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PENAPIS MEDIAN BERASAS-PENSUISAN
DIPERBAIKI UNTUK PENYINGKIRAN HINGAR
DEDENYUT

ABSTRAK

Tesis ini mencadangkan satu algoritma baharu untuk mengkaa hingar dedenyut dari-
pada imej digital. Bagi mencapai matlamat ini, tinjauandaacyang menyeluruh ke atas model
hingar dedenyut dan rangka kerja penapis median telahsdifelkan dengan jayanya. Algorit-
ma yang dicadangkan adalah berdasarkan pendekatan @enag@dian pensuisan. Kaedah ini
secara amnya boleh dibahagikan kepada dua peringkat uttngeringkat pengesanan hin-
gar dedenyut dan peringkat pembatalan hingar. Pengubahdeshadap kaedah pengesanan
hingar berdiskriminasikan sempadan (BDND) telah dibuartdanya, tanpa menggunakan
sebarang algoritma pengisihan, nilai-nilai median setmipentukan daripada histogram tem-
patan yang dimanipulasi. Seterusnya, diperingkat pengeshingar, disamping pendekatan
pembezaan jarak keamatan yang asal, kaedah baharu tuggumatkan pendekatan pembeza-
an tinggi keamatan bagi mengurangkan kadar pengesanan pésnudian, tanpa menggu-
nakan pendekatan penyesuaian untuk peringkat pembaialgar,hkaedah yang dicadangkan
menggunakan pendekatan lelaran. Model hingar dedenyait telah digunakan untuk proses
penilaian, bagi menyiasat keteguhan kaedah. Berdasaékalaipn dari segi punca kuasa per-
bezaan purata (RMSE), kadar pengesanan positif palsu; gadgesanan negatif palsu, indek
purata kesamaan struktur (MSSIM), masa pemprosesan, dearigsaan visual, menunjukkan
bahawa kaedah yang dicadangkan adalah kaedah terbaiklaagiiaindingkan dengan tujuh

kaedah penapisan median terkini yang lain.
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IMPROVED SWITCHING-BASED MEDIAN FILTER
FOR IMPULSE NOISE REMOVAL

ABSTRACT

This thesis proposed a new algorithm to reduce impulse rfaise digital images. In
order to achieve this, thorough literature surveys on imguloise models and median filtering
frameworks have been carried out successfully. The prapalg@rithm is based on switching
median filtering approaches. The method can be generallyedivnto two main stages, which
are impulse noise detection stage and impulse noise caticelstage. Modifications towards
a well known boundary discriminative detection (BDND) ndiave been made. First, rather
than using any sorting algorithm, the local median valuesewdetermined from manipulated
local histograms. Next, in the noise detection stage, iritiatdto the originally proposed
intensity distance dlierential approach, the new method includes intensity helgferential
approach to reduce false detection rate. Then, insteadimd aslaptive approach for noise
cancellation stage, the proposed method utilizes iteraipproach. Broad impulse noise model
has been employed for the evaluation process, to investity@ robustness of the method.
Based on the evaluations from root mean square error (RM8ISg positive detection rate,
false negative detection rate, mean structure similanitex (MSSIM), processing time, and
visual inspection, it is shown that the proposed methoda$#st method when compared with

seven other state-of-the art median filtering methods.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Similar to other digital signal, digital images sometimeulcbbe corrupted by noise. One
of the noise types normally related to digital image is ingpuhoise. Impulse noise appears
as a sprinkle of bright or dark spots on the image, and noynthéise spots have relatively
high contrast towards their surrounding anﬂxsﬂ[l, 2]. Amwela is shown in Figure1l1. As

shown by this figure, even at low corruption level, impulsésaaan significantly degrade the

appearance and quality of the image.

(a) Original image (b) Corruption levek 25%

(c) Corruption levek 50% (d) Corruption levek 75%

Figure 1.1: Example of image corrupted by impulse noise



There are many causes that can contribute to impulse noigeilde noise can be generated
when the digital image is transmitted over a noisy chanmesigecially in the over-the-air trans-
mission channels. These channels include standard bstadgand satellite communication

,[4]. Impulse noise also can be resulted from faulty piglémage sensor array, malfunction-
ing memory location, and timing errors in analog-to-digitanversion ELD?]. Other sources of
impulse noise include lightning, industrial machines/tfaar dusty insulation of high-voltage

powerlines and various unprotected electric switcl;les [4].

Impulse noise not only degrades the appearance of the irbage,also significantly féect
the results of image segmentation, feature extractione eldgection and object recognition.
Therefore, it is very essential to restore the corruptedalignages before they are supplied to
any automated computer-vision based sysurﬂ [8, 9]|j)neeqﬁmbular methods used to deal

with impulse noise is standard median filter (SM[Q,

1.

1.2 Problem Statements

There are a few disadvantages of standard median filter (SMF)

e SMF does not dierentiate between uncorrupted pixel from corrupted piXélerefore,
even the pixels are uncorrupted, SMF still changing theérisity level. Therefore, SMF

introduces another distortion to the image.

e Most of the implementations of SMF are employing sortingoathm to determine the
median value. As SMF works by using local window, and the medialue need to
be found at every pixel position, sorting algorithm makesFiglatively computational

expensive, especially when the size of filter is large.

e Although there are many variations of median filter have be®mposed, these filters

*Description on SMF will be given in Sectibn 2.P.1.



focus only on one type of impulse noise which is fixed valuele noise. Therefore,

a general impulse noise detector which can detect the notsgaely is needed.

1.3 Objective of the Research

The key objective of this research is to improve median fifessed method for the removal of

impulse noise. In order to achieve this objective, sevavalgghave been set. They are:

1. To develop a new robust impulse noise detection methodhmhill be able to cater a

wide range of impulse noise models.

2. To improve the performance of impulse noise cancellaigorithm.

1.4 Scope of the Research

The research carried out in this thesis has been limitedetéolfowing scopes:

1. The research only deals with impulse noise reductionnigcle. Other types of noise,

such as Gaussian noise, and Rician noise, will not be cosréuis thesis.

2. The thesis studies on impulse noise reduction methodteteto median filter only. Just

spatial domain-based methods are implemented for conopapisrpose.

3. The input image for the system is limited to the naturalges(e.g. scanned photograph,
or pictures taken by optical camera). The research not ¢émages from other imaging

modalities, such as computed tomography, or satellite @nag

4. This research concentrates on restoration of grayseelgds, which can be considered
as a 2D signal data. Higher dimensional data, such as cokyges) or video, is not of

the research interest.



1.5 Summary of Contributions

The contributions from this thesis can be generally divioigd two parts, which are:

1. A robust impulse noise detector: A height and distancésagrcmaking technique has

been utilized in boundary discriminative based impulss@adietection method.

2. A better impulse noise cancellation method: A modificatmwards the originally pro-
posed noise cancellation stage in boundary discriminatdiee detection method has

been proposed.

1.6 Organization of Thesis

This thesis is divided into five chapters. Chapter 1 gives\amwew of the work done in this
research. Next, Chapter 2 presents a literature review pnlga noise models and methods
related to median filter. The proposed method is then desgtiiitb Chapter 3. Following that,
the results and discussions are presented in Chapter 4islahihpter, the performance of the
proposed filter has been benchmarked with several otheramddised filters, and the results
are evaluated based on some quality measures. Finallyt&Haponcludes the findings, and

give some ideas for future work.



CHAPTER 2

LITERATURE REVIEW

This chapter is divided into three sections. First, in otdennderstand the nature of impulse
noise, a survey on impulse noise models has been carriedrooimn this survey, it is found
that impulse noise can be defined in several ways. Therefloese mathematical formulas,
which are used by researchers to present impulse noiseremenped in Sectidn 2.1. From the
survey, it is also found that there are thousands of medigan fifiriations currently available
in literature. Therefore, Sectign 2.2 categorized theserdilinto eight common median filter
variations. Some examples of the recent median filteringnelogies are presented in the last

section, which is Sectidn 2.3.

2.1 Impulse Noise Models

Impulse noise is considered as an additive nMO—l&}.a‘ﬂditive noise is defined as fol-
lows. If (i, j) are the spatial coordinates on the image, @rd{C(i, j)} is the ideal uncorrupted
and clean image, the damaged image by additive ridis€D(i, j)} can be described as:

C : with probability 1- P
D= (2.1)

C+N : with probability P

whereP (i.e. 0< P < 1) presents the noise density, aNds the noise intensity value or the

noise amplitude. In this EquatioN, can have a positive or a negative value.



Impulse noise can be characterized by a long-tail prolsgldistributiort of N, and thus
impulse noise can be considered as an additive Iong-taidmib]. The probability
density functionp for impulse noise can be modelled by some skewed distribsitiG-urutsu
and Ishida in 1961 [17] used a combinations of Poisson Higtdns to present impulse noise.
In 1988, Lin and Willson JHS] presented impulse noise bpgis log-normal distribution as

given as:

BN = exp(i mz(W)) 2.2)

1
V27IN] 2 N
where|l\_l| is the average value ¢ifl|. However, the popularity of impulse noise models that are

described by skewed probability distributions, such asvibdk by ] and ], are decreasing

in recent research papers.

From Equation[(Z]1), for the case of the corrupted pixeks résults ofC + N actually can
take any value becauseis a random value. Therefore, in recent literatures, Eqond#.1) has
been simplified and replaced with Equatimig—u].

C : with probability 1- P
D= (2.3)

N : with probability P
This Equation shows that for most of the current impulse enai®dels, the corrupted pixels
are directly replaced with the noise intensity vaILl; @l.—ﬂJnlike Equation[(Z11), in this
Equation, the value df is restricted to positive values only. If the image is quaedi intoL

intensity levelsN can take any values between Ole 1 [25].

The distributionp of noiseN in Equation [Z.B) can be defined in many ways. Some re-

*A long-tailed probability distribution is a distributionhich has relatively high probability regions far from the
mean or median values.

"Due to this simplification, in some literatures, impulseseois neither considered as an additive noise nor a
multiplicative noise, but as another class of its own.



searchers definp as a uniform distribution, which is:
p(N) = P/L O0<N<L-1 (2.4)

For this case, the noise amplitudes occupy all possiblasitievalues, from 0 td. — 1. This

type of impulse noise is widely known as random-valued irJ;jnoise. Random-valued im-

-

Other widely used practical impulse noise model is knownyadfvalued impulse noise.

pulse noise have been studied in many works, sucu Q[Q

In this model N in Equation[(Z.B) is restricted to the minimum or the maximtensity value
(i.e. 0orL—1)*. As the noise with intensity 0 appears as black pixels onrtiage, this noise
is referred as pepper noise. On the other hand, the noisentgtinsity L — 1 appears as white
pixels on the image. This type of noise if referred as sak@or herefore, fixed-valued impulse
noise is also known as salt-and-pepper ndisé D is the intensity of imag®, fixed-valued

impulse noise is given by the following probability dendiimction:

P : pepperD=0

P(D)={ 1-P : noise free pixels;& D <L-1 (2.5)

P saltD=L-1

Because of its simplicity and practicality, this noise mladehe most popular impulse noise

model used in literatures, such as the Workm\ EL—SG].

A simple modification can be done to Equatién{2.5) by allgvimequal densities of salt

It is easier to understand the idea behind this noise modebmg equation{2]1). In this equation, impulse
noiseN can take positive or negative value. It is assumed that tlgniale ofN is very large, such tha(i, j) +
N(i, j) will produce values either greater thar-1 or lower than 0. Due to quantization process, these valges a
truncated td.—1 or 0 ].

$Sometimes, this type of noise also been referred as datreairoor spike noiseL_[_il].



noise and pepper noise, as given as:

P1 . pepperD=0
P(D)=1 1-P : noise free pixels;@ D<L-1 (2.6)

P, : saltD=L-1

whereP; + P, = P. This noise model has been used in some recent Iiteratmrtds,asB“DQ—

]. This type of noise is called unipolar when eitligror P, is zero ].

A variation to Equation[{2]6) is obtained by allowing salisgoand pepper noise to be
presented by two intensity ranges. Salt noise occupiesihighsity range, while pepper noise
occupies low intensity range. Each range is presented inyensity levels. This noise model

is given as:

Pi/m : peppefO<N<m

P(N)={ 1-P : noise free pixels;@N<L-1 (2.7)

Po/m @ saltL-1-m<N<L-1

Some example of works that are using this noise model canuoelfim QE]ZQG].

Equation [2.77) can be simplified by assuming that the dewdigalt noise is equal to the

density of pepper noise. This is given as:

P/2m . pepper0<D<m

P(D)={ 1-P : noise free pixels;@ D<L-1 (2.8)

P/2m : saltL-1-m<D<L-1

Actually, whenmis equal to one, this equation is equivalent to Equafion)(2vhich is fixed-

valued impulse noise. On the other hand, wheis equal toL/2, this model resembles Equa-



tion (2.4), which is random-valued impulse noise. This easi®del has been used [56].

Universal impulse noise, or also known as mixed impulseajassgiven as a combination
between random-valued impulse noise as defined by Equiiid) (ith fixed-valued impulse
noise as defined by Equatidn (2.5). In this model, the comtatiain of the image is equally
contributed by these two well-known impulse noise modelsictv is%P random-valued im-
pulse noise angP fixed-valued impulse noise. Some works related to univensaililse noise

can be found in 9].

2.2 Median Filter

A popular solution to deal with impulse noise is by using ranéer filters, or also known as
order-statistic filters. This type of filters is nonlineadamorks in spatial domain. It uses slid-
ing window approach, where at each sliding iteration, ohly talue of the pixel corresponds
to the center of the window is changed. This value is obtabeskd on the ordered intensity

values of the pixels contained in the area defined by theifidevindow m> ].

Among these rank-order filters, median based filters are dtigeatechniques to reduce
both bipolar and unipolar impulse noiQ[Q, 11]. Generatlgdian filter uses median value in

its filtering process. The median valdeof a sample is defined 60]:

X(ns+1)/2 . ngisodd

>
Il

(2.9)
0.5(Xng/2+ X(ns+1)2) : Nsis even
whereXy, Xa,..., Xy, are the intensity values, arranged in either increasingeoredsing order,
andng is the size of the sample. However, there are a lot of mediten fidriations. Therefore,

this section reviews some of the median filter techniques.



2.2.1 Standard Median Filter (SMF)

Standard median filter (SMF), or also known as median smaootias been introduced by

]. The filtered imade= {F(i, j)} from SMF can be defined by the following

F(i, j) = mediangyew,, (D@ +K, j + 1)} (2.10)

whereW,, is a sliding window of sizérx w pixels centered at coordinatesjj. The median

value is calculated by using Equatidén (2.9) with= wx h.

In order to ease the explanation regarding to the operattoS$/1F, one simple example
is given in Figurd ZJ1. Figule2.1(a) shows ar 8 portion of the damaged imadz In this
example, the pixels at locations (40,91) and (42,92) arsidered damaged by impulse noise
(i.e. salt-and-pepper noise). The image is then filtered My Sutilizing W53, which is a
sliding window of size X 3 pixels. The origin of the filter , with coordinates, (0, is located
at the centre of the window. The sliding window moves in naktshion, starting from the top
left pixel towards the bottom right pixel. At each slidingneliow position, the corresponding
intensity of the output imagE(i, j) is calculated by using Equation (2]10). For example, when
the centre of the filter is located at coordinates (38,89hasva in Figurd 2.11(b)F(38,89) is

determined as:

F(38,89)

medianyew,; {D(38+Kk,89+1)} (2.12)
= mediari62 74,87,74,83,95,87,95,104
= median62 74,74,8387),87,95,95,104

= 87

10



Similarly, for Figurd 2.11(c):

F(40,91) mediank new,; {D(40+k,91+1)} (2.12)

= mediarj104 116128 116 255137,128 137,147}

= mediarj104,116116128| 128|,137,137,147,255

= 128

Jj-coordinate J-coordinate
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(c) Sliding 3x 3 window at coordinates (491) (d) Restored imagE

Figure 2.1: Example of restoring corrupted image using SMF
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The corresponding output image portion is shown in Figuiiéd. In this figure, salt-and-
pepper noise has successfully been removed . Howeveraseverorrupted intensity values
(i.e. at positions (3@7), (37.88), (3889), (3990), (3992), (4092), (4190), (4192), (4291),
(42,93) and (4394)) are also altered by SMF. This undesired situation happecause SMF
does not dterentiate between uncorrupted from corrupted pixels. d&ssilarge filter of SMF

will introduce a significant distortion into the image [62].

It is worth noting that Equation (2.9) is normally using sagtalgorithm such as quick-sort
or bubble-sort to arrange the samples in increasing or dsitrg order. Even though sorting
algorithm can be easily implemented, sorting procedureireg long computational time when
Whw is a large filter because the number of samples e wx h) is big [61]. Thus, in order
to avoid from using any direct sorting algorithm, the useocfll histograms has been proposed
for median value calculation. The time required to form Iduatogram can be reduced by
using a method proposed by Huang etg [63], where insteagdrtingh x w samples, only

2h samples need to be updated in each sliding iteration.

2.2.2 Weighted Median Filter (WMF)

One of the branches of median filter is weighted median fitéME). WMF was first intro-

duced by Justusson in 19[64], and further elaborated byiigg QS]. The operations
involved in WMF are similar to SMF, except that WMF has weiglsociated with each of
its filter element. These weights correspond to the numbsawiple duplications for the cal-

culation of median value. The filtered image= {F(i, j)} from WMF can be defined by the

following equation ELHCQELG]:

F(, j) = medianew,, {Whw(K. 1) o D(i +K, j +1)} (2.13)
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where operatos indicates repetition operation. The median value is cated using Equation

(29) withng = Y, Whw(k,1). Normally, the filter weightWhw(j, k) is set such that it will decrease
when it is located away from the centre of the filtering wind®y doing so, it is expected that
the filter will give more emphasis to the central pixel, andstimprove the noise suppression

ability while maintaining image detail 69].

fian
{2 ]
(a) Weights

Jj-coordinate j-coordinate

Y
(

. 87 8 8 90 91 92 93 94 . .. 87 8 8 90 91 92 93 94 ..

96 111 12

36

100 114

37

107 120

39 38

116

41 40
nate

i-coordinate
12

i-coordi

43

V H H H H H H H H H H H H H
(b) Sliding 3x 3 window at coordinates (389) (c) Restored imagE

Figure 2.2: Example of restoring corrupted image using WMF

Figure[Z.2 presents an example of an image processed by \iAifig In this example,
the same corrupted input image as shown in Figure 2.1(akid. Uhis image is processed by
WMF of size 3x 3 pixels, with the filter's weights or cdigcients are given by Figufe 2.2(a).
In this example, the weight gives more emphasis to the ceitet. The corresponding output

pixel, F(i, j) is found by using Equatio (Z.113). For example, when thedainis located at

13



coordinates (389), as shown in Figufe 2.2(b), the corresponding outpensity is:

F(38,89)

medianew, ,(Waa(k.1) o D(38+ k, 89+ 1)} (2.14)
= median1c622074,1087,2074308320951087,2095 10104

= mediani62 74,74,87,74,74,83,83,83,95,95,87,95,95,104

= median62 74,74,74,74,83 83 83

,87,87,95,95,95,95,104

= 83

The corresponding output image is shown in Fiduré 2.2(c)m@ared with the related
result from SMF shown in Figufe 2.1(d), both SMF and WMF sesbdly remove the impule
noise (i.e. salt-and-pepper noise) from the corrupted @nadget, unlike SMF, WMF does
not change most of the uncorrupted pixels. Therefore they fi$ better in preserving image
details. As can be seen in Figlirel2.2(c), only uncorrupteelpat locations (40,92) and (42,91)
are modified by WMF. However, the successfulness of weightedian filter in preserving
image details is highly dependent on the weightingfitccients, and the nature of the input
image itself. Unfortunately, in practical situations,stdifficult to find the suitable weighting

codficients for this filter, and this filter requires high compigaal time when the weights are

large ].

Some researchergg 73], proposed adaptive weightecamétlers (AWMF), which is
an extension to WMF. By using a fixed filter si¥é,,, the weights of the filter will be adapted
accordingly base on the local noise content. This adaptato be done in many ways, mostly
based on the local statistics of the damaged image. For éxain], the weights of the

filter are defined as:
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2
Whaw(], K) = <Wh,w(0, 0)- C(U—;» (2.15)

whereW, (0,0) is a preset weight for the central filter element a preset scaling factad,is
the distance of locationj,k) to coordinates (@), andes? andx are the local variance and local
mean, respectively, defined by a sliding window of dizew. The operatok . > presents the
rounding operation if the argument inside it is a positiveuga otherwise it will truncate the

value to zero.

Centre weighted median filter (CWMF) is a special type of WKWMF has the weights
defined as follow:

nw  (k1)=(00)
Wha(k,I) = (2.16)

1 : otherwise
wheren,, is an odd integer, with value greater or equal to one. Coatdsk,|) = (0,0) presents
the centre of the filter. Whem, is set to one, CWMF becomes SMF. Large valuepfs good
in preserving details but worse in noise cancellation. Whgns greater or equal thxw
(i.e. the area covered by filt&¥, ), CWMF turns into the identity filter. In this condition,
CWMF does not filter the image, and thus the output image \eitidmne exactly the same as

its corresponding input [68].

2.2.3 lterative Median Filter

Several impulse noise filtering methods require iteratiering procedure in their implemen-
tation El} QAQG]. Iterative method requires the sanoequure to be repeated several

times. In general, iterative median filter withiterations, requires; — 1 temporary image$
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(i.e. T1,To,...Ty-1). Iterative SMF can be defined by Equatién (2.17) and degibteFigure
[2.3. lteration procedure enables median filtering processé smaller filter size and reduce

the computational time, while maintaining local featuregadges of the image.

Ta(i,j) = mediamew,, DG +k j+1)) (2.17)

Ta(i, J)

median new,, {T1(i + K, j+1)}

F(@,J) median newp, i Ti-1( +K, j +1)}

T: T2 Tni-1
D——> SMF SMF SMF —F

Figure 2.3: Block diagram presenting iterative medianffilte

The number of iterations; can be set by the user, or the iteration process stops when the

output image converged (i.e. the current output image isleguthe previous output image).
As an example, by taking the image shown in Fiduré 2.1(a)atbut image, the temporary
imagesT from iterative median filter, which uses a sliding window afes3x 3 pixelsWs 3,

are shown in Figure2.4. The colour numbers in this figureciat@ the intensity value of the
pixels that have been changed with respect to the previeustiin. Thus, in this example,
the processed image is already converged at the secontibitstal herefore, the output at the
second iteration can be taken as the final output image. Hawewvpractical, the number of

iterations needed is dependent to the level of corruptiaitiaa nature of the input image itself.
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(d) Temporary image after four iteratiofg

Figure 2.4: Example of restoring corrupted image usingttee median filter

2.2.4 Recursive Median Filter

Several researches in median filteriQ Q,B}’—Sl}, usersaeuapproach in their methodol-

ogy. Theoretically, recursive median filters can be considenalogous to infinite impulse

response (lIR) filter because their outputs at certain jposére determined not only from the

input intensities, but also from the calculated outputsratipus locations. In implementation

of recursive median filter, normally the degraded image &erdittered image share the same

data array.

An example of image processed by recursive median filter zef 8ix 3 pixels, Wa 3, is
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shown in Figuré2]5. The corrupted image, which is the inputHis filter, is shown in Figure

Z3(a). The coloured values in Figufesl2.5(a) and (b) ptetsenalready processed pixels,

which have been updated into the input image. For exampigréliz.b(a) shows the filter

when it is at coordinates (491). At this position, the median value is calculated as:

F(40,91)

medianyew,;{D(40+K,91+1)} (2.18)
mediaf107,116 134116 255137,128 137,147}

mediaf107,116116128| 134

,137,137,147,255

134

This obtained value is then updated directly into the inmage. Therefore, the calculation of

the median value at coordinates (@R) as shown in Figufe 2.5(b) is:

F(40,92)

medianyews;{D(40+Kk,92+1)} (2.19)
mediarfl116 134140134 137,149,137,147,158

mediaf116 134,134 137, 137

,140,147,149 158

137

In this method, the already processed pixels are now camsldes noise free input pixels.

Thus, by replacing the input pixels with these values, itasss that the median value calcula-

tion will be more accurate. However, if the filter fails to rewe the noise at previous locations,

the error might be propagated to other area of the imagehé&mumbre, it is worth noting that

the result from recursive median filter is dependent to thection of filtering.
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(c) Restored imagE

Figure 2.5: Example of restoring corrupted image usingneeel median filter

2.2.5 Directional Median Filter

Directional median filter, or also known as stick medianfikeorks by separating its 2-D filter
into several 1-D filter componenu E!l;l Q , 82]. Eachrfitomponent or stick, presented
as a straight line, corresponds to a certain direction oteathgFor a window of sizehxw
pixels, there arb+w- 2 sticks that will be used. The computed median values frasdii-D

filters are then combined to obtain the final result.m [83¢ output intensity is defined as:

F(i, j) = max{mediangyew, (D(i + K, j +1)}} (2.20)
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whereW, is the stick. Here, the output intensity is defined as theekstrgnedian value deter-

mined at each location.
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(a) StickWg- at coordinates (38,89) (b) StickWys- at coordinates (38,89)
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(c) StickWgg at coordinates (38,89) (d) StickW,35 at coordinates (38,89)

Figure 2.6: Example of restoring corrupted image usingctiveal median filter

Figure[2.6 shows an example of the operation involved inutafing the output intensity
at locations (38,89), by taking Figure P.1(a) as the damagede. The size of the filter used
is 3x 3, therefore there are (33— 2) = 4 individual sticks are used. These sticks correspond

to angled = 0°,45°,9(°, and 135. The output intensity at this positioR,(38,89) is calculated
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as follow:

F(38,89)

max{mediary ey, {D(38+ k, 89+ 1), mediary jew,s {D(38+ k,89+1),

median jewy {D(38+ K, 89+ 1), median ew,,, {D(38+K, 89+ I)}} (2.21)

= max{mediar{74,83,95}, mediai87,83 87}, mediar{95,83, 74},

mediar§104 83 62}}

= max{mediari74,83], 95}, mediari83,87],87), mediari7483] 95},

mediari62[83] 104
= max83 87,8383

= 87

2.2.6 Switching Median Filter

Nowadays, one of the popular median fiIterinpachewitsrﬁn median filter, or also
Al

known as decision based median filurg, ,

0. S 521, s

ing median filter tries to minimize the undesired alteratidruncorrupted pixels by the filter.

Therefore, in order to overcome this problem, switching imedilter checks each input pixel

whether it has been corrupted by impulse noise or not. Thehaihges only the intensity of

noisy pixel candidates, while left the other pixels unclehgNormally, switching median fil-

ter is built from two stages, as shown in Figlirel 2.7. The fiee is for noise detection, while

the second stage is for noise cancellation.

D Noise detection

M

Noise cancellation

——>F

]

Figure 2.7: Block diagram presenting switching medianffilte
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The output from the noise detection stage is a noise rivaskhis mask is a binary mask,

and normally defined as follow:

1 : impulse noise candidate
M(@, j) = (2.22)

0 : otherwise
Noise detection procedure used by researchers are nordepgnding on the noise model been
used. For fixed-valued impulse noise (i.e. salt-and-peppise), mostly the noise detection is
done by thresholding the intensity values of the damagedémn@ther popular noise detection
methods include by checking thefldirence between intensity of the current pixel with its
surrounding, inspecting theftiérence of the damaged image with its median filtered versions

or by applying some special filter. Next, magkwill be used in the noise cancellation stage.

Jj-coordinate Jj-coordinate

. 8 8 8 90 91 92 93 94 .. .. 87 8 8 90 91 92 93 94

41 40 39 38 37 36 ..

i-coordinate
42

i-coordinate

.. 43

(a) Noise masim (b) Restored imagE

Figure 2.8: Example of restoring corrupted image usinga@wiig median filter

In noise cancellation stage, only pixels with= 1 are processed by the median filter. For
the calculation of median, only "noise-free" pixels (i.e@xgts with M = 0) are taken as the

sample. This can be defined as:
F(i, J) = median new,,;Mmi+k j+)=0{D(i + K, j +1)} (2.23)
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Figure[2.8 shows an example for this procedure. In this el@rtge damaged image is already
shown in Figurd2]1(a). Let assume that Figuré 2.8(a) shopmrgon of maskM. In this

figure, only pixels at positions (40,91) and (42,92) areaetkas impulse noise from the noise
detection stage. Therefore, only this two pixels are presgsn the noise cancellation stage.
For example, at coordinates (40,91), the output intengityutated by this stage, by using a

window of size 3« 3 pixelsWjz 3, is:

F(40,91)

mediank iew,,;M@o+k91+)=0{D(40+K,91+1)} (2.24)

= mediarj104116128 116 137,128 137,147,

= mediarf104116116|128, 128,137,137,147

= (128+128)2=128

Similarly, at coordinates (42,92):

F(42.92)

mediank iew,;M@2+k92+1)=0{D(42+K,92+1)} (2.25)
= medianj137,147,158 149,168 161,170 179

= mediar{137,147,149| 158, 161,168 170,179

= (158+161)2 =160

2.2.7 Adaptive Median Filter

Actually, the concentration of impulse noise on an imageaised because impulse noise is
a random noise. Therefore, there are regions of the imadehigh level of corruption, and

there are also regions with low level of corruption. For #ieeive noise filtering process, a
larger filter should be applied to regions with high level ofraption. In contrast, a smaller

filter should be applied to regions with low level of corrguti Therefore, many works, such
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as ELELD@QMSS] have proposed methods thatbéedo adjust the size of the

filter accordingly based on the local noise content. Bec#usaize of the filter is adapted to

the local noise content, this type of median filter is knowadaptive median filter.

Commonly, the filter size at each processing locations tillyi set to 3x 3. The size of
the filter is then gradually expanding until it met certairtesia. These criteria can include
the number of potential noise free pixels, local mean, lozakimum, local minimum or local
median value. Sometimes, these criteria can never be metefbine, some methods restrict
the expansion of the filter up to certain size only. Althouglagtive median filters are good
in restoring image corrupted by impulse noise, these filiermally require considerably long

computational time when the image is highly corrupted.

2.2.8 Median Filter Incorporating Fuzzy Logic

In order to preserve the local details of the image, mediter 8hould only change the intensity
of corrupted pixels on the damaged image. However, it is tedifficult detect the corrupted
pixels from this image correctly. Even for fixed-valued ingaunoise (i.e. salt-and-pepper
noise), where the noise only takes values 0 brdl, simple thresholding method still cannot
classify the pixels #ectively. This is because some of the uncorrupted pixelsa@ been

presented by these two values. Thus, some researcherpanaigr fuzzy logic approach into

median filtering procesg[ug QQS 55]

There are several ways on how fuzzy logic been used in medianng process. Fuzzy
logic can be used to grade how high a pixel has been corruptémiuise noise. Normally,
based on this fuzzy degradation measure, a proper comegilbbe applied. On the other
hand, some of the methods use fuzzy logic as a decision niskiesdlects a proper filter, from

a filter bank, for a given input image.

24



	Acknowledgements
	Table of Contents
	List of Figures
	List of Abbreviations
	List of Symbols
	Abstrak
	Abstract
	1 Introduction
	1.1 Overview
	1.2 Problem Statements
	1.3 Objective of the Research
	1.4 Scope of the Research
	1.5 Summary of Contributions
	1.6 Organization of Thesis

	2 Literature Review
	2.1 Impulse Noise Models
	2.2 Median Filter
	2.2.1 Standard Median Filter (SMF)
	2.2.2 Weighted Median Filter (WMF)
	2.2.3 Iterative Median Filter
	2.2.4 Recursive Median Filter
	2.2.5 Directional Median Filter
	2.2.6 Switching Median Filter
	2.2.7 Adaptive Median Filter
	2.2.8 Median Filter Incorporating Fuzzy Logic

	2.3 Recent Trends of Median Filters
	2.3.1 Pixel Correlation-based Impulse Noise Reduction Filter (PCINRF)
	2.3.2 Improved Median Filter (IMF)
	2.3.3 Adaptive Fuzzy Switching Filter (AFSF)
	2.3.4 Modified Decision Based Unsymmetric Trimmed Median Filter (MDBUTMF)
	2.3.5 Advanced Boundary Discriminative Noise Detector (ABDND)
	2.3.6 Directional Switching Median Filter Using Boundary Discriminative Noise Detection by Elimination (DSMFBDNDE)

	2.4 Summary

	3 Methodology
	3.1 Fast Local Median Calculation
	3.2 The Proposed Median Filtering Algorithm
	3.2.1 Noise Detection Stage
	3.2.1(a) Intensity Distance Differential Method
	3.2.1(b) Intensity Height Differential Method
	3.2.1(c) The Proposed Noise Detection Scheme

	3.2.2 Noise Cancellation Stage
	3.2.3 Summary


	4 Results and Discussions
	4.1 Test Images used for Performance Evaluations
	4.2 Quantitative Evaluations
	4.2.1 Root Mean Square Error (RMSE)
	4.2.2 False Positive Detection Rate
	4.2.3 False Negative Detection Rate
	4.2.4 Mean Structure Similarity Index (MSSIM)
	4.2.5 Processing Time

	4.3 Qualitative Evaluations
	4.4 Chapter Remarks

	5 Conclusion and Future Works
	5.1 Conclusion
	5.2 Future Works

	REFERENCES
	LIST OF PUBLICATIONS

