 

either excellent or poor, the DS plans have an attractiveness of a lower total sample 

size and thus, save costs. This is because the lot is either accepted or rejected on the 

first sample (Ledolter & Burrill, 1999; Gupta & Walker, 2007). Therefore, Torng et 

al. (2009b) stated that the DS scheme is an appropriate choice for process 

monitoring with destructive testing or higher inspection costs. 

 Furthermore, the DS chart is a good option when greater efficiency is 

required for small shifts and protection against large shifts is also vital (He & 

Grigoryan, 2002). By virtue of the merits and motivation in using the DS scheme, 

there is a rich literature evolving around the DS type charts. Research works on the 

DS scheme can be categorized into the DS X  type, DS S type and other DS type 

control charts. 

 

2.2.1 DS X  Type Control Charts  

 Concerning the DS X  type control charts, Irianto and Shinozaki (1998) 

developed a statistical design model to minimize the 1ARL . By employing the 

optimization model proposed by Daudin (1992), He et al. (2002) designed the DS 

and triple sampling (TS) X  charts with genetic algorithm. Hsu (2004) commented 

on the work done by He et al. (2002) as the latter only considered the 0ASS . When 

comparing various charts’ performances, Hsu (2004) stated that the ASS for both the 

in-control and out-of-control situations should be taken into consideration.  
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 Carot et al. (2002) presented a combined DS and VSI X  chart, called the 

DSVSI X  chart. Due to the effectiveness of this DSVSI X  chart, for both small 

and moderate mean shifts, Lee et al. (2012b) studied the economic design of this 

chart. Costa and Claro (2008) applied the DS X  control chart to monitor a first-

order autoregressive moving average (ARMA (1, 1)) process model. They found that 

the DS X  chart is quicker in detecting process mean shifts when the correlation 

levels within subgroup are small to moderate.  

 The DS X  chart and the DSVSI X  chart under non-normality were studied 

by Torng and Lee (2009) and Torng et al. (2010), respectively. The performances of 

these two charts were compared with that of the Shewhart X  chart and the variable 

parameters (VP) X  chart. The comparison results revealed that the DS X  chart’s 

performance is as good as the VP X  chart and it is more sensitive toward small 

mean shifts than the Shewhart X  chart (Torng & Lee, 2009); whereas, the DSVSI 

X  chart has the best overall performance for monitoring small mean shifts (Torng et 

al., 2010). By means of genetic algorithm, Torng et al. (2009a) and Torng et al. 

(2009b) developed economic design models of the DS X  chart, for independent and 

correlated data, respectively.  

 Irianto and Juliani (2010) proposed a method to estimate the DS X  chart’s 

limits by optimizing the risks of the producer and customer. With the 

implementation of this optimization procedure, they claimed that there is a higher 

capability in producing an out-of-control signal. Using the Markov chain approach, 

Costa and Machado (2011) compared the performances of the VP X  and DS X  

charts, in the presence of correlation. The synthetic DS X  chart suggested by Khoo 

et al. (2011) provides a significant improvement in the detection speed, compared 
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with the synthetic X , DS X  and EWMA X  charts, though the detection of small 

shifts is better accomplished with the EWMA X  chart. 

 

2.2.2 DS S Type Control Charts 

 The relevant literature on the DS S control charts was studied by He and 

Grigoryan (2002) for agile manufacturing. Agile manufacturing refers to an 

operational strategy that enables a quick respond to customer’s needs and market 

changes, while still controlling the quality and costs of the production process. He 

and Grigoryan (2003) enhanced their earlier work by developing an improved DS S 

chart that does not require the normality assumption of the sample standard 

deviations. Optimization models to minimize the 0ASS  using genetic algorithm 

were constructed in both papers. When the aim is to detect small standard deviation 

shifts, they exhibited that the DS S chart and the improved DS S chart are more 

economically preferable to the traditional S chart. Hsu (2007) claimed that the 

conclusion made by He and Grigoryan (2002) is questionable since the out-of-

control average sample size  1ASS  is not taken into consideration when comparing 

the performances of the DS S chart with the Shewhart S chart. To circumvent this 

problem, Lee et al. (2010) modified the design model of He and Grigoryan (2003) 

and applied this new suggested model on the destructive testing process. They found 

that the DS S chart has extraordinary performance for detecting the shifts in the 

process standard deviation and reducing the sample size. To improve the efficiency 

in the detection of small standard deviation shifts, Lee et al. (2012a) extended the 

idea of Carot et al. (2002) to propose the DSVSI S chart. 

 

 



15 
 

2.2.3 Other DS Type Control Charts 

 Focusing on other DS type control charts, He and Grigoryan (2006) 

constructed a joint statistical design of the DS X  and S charts for simultaneously 

monitoring the mean and variability. The proposed joint DS chart has a better ARL 

performance for all ranges of shifts, compared to the joint standard, two-stage 

sampling and VSS X  and R charts. In comparison with the combined EWMA and 

CUSUM schemes, as well as the omnibus EWMA scheme, the proposed scheme 

outperform these schemes over certain shift ranges. Furthermore, the DS np chart for 

attributes suggested by Rodrigues et al. (2011), offers a faster detection of increases 

in the process fraction nonconforming. 

 

2.3 The Operation of the Double Sampling X  Chart 

 Without loss of generality, let us assume that the measurements of a quality 

characteristic Y taken from a Phase-II process, are independent and follow an 

identical normal  2
0 0,  N    distribution, where 0  and 2

0  are the in-control mean 

and variance, respectively. The operation of the Daudin’s (1992) DS X  chart can be 

viewed as a two-stage Shewhart X  chart, where the second sample will only be 

observed if the first sample falls within the warning regions of the chart’s first-

sample stage.  Let 1 0L   and 1L L  be the warning and control limits, based on the 

first sample, respectively; whereas 2 0L   is the control limit, based on the 

combined samples. Then the intervals in Figure 2.1 are defined as  1 1 1,  I L L  , 

 2 1,  I L L     1,  L L ,    3 ,  ,  I L L       and  4 2 2,  I L L  . With the 

aid of the DS X  chart’s graphical view in Figure 2.1, the operation of the chart is 

explicitly illustrated as follows:  



16 
 

 

 

 

 

 

 

 

Figure 2.1. Graphical view of the DS X  chart’s operation 
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Step 6. Compute the combined-sample mean 1 1 2 2

1 2

i i
i

n Y n Y
Y

n n





 at the ith sampling 

time. 

Step 7. If 
 0 1 2

4
0

i
i

Y n n
Z I




 
  , the process is proclaimed as in-control; 

otherwise, the process is declared as out-of-control and the control flow 

proceeds to Step 8. 

Step 8. Issues an out-of-control signal at the ith sampling time, where corrective 

actions are taken to investigate and eliminate the assignable cause(s). Then 

return to Step 2. 

 

2.4 Control Charts with Estimated Parameters 

 In recent years, a great deal of research interest has arisen in the area of 

control charts with estimated parameters. A thorough literature review on the impact 

of parameter estimation for different types of control charts’ properties can be found 

in Jensen et al. (2006). Research works on the control charts with estimated 

parameters can be grouped into the X  type, individuals X type, dispersion type, 

EWMA and CUSUM type, as well as attribute type control charts.   

 

2.4.1 X  Type Control Charts  

 Many published SPC literature focuses on the X  type control charts. Among 

these research works, an influential paper was presented by Quesenberry (1993). 

From his comprehensive simulation study, he recommended the use of 
400

1
m

n



 

Phase-I samples, for the X  chart with a sample size n, so that the chart performs 

similarly like the corresponding X  chart with known parameters. Compared with 
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the known-parameter case, he also summarized that the values of the in-control and 

out-of-control ARLs and SDRLs are larger for the case of estimated parameters. 

Furthermore, Quesenberry (1993) observed that a higher in-control ARL  0ARL  

for the case of estimated parameters is not an indication of a better performance, 

because there is an increased number of short run lengths and extremely long run 

lengths in such a case. Del Castillo (1996a) showed that improved run length 

performance of the X  chart can be obtained by using the pooled standard deviation 

 pS  to estimate the control limits, rather than the average sample range  R  and 

the average standard deviation  S . Del Castillo (1996b) provided a C program to 

compute the run length distribution and ARL of the X  chart with estimated process 

variance. 

 By investigating the X  chart based on the estimators R , S  and the adjusted 

version of pS ,  Chen (1997) concluded that for small process shifts, the out-of-

control performance of the X  chart is significantly affected by parameter estimation 

compared to that of large shifts. Also, the effects of parameter estimation are greater 

on the SDRL than the ARL; hence, increasing the sample size n has a favorable 

effect of getting the SDRL to be closer to the corresponding SDRL of the known-

parameter case (Chen, 1997). Chakraborti (2000) evaluated the expressions for the 

exact run length distribution and the ARL of the Shewhart X  chart using simulation. 

He agreed with the conclusions presented by Chen (1997), but he recommended a 

much larger number of Phase-I samples m, i.e. around 500 to 1000, for the Shewhart 

X  chart with a sample size n  5.  
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 Wu et al. (2002) studied seven robust estimators of 0  via simulation, to 

obtain the control limits for the Shewhart X  chart. These estimators include the pS , 

S , R , an estimator based on the absolute deviations from the mean and three 

estimators based on deviations from the median. For normally distributed data, they 

found that the ARL performance for all the seven estimators is comparable to one 

another. By means of the conditional probability method, Yang et al. (2006) derived 

the analytical formulae for calculating the false signal rate (FSR) and then studied 

the effects of parameter estimation on the FSR for the X  chart with supplementary 

rules.  

 The performance of the X  chart with estimated parameters is commonly 

studied from the perspective of the ARL. Since the run length distribution is 

generally highly skewed, Chakraborti (2007), and Bischak and Trietsch (2007) 

argued that the ARL is an ambiguous representation of the run length. Chakraborti 

(2007) suggested the use of the percentiles of the run length distribution, including 

the median (MRL) and the interquartile range (IQR) to examine the entire run length 

distribution of the Shewhart X  chart with estimated parameters. Meanwhile, 

Bischak and Trietsch (2007) suggested working with the rate of false signals, which 

focuses on the behavior of the X  chart with estimated limits during extended use. 

 In view of the additional variability of the estimates on the process, it is now 

well accepted that accurate parameter estimation is vital to a Phase-II control chart’s 

performance. Therefore, by taking the number of Phase-I samples m and sample size 

n into account, some authors have proposed new or optimal charting parameters for 

designing the X  type control charts with estimated parameters. Their works include 

the Shewhart X  chart (Nedumaran & Pignatiello, 2001; Chakraborti, 2006), runs 
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rules X  chart (Zhang & Castagliola, 2010), synthetic X  chart (Zhang et al., 2011), 

VSI X  chart (Zhang et al., 2012) and VSS X  chart (Castagliola et al., 2012). 

 

2.4.2 Individuals X  Type Control Charts 

 Concerning individuals X control chart, Quesenberry (1993) recommended 

using about 300 observations to estimate control limits, which will behave like the 

known limits. When parameters are estimated, the recommended sample size for the 

individuals X chart is much higher than the number of samples required for the X  

chart. Rigdon et al. (1994) suggested using the average moving range  MR , which 

is a short-term estimate of the process variability, to estimate the standard deviation 

of a process, as opposed to the long-term estimate of variability, such as the sample 

standard deviation  S . Similar conclusions to Quesenberry (1993) were obtained 

by Rigdon et al. (1994), but they recommended a smaller sample size, i.e. at least 

100 observations are required in a Phase-I process. 

 Maravelakis et al. (2002) examined the individuals charts with estimated 

parameters for process dispersion. When parameters are estimated, the simulated 

results reveal that the marginal in-control and out-of-control ARL and SDRL values 

are higher than that of the known-parameter case. When detecting an increase in 

variation, they suggested to collect at least 300 Phase-I observations, that is 

consistent with the sample size recommended by Quesenberry (1993).  

 Albers and Kallenberg (2004a) considered using exceedance probabilities 

and the ARL as the performance criteria to evaluate the individuals chart. They 

suggested applying the corrected control limits to reduce the requirement on the 

number of Phase-I samples and to obtain a sufficiently small exceedance probability. 
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Their works were extended by Albers and Kallenberg (2004b), who studied 

extensively the out-of-control performance of the individuals X chart. When 

implementing the corrected control chart, Albers and Kallenberg (2004b) claimed 

that the recommended sample size of at least 300 observations (Quesenberry, 1993; 

Maravelakis et al., 2002) can be reduced to 40 observations. Braun and Park (2008) 

examined ten   estimators for the individuals charts, in the presence of non-normal 

and out-of-control conditions. Via simulation, they showed that after screening, the 

Boyles’ dynamic linear model estimator, which appears to be considerably robust, is 

often the best way to estimate  . 

 

2.4.3 Control Charts for Dispersion  

 Chen (1998) discussed the run length distribution of the R, S and 2S  charts 

with estimated  . In his study, the R, S and 2S  charts were based on the estimators 

R , S  and pS , respectively. For all the three charts, he concluded that parameter 

estimations decrease the in-control ARL  0ARL  and increase the out-of-control 

ARL  1ARL . For all the three charts with the Phase-I sample sizes 4 10n  , he 

recommended using at least 75 Phase-I samples, so that a better performance for 

detecting changes in the standard deviation is obtained. Similar study and 

conclusions on the S chart were presented by Maravelakis et al. (2002). Owing to 

the fact that they employed the estimator S  rather than pS , they suggested a larger 

number of Phase-I samples, i.e. 100m  , each having sample size 20n   to 

estimate the process parameters. 

 Zhang et al. (2005) considered an ARL-unbiased 2S  chart and two types of 

ARL-biased 2S  charts. They ascertained that the sample size required to achieve an 
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adequate performance, is slightly smaller for the ARL-biased charts than that of the 

ARL-unbiased chart. Castagliola et al. (2009) extended the works by Chen (1998) to 

derive the exact run length distributions of the R, S and 2S  charts with estimated 

parameters. Crucially, they provided a new design and charting parameters for the 

2S  chart with estimated parameters, which allow estimation from a small practical 

number of Phase-I samples.  

 Schoonhoven et al. (2011) analyzed and designed the standard deviation 

control chart with estimated parameters when the Phase-I data are contaminated or 

uncontaminated. Also, they considered 12 different estimators to estimate the in-

control Phase-I   and then derived the Phase-II control limits. By incorporating a 

simple screening method into an estimation approach, they suggested a robust 

estimation procedure based on the mean absolute deviation from the median, which 

has a better performance than the traditional estimators.         

 

2.4.4 EWMA and CUSUM Type Control Charts 

 There are some recent researches concerning the EWMA type control charts 

with estimated parameters. For instance, Jones et al. (2001) investigated the 

marginal and conditional run length distributions of the EWMA X  chart with 

estimated parameters. Similarly, like the performances of other types of control 

charts with estimated parameters, they showed that parameter estimation results in 

substantially more frequent false alarms and a reduction in the sensitivity of the 

EWMA X  chart, for detecting process mean shifts. For the EWMA X  chart with a 

smoothing constant   0.5, Jones et al. (2001) proposed using 200 Phase-I samples, 

each having five observations; while for   0.1 and   0.2, 400 and 300 Phase-I 

samples of five observations each, respectively, are required. It is obvious that the 
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Phase-I sample-size recommendations strongly depend on the value of   used. The 

recommended large number of Phase-I sample size, m is impractical in many 

industrial situations. In this situation, by using smaller m values, Jones (2002) 

suggested a new design and charting parameters for the EWMA X  chart with 

estimated parameters so that the chart has a specific 0ARL  value as that of the 

known-parameter case.  

 Zhang and Chen (2002) proved that the standard EWMA X  chart with 

known parameters is ARL-unbiased. Then using the results derived from the case of 

known parameters, they discussed the impact of the estimated process mean on the 

EWMA chart’s ARL performance. They demonstrated that the EWMA X  chart 

with estimated variance is ARL-unbiased; whereas, it is ARL-biased when the 

process mean is estimated. A modified EWMA chart with estimated parameters for 

monitoring the process standard deviation was proposed by Maravelakis and 

Castagliola (2009). By using the Markov chain and integral equation approaches, 

they derived the exact run length distribution of the proposed chart. The main 

contributions of this paper deal with the optimal design and charting parameters of 

the EWMA 2S  chart with estimated parameters, specially accounted for the Phase-I 

m and n.  

 Capizzi and Masarotto (2010) investigated the effects of parameter 

estimation on the performance of the combined Shewhart-EWMA (CSEWMA) X  

chart. When parameters are estimated, the comparative studies showed that the 

performance of the CSEWMA chart is similar to that of the EWMA chart and better 

than the Shewhart chart. They also gave sample-size recommendations required to 

achieve the desired level of in-control performance. The properties of the 

exponential EWMA chart with estimated parameters were investigated by Ozsan et 
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al. (2010). For large values of  , as well as small values of n and mean shifts  , 

they showed that the performance of the chart is significantly worse than that of the 

known-parameter case. When small   and   0.20 are considered, n  200 

observations are needed to improve the marginal out-of-control performance of the 

chart. 

 Concerning the CUSUM type control charts with estimated parameters, 

Bagshaw and Johnson (1975) studied the CUSUM chart’s ARL performance when 

the   is estimated from n  10 observations. Hawkins and Olwell (1998) quantified 

the impact of parameter estimation in the case of the individuals CUSUM chart. 

They noted that a one-sided CUSUM chart is dramatically affected by parameter 

estimation than a two-sided CUSUM chart. Moreover, a CUSUM chart with a small 

reference value k, which is specially designed for detecting small shifts, is more 

sensitive to random errors due to parameter estimation than the CUSUM chart with a 

large k. They claimed that 100 Phase-I observations are insufficient to stabilize the 

ARL performance of the CUSUM chart. 

 Using a similar approach as shown by Jones et al. (2001) for the EWMA 

chart, Jones et al. (2004) studied the run length distribution of the CUSUM X  chart 

with estimated parameters. Generally, when parameters are estimated, similar 

conclusions as shown by the EWMA chart (Jones et al., 2001) are obtained for the 

CUSUM chart (Jones et al., 2004). In addition, the run length distribution of the 

one-sided CUSUM chart with estimated parameters is highly skewed compared with 

that of the two-sided chart. On the contrary, Castagliola and Maravelakis (2011) 

derived and discussed the run length properties of a CUSUM 2S  chart with 

estimated process variance using the Markov chain and integral equation approaches. 

The CUSUM chart for monitoring the process dispersion is also severely impacted 
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