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PENAPIS MEDIAN BERASAS-PENSUISAN
DIPERBAIKI UNTUK PENYINGKIRAN HINGAR

DEDENYUT

ABSTRAK

Tesis ini mencadangkan satu algoritma baharu untuk mengurangkan hingar dedenyut dari-

pada imej digital. Bagi mencapai matlamat ini, tinjauan bacaan yang menyeluruh ke atas model

hingar dedenyut dan rangka kerja penapis median telah dilaksanakan dengan jayanya. Algorit-

ma yang dicadangkan adalah berdasarkan pendekatan penapisan median pensuisan. Kaedah ini

secara amnya boleh dibahagikan kepada dua peringkat utama,iaitu peringkat pengesanan hin-

gar dedenyut dan peringkat pembatalan hingar. Pengubahsuaian terhadap kaedah pengesanan

hingar berdiskriminasikan sempadan (BDND) telah dibuat. Pertamanya, tanpa menggunakan

sebarang algoritma pengisihan, nilai-nilai median setempat ditentukan daripada histogram tem-

patan yang dimanipulasi. Seterusnya, diperingkat pengesanan hingar, disamping pendekatan

pembezaan jarak keamatan yang asal, kaedah baharu turut menggunakan pendekatan pembeza-

an tinggi keamatan bagi mengurangkan kadar pengesanan palsu. Kemudian, tanpa menggu-

nakan pendekatan penyesuaian untuk peringkat pembatalan hingar, kaedah yang dicadangkan

menggunakan pendekatan lelaran. Model hingar dedenyut lebar telah digunakan untuk proses

penilaian, bagi menyiasat keteguhan kaedah. Berdasarkan penilaian dari segi punca kuasa per-

bezaan purata (RMSE), kadar pengesanan positif palsu, kadar pengesanan negatif palsu, indek

purata kesamaan struktur (MSSIM), masa pemprosesan, dan pemeriksaan visual, menunjukkan

bahawa kaedah yang dicadangkan adalah kaedah terbaik apabila dibandingkan dengan tujuh

kaedah penapisan median terkini yang lain.

xi



IMPROVED SWITCHING-BASED MEDIAN FILTER
FOR IMPULSE NOISE REMOVAL

ABSTRACT

This thesis proposed a new algorithm to reduce impulse noisefrom digital images. In

order to achieve this, thorough literature surveys on impulse noise models and median filtering

frameworks have been carried out successfully. The proposed algorithm is based on switching

median filtering approaches. The method can be generally divided into two main stages, which

are impulse noise detection stage and impulse noise cancellation stage. Modifications towards

a well known boundary discriminative detection (BDND) method have been made. First, rather

than using any sorting algorithm, the local median values were determined from manipulated

local histograms. Next, in the noise detection stage, in addition to the originally proposed

intensity distance differential approach, the new method includes intensity height differential

approach to reduce false detection rate. Then, instead of using adaptive approach for noise

cancellation stage, the proposed method utilizes iterative approach. Broad impulse noise model

has been employed for the evaluation process, to investigate the robustness of the method.

Based on the evaluations from root mean square error (RMSE),false positive detection rate,

false negative detection rate, mean structure similarity index (MSSIM), processing time, and

visual inspection, it is shown that the proposed method is the best method when compared with

seven other state-of-the art median filtering methods.

xii



CHAPTER 1

INTRODUCTION

1.1 Overview

Similar to other digital signal, digital images sometime could be corrupted by noise. One

of the noise types normally related to digital image is impulse noise. Impulse noise appears

as a sprinkle of bright or dark spots on the image, and normally these spots have relatively

high contrast towards their surrounding areas [1, 2]. An example is shown in Figure 1.1. As

shown by this figure, even at low corruption level, impulse noise can significantly degrade the

appearance and quality of the image.

(a) Original image (b) Corruption level= 25%

(c) Corruption level= 50% (d) Corruption level= 75%

Figure 1.1: Example of image corrupted by impulse noise
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There are many causes that can contribute to impulse noise. Impulse noise can be generated

when the digital image is transmitted over a noisy channels,especially in the over-the-air trans-

mission channels. These channels include standard broadcasting and satellite communication

[3, 4]. Impulse noise also can be resulted from faulty pixelson image sensor array, malfunction-

ing memory location, and timing errors in analog-to-digital conversion [5–7]. Other sources of

impulse noise include lightning, industrial machines, faulty or dusty insulation of high-voltage

powerlines and various unprotected electric switches [4].

Impulse noise not only degrades the appearance of the image,it can also significantly affect

the results of image segmentation, feature extraction, edge detection and object recognition.

Therefore, it is very essential to restore the corrupted digital images before they are supplied to

any automated computer-vision based system [8, 9]. One of the popular methods used to deal

with impulse noise is standard median filter (SMF)∗ [10, 11].

1.2 Problem Statements

There are a few disadvantages of standard median filter (SMF):

• SMF does not differentiate between uncorrupted pixel from corrupted pixel.Therefore,

even the pixels are uncorrupted, SMF still changing their intensity level. Therefore, SMF

introduces another distortion to the image.

• Most of the implementations of SMF are employing sorting algorithm to determine the

median value. As SMF works by using local window, and the median value need to

be found at every pixel position, sorting algorithm makes SMF relatively computational

expensive, especially when the size of filter is large.

• Although there are many variations of median filter have beenproposed, these filters
∗Description on SMF will be given in Section 2.2.1.
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focus only on one type of impulse noise which is fixed value impulse noise. Therefore,

a general impulse noise detector which can detect the noise accurately is needed.

1.3 Objective of the Research

The key objective of this research is to improve median filterbased method for the removal of

impulse noise. In order to achieve this objective, several goals have been set. They are:

1. To develop a new robust impulse noise detection method which will be able to cater a

wide range of impulse noise models.

2. To improve the performance of impulse noise cancellationalgorithm.

1.4 Scope of the Research

The research carried out in this thesis has been limited to the following scopes:

1. The research only deals with impulse noise reduction technique. Other types of noise,

such as Gaussian noise, and Rician noise, will not be coveredby this thesis.

2. The thesis studies on impulse noise reduction methods related to median filter only. Just

spatial domain-based methods are implemented for comparison purpose.

3. The input image for the system is limited to the natural images (e.g. scanned photograph,

or pictures taken by optical camera). The research not coverimages from other imaging

modalities, such as computed tomography, or satellite images.

4. This research concentrates on restoration of grayscale images, which can be considered

as a 2D signal data. Higher dimensional data, such as color images, or video, is not of

the research interest.

3



1.5 Summary of Contributions

The contributions from this thesis can be generally dividedinto two parts, which are:

1. A robust impulse noise detector: A height and distance decision making technique has

been utilized in boundary discriminative based impulse noise detection method.

2. A better impulse noise cancellation method: A modification towards the originally pro-

posed noise cancellation stage in boundary discriminativenoise detection method has

been proposed.

1.6 Organization of Thesis

This thesis is divided into five chapters. Chapter 1 gives an overview of the work done in this

research. Next, Chapter 2 presents a literature review on impulse noise models and methods

related to median filter. The proposed method is then described in Chapter 3. Following that,

the results and discussions are presented in Chapter 4. In this chapter, the performance of the

proposed filter has been benchmarked with several other median based filters, and the results

are evaluated based on some quality measures. Finally, Chapter 5 concludes the findings, and

give some ideas for future work.
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CHAPTER 2

LITERATURE REVIEW

This chapter is divided into three sections. First, in orderto understand the nature of impulse

noise, a survey on impulse noise models has been carried out.From this survey, it is found

that impulse noise can be defined in several ways. Therefore,these mathematical formulas,

which are used by researchers to present impulse noise, are presented in Section 2.1. From the

survey, it is also found that there are thousands of median filter variations currently available

in literature. Therefore, Section 2.2 categorized these filters into eight common median filter

variations. Some examples of the recent median filtering technologies are presented in the last

section, which is Section 2.3.

2.1 Impulse Noise Models

Impulse noise is considered as an additive noise [10–16]. The additive noise is defined as fol-

lows. If (i, j) are the spatial coordinates on the image, andC = {C(i, j)} is the ideal uncorrupted

and clean image, the damaged image by additive noiseD = {D(i, j)} can be described as:

D =































C : with probability 1−P

C+N : with probability P

(2.1)

whereP (i.e. 0≤ P ≤ 1) presents the noise density, andN is the noise intensity value or the

noise amplitude. In this Equation,N can have a positive or a negative value.
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Impulse noise can be characterized by a long-tail probability distribution∗ of N, and thus

impulse noise can be considered as an additive long-tailed noise [17–20]. The probability

density functionp for impulse noise can be modelled by some skewed distributions. Furutsu

and Ishida in 1961 [17] used a combinations of Poisson distributions to present impulse noise.

In 1988, Lin and Willson Jr [18] presented impulse noise by using a log-normal distribution as

given as:

p(|N|) =
1

√
2π|N|

exp

(

−
1
2

ln2
(

|N|exp(0.5)
¯|N|

))

(2.2)

where ¯|N| is the average value of|N|. However, the popularity of impulse noise models that are

described by skewed probability distributions, such as thework by [17] and [18], are decreasing

in recent research papers.

From Equation (2.1), for the case of the corrupted pixels, the results ofC+N actually can

take any value becauseN is a random value. Therefore, in recent literatures, Equation (2.1) has

been simplified and replaced with Equation (2.3)†[21–23].

D =































C : with probability 1−P

N : with probability P

(2.3)

This Equation shows that for most of the current impulse noise models, the corrupted pixels

are directly replaced with the noise intensity values [24–28]. Unlike Equation (2.1), in this

Equation, the value ofN is restricted to positive values only. If the image is quantized intoL

intensity levels,N can take any values between 0 toL−1 [25].

The distributionp of noiseN in Equation (2.3) can be defined in many ways. Some re-

∗A long-tailed probability distribution is a distribution which has relatively high probability regions far from the
mean or median values.
†Due to this simplification, in some literatures, impulse noise is neither considered as an additive noise nor a

multiplicative noise, but as another class of its own.

6



searchers definep as a uniform distribution, which is:

p(N) = P/L 0≤ N ≤ L−1 (2.4)

For this case, the noise amplitudes occupy all possible intensity values, from 0 toL−1. This

type of impulse noise is widely known as random-valued impulse noise. Random-valued im-

pulse noise have been studied in many works, such as [5, 25, 26, 29–34].

Other widely used practical impulse noise model is known as fixed-valued impulse noise.

In this model,N in Equation (2.3) is restricted to the minimum or the maximumintensity value

(i.e. 0 orL−1) ‡. As the noise with intensity 0 appears as black pixels on the image, this noise

is referred as pepper noise. On the other hand, the noise withintensityL−1 appears as white

pixels on the image. This type of noise if referred as salt noise. Therefore, fixed-valued impulse

noise is also known as salt-and-pepper noise§. If D is the intensity of imageD, fixed-valued

impulse noise is given by the following probability densityfunction:

p(D) =



















































1
2P : pepper;D = 0

1−P : noise free pixels;0≤ D ≤ L−1

1
2P : salt;D = L−1

(2.5)

Because of its simplicity and practicality, this noise model is the most popular impulse noise

model used in literatures, such as the works in [35–56].

A simple modification can be done to Equation (2.5) by allowing unequal densities of salt

‡It is easier to understand the idea behind this noise model byusing equation (2.1). In this equation, impulse
noiseN can take positive or negative value. It is assumed that the magnitude ofN is very large, such thatC(i, j)+
N(i, j) will produce values either greater thanL−1 or lower than 0. Due to quantization process, these values are
truncated toL−1 or 0 [11].
§Sometimes, this type of noise also been referred as data-drop-out or spike noise [11].
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noise and pepper noise, as given as:

p(D) =



















































P1 : pepper;D = 0

1−P : noise free pixels;0≤ D ≤ L−1

P2 : salt;D = L−1

(2.6)

whereP1+P2 = P. This noise model has been used in some recent literatures, such as [34, 49–

56]. This type of noise is called unipolar when eitherP1 or P2 is zero [11].

A variation to Equation (2.6) is obtained by allowing salt noise and pepper noise to be

presented by two intensity ranges. Salt noise occupies highintensity range, while pepper noise

occupies low intensity range. Each range is presented bym intensity levels. This noise model

is given as:

p(N) =



















































P1/m : pepper;0 ≤ N <m

1−P : noise free pixels;0≤ N ≤ L−1

P2/m : salt;L−1−m< N ≤ L−1

(2.7)

Some example of works that are using this noise model can be found in [34, 52–56].

Equation (2.7) can be simplified by assuming that the densityof salt noise is equal to the

density of pepper noise. This is given as:

p(D) =



















































P/2m : pepper;0 ≤ D <m

1−P : noise free pixels;0≤ D ≤ L−1

P/2m : salt;L−1−m< D ≤ L−1

(2.8)

Actually, whenm is equal to one, this equation is equivalent to Equation (2.5), which is fixed-

valued impulse noise. On the other hand, whenm is equal toL/2, this model resembles Equa-
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tion (2.4), which is random-valued impulse noise. This noise model has been used in [52–56].

Universal impulse noise, or also known as mixed impulse noise, is given as a combination

between random-valued impulse noise as defined by Equation (2.4), with fixed-valued impulse

noise as defined by Equation (2.5). In this model, the contamination of the image is equally

contributed by these two well-known impulse noise models, which is 1
2P random-valued im-

pulse noise and12P fixed-valued impulse noise. Some works related to universalimpulse noise

can be found in [57–59].

2.2 Median Filter

A popular solution to deal with impulse noise is by using rank-order filters, or also known as

order-statistic filters. This type of filters is nonlinear and works in spatial domain. It uses slid-

ing window approach, where at each sliding iteration, only the value of the pixel corresponds

to the center of the window is changed. This value is obtainedbased on the ordered intensity

values of the pixels contained in the area defined by the filtering window [10, 11].

Among these rank-order filters, median based filters are one of the techniques to reduce

both bipolar and unipolar impulse noise [10, 11]. Generally, median filter uses median value in

its filtering process. The median valueX̃ of a sample is defined as [60]:

X̃ =































X(ns+1)/2 : ns is odd

0.5
(

Xns/2+X(ns+1)/2
)

: ns is even

(2.9)

whereX1,X2, . . . ,Xns are the intensity values, arranged in either increasing or decreasing order,

andns is the size of the sample. However, there are a lot of median filter variations. Therefore,

this section reviews some of the median filter techniques.
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2.2.1 Standard Median Filter (SMF)

Standard median filter (SMF), or also known as median smoother, has been introduced by

Tukey in 1971 [19]. The filtered imageF = {F(i, j)} from SMF can be defined by the following

equation [11, 61]:

F(i, j) =median(k,l)∈Wh,w{D(i +k, j + l)} (2.10)

whereWh,w is a sliding window of sizeh×w pixels centered at coordinates (i, j). The median

value is calculated by using Equation (2.9) withns= w×h.

In order to ease the explanation regarding to the operationsin SMF, one simple example

is given in Figure 2.1. Figure 2.1(a) shows an 8×8 portion of the damaged imageD. In this

example, the pixels at locations (40,91) and (42,92) are considered damaged by impulse noise

(i.e. salt-and-pepper noise). The image is then filtered by SMF, utilizing W3,3, which is a

sliding window of size 3×3 pixels. The origin of the filter , with coordinates (0,0), is located

at the centre of the window. The sliding window moves in raster fashion, starting from the top

left pixel towards the bottom right pixel. At each sliding window position, the corresponding

intensity of the output imageF(i, j) is calculated by using Equation (2.10). For example, when

the centre of the filter is located at coordinates (38,89) as shown in Figure 2.1(b),F(38,89) is

determined as:

F(38,89) = median(k,l)∈W3,3{D(38+k,89+ l)} (2.11)

= median{62,74,87,74,83,95,87,95,104}

= median{62,74,74,83, 87 ,87,95,95,104}

= 87
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Similarly, for Figure 2.1(c):

F(40,91) = median(k,l)∈W3,3{D(40+k,91+ l)} (2.12)

= median{104,116,128,116,255,137,128,137,147}

= median{104,116,116,128, 128 ,137,137,147,255}

= 128
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(a) Corrupted imageD
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(b) Sliding 3×3 window at coordinates (38,89)
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(c) Sliding 3×3 window at coordinates (40,91)
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(d) Restored imageF

Figure 2.1: Example of restoring corrupted image using SMF
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The corresponding output image portion is shown in Figure 2.1(d). In this figure, salt-and-

pepper noise has successfully been removed . However, several uncorrupted intensity values

(i.e. at positions (36,87), (37,88), (38,89), (39,90), (39,92), (40,92), (41,90), (41,92), (42,91),

(42,93) and (43,94)) are also altered by SMF. This undesired situation happens because SMF

does not differentiate between uncorrupted from corrupted pixels. Besides, large filter of SMF

will introduce a significant distortion into the image [62].

It is worth noting that Equation (2.9) is normally using sorting algorithm such as quick-sort

or bubble-sort to arrange the samples in increasing or decreasing order. Even though sorting

algorithm can be easily implemented, sorting procedure requires long computational time when

Wh,w is a large filter because the number of samples (i.e.ns = w×h) is big [61]. Thus, in order

to avoid from using any direct sorting algorithm, the use of local histograms has been proposed

for median value calculation. The time required to form local histogram can be reduced by

using a method proposed by Huang et al. [63], where instead ofupdatingh×w samples, only

2h samples need to be updated in each sliding iteration.

2.2.2 Weighted Median Filter (WMF)

One of the branches of median filter is weighted median filter (WMF). WMF was first intro-

duced by Justusson in 1981 [64], and further elaborated by Brownrigg [65]. The operations

involved in WMF are similar to SMF, except that WMF has weightassociated with each of

its filter element. These weights correspond to the number ofsample duplications for the cal-

culation of median value. The filtered imageF = {F(i, j)} from WMF can be defined by the

following equation [5, 40, 62, 66]:

F(i, j) =median(k,l)∈Wh,w{Wh,w(k, l)�D(i +k, j + l)} (2.13)
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where operator� indicates repetition operation. The median value is calculated using Equation

(2.9) withns=
∑

Wh,w(k, l). Normally, the filter weightWh,w( j,k) is set such that it will decrease

when it is located away from the centre of the filtering window. By doing so, it is expected that

the filter will give more emphasis to the central pixel, and thus improve the noise suppression

ability while maintaining image details [66–69].
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(c) Restored imageF

Figure 2.2: Example of restoring corrupted image using WMF

Figure 2.2 presents an example of an image processed by usingWMF. In this example,

the same corrupted input image as shown in Figure 2.1(a) is used. This image is processed by

WMF of size 3× 3 pixels, with the filter’s weights or coefficients are given by Figure 2.2(a).

In this example, the weight gives more emphasis to the centrepixel. The corresponding output

pixel, F(i, j) is found by using Equation (2.13). For example, when the window is located at
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coordinates (38,89), as shown in Figure 2.2(b), the corresponding output intensity is:

F(38,89) = median(k,l)∈W3,3{W3,3(k, l)�D(38+k,89+ l)} (2.14)

= median{1�62,2�74,1�87,2�74,3�83,2�95,1�87,2�95,1�104}

= median{62,74,74,87,74,74,83,83,83,95,95,87,95,95,104}

= median{62,74,74,74,74,83,83, 83 ,87,87,95,95,95,95,104}

= 83

The corresponding output image is shown in Figure 2.2(c). Compared with the related

result from SMF shown in Figure 2.1(d), both SMF and WMF successfully remove the impule

noise (i.e. salt-and-pepper noise) from the corrupted image. Yet, unlike SMF, WMF does

not change most of the uncorrupted pixels. Therefore this filter is better in preserving image

details. As can be seen in Figure 2.2(c), only uncorrupted pixels at locations (40,92) and (42,91)

are modified by WMF. However, the successfulness of weightedmedian filter in preserving

image details is highly dependent on the weighting coefficients, and the nature of the input

image itself. Unfortunately, in practical situations, it is difficult to find the suitable weighting

coefficients for this filter, and this filter requires high computational time when the weights are

large [70–72].

Some researchers [62, 73], proposed adaptive weighted median filters (AWMF), which is

an extension to WMF. By using a fixed filter sizeWh,w, the weights of the filter will be adapted

accordingly base on the local noise content. This adaptation can be done in many ways, mostly

based on the local statistics of the damaged image. For example, in [73], the weights of the

filter are defined as:
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Wh,w( j,k) =

〈

Wh,w(0,0)−c

(

σ2d
x̄

)〉

(2.15)

whereWh,w(0,0) is a preset weight for the central filter element,c is a preset scaling factor,d is

the distance of location (j,k) to coordinates (0,0), andσ2 and x̄ are the local variance and local

mean, respectively, defined by a sliding window of sizeh×w. The operator< . > presents the

rounding operation if the argument inside it is a positive value, otherwise it will truncate the

value to zero.

Centre weighted median filter (CWMF) is a special type of WMF.CWMF has the weights

defined as follow:

Wh,w(k, l) =































nw : (k, l) = (0,0)

1 : otherwise

(2.16)

wherenw is an odd integer, with value greater or equal to one. Coordinates (k, l)= (0,0) presents

the centre of the filter. Whennw is set to one, CWMF becomes SMF. Large value ofnw is good

in preserving details but worse in noise cancellation. Whennw is greater or equal toh×w

(i.e. the area covered by filterWh,w), CWMF turns into the identity filter. In this condition,

CWMF does not filter the image, and thus the output image will become exactly the same as

its corresponding input [68].

2.2.3 Iterative Median Filter

Several impulse noise filtering methods require iterative filtering procedure in their implemen-

tation [29, 42, 74–76]. Iterative method requires the same procedure to be repeated several

times. In general, iterative median filter withni iterations, requiresni −1 temporary imagesT
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(i.e. T1,T2, . . .Tni−1). Iterative SMF can be defined by Equation (2.17) and depicted by Figure

2.3. Iteration procedure enables median filtering process to use smaller filter size and reduce

the computational time, while maintaining local features or edges of the image.

T1(i, j) = median(k,l)∈Wh,w{D(i +k, j + l)} (2.17)

T2(i, j) = median(k,l)∈Wh,w{T1(i +k, j + l)}

...

F(i, j) = median(k,l)∈Wh,w{Tni−1(i +k, j + l)}

SMF SMF
Tni-1T1

D
T2

SMF F...

Figure 2.3: Block diagram presenting iterative median filter

The number of iterationsni can be set by the user, or the iteration process stops when the

output image converged (i.e. the current output image is equal to the previous output image).

As an example, by taking the image shown in Figure 2.1(a) as the input image, the temporary

imagesT from iterative median filter, which uses a sliding window of size 3× 3 pixelsW3,3,

are shown in Figure 2.4. The colour numbers in this figure indicate the intensity value of the

pixels that have been changed with respect to the previous iteration. Thus, in this example,

the processed image is already converged at the second iterations. Therefore, the output at the

second iteration can be taken as the final output image. However, in practical, the number of

iterations needed is dependent to the level of corruption and the nature of the input image itself.
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(a) Temporary image after one iterationT1

50      53      67      81      96     111    126    140 

53      67      74      87     100    114    129    143

67      74      87      95     107    120    134    148

81      87      95     107    116    134    140    154

96    100     107    116    134    140    149    161

111   114     120    134    140    149    158    170

126    129    134    140    149    158    170    179

140    143    148    154    161    170    179    191  

...   87      88      89      90      91      92      93     94       ... 

..
. 
 4

3
  
  
  
4
2
  
  
  
4
1
  
  
  
4
0
  
  
  
3
9
  
  
 3

8
  
  
  
 3

7
  
  
  
3
6
  
  
..
. 

j-coordinate

i-
c
o
o
rd

in
a
te

(b) Temporary image after two iterationsT2
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(c) Temporary image after three iterationsT3
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(d) Temporary image after four iterationsT4

Figure 2.4: Example of restoring corrupted image using iterative median filter

2.2.4 Recursive Median Filter

Several researches in median filtering [72, 77–81], use recursive approach in their methodol-

ogy. Theoretically, recursive median filters can be considered analogous to infinite impulse

response (IIR) filter because their outputs at certain position are determined not only from the

input intensities, but also from the calculated outputs at previous locations. In implementation

of recursive median filter, normally the degraded image and the filtered image share the same

data array.

An example of image processed by recursive median filter of size 3× 3 pixels, W3,3, is
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shown in Figure 2.5. The corrupted image, which is the input for this filter, is shown in Figure

2.1(a). The coloured values in Figures 2.5(a) and (b) present the already processed pixels,

which have been updated into the input image. For example, Figure 2.5(a) shows the filter

when it is at coordinates (40,91). At this position, the median value is calculated as:

F(40,91) = median(k,l)∈W3,3{D(40+k,91+ l)} (2.18)

= median{107,116,134,116,255,137,128,137,147}

= median{107,116,116,128, 134 ,137,137,147,255}

= 134

This obtained value is then updated directly into the input image. Therefore, the calculation of

the median value at coordinates (40,92) as shown in Figure 2.5(b) is:

F(40,92) = median(k,l)∈W3,3{D(40+k,92+ l)} (2.19)

= median{116,134,140,134,137,149,137,147,158}

= median{116,134,134,137, 137 ,140,147,149,158}

= 137

In this method, the already processed pixels are now considered as noise free input pixels.

Thus, by replacing the input pixels with these values, it assumes that the median value calcula-

tion will be more accurate. However, if the filter fails to remove the noise at previous locations,

the error might be propagated to other area of the image. Furthermore, it is worth noting that

the result from recursive median filter is dependent to the direction of filtering.
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(a) Sliding 3×3 window at coordinates (40,91)

50      53      67      81      96     111    126    140 

53      67      74      87     100    114    129    143

67      74      87      95     107    120    134    148

126    129    134    140    149      0     168    179

140    143    148    154    161    170    179    189  

...   87      88      89      90      91      92      93     94       ... 

..
. 
 4

3
  
  
  
4
2
  
  
  
4
1
  
  
  
4
0
  
  
  
3
9
  
  
 3

8
  
  
  
 3

7
  
  
  
3
6
  
  
..
. 

(b) Sliding 3×3 window at coordinates (40,92)
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(c) Restored imageF

Figure 2.5: Example of restoring corrupted image using recursive median filter

2.2.5 Directional Median Filter

Directional median filter, or also known as stick median filter, works by separating its 2-D filter

into several 1-D filter components [5, 53, 54, 59, 82]. Each filter component or stick, presented

as a straight line, corresponds to a certain direction or angle θ. For a window of sizeh×w

pixels, there areh+w−2 sticks that will be used. The computed median values from these 1-D

filters are then combined to obtain the final result. In [82], the output intensity is defined as:

F(i, j) =max
{

median(k,l)∈Wθ {D(i +k, j + l)}
}

(2.20)
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whereWθ is the stick. Here, the output intensity is defined as the largest median value deter-

mined at each location.
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(a) StickW0◦ at coordinates (38,89)

41      53      67      81      96     111    126    140 

140    143    148    154    161    170    179    189  

...   87      88      89      90      91      92      93     94       ... 

..
. 
 4

3
  
  
  
4
2
  
  
  
4
1
  
  
  
4
0
  
  
  
3
9
  
  
 3

8
  
  
  
 3

7
  
  
  
3
6
  
  
..
. 

  

(b) StickW45◦ at coordinates (38,89)
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(c) StickW90◦ at coordinates (38,89)
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(d) StickW135◦ at coordinates (38,89)

Figure 2.6: Example of restoring corrupted image using directional median filter

Figure 2.6 shows an example of the operation involved in calculating the output intensity

at locations (38,89), by taking Figure 2.1(a) as the damagedimage. The size of the filter used

is 3×3, therefore there are (3+3−2) = 4 individual sticks are used. These sticks correspond

to angleθ = 0◦,45◦,90◦, and 135◦. The output intensity at this position,F(38,89) is calculated
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as follow:

F(38,89) = max
{

median(k,l)∈W0◦ {D(38+k,89+ l),median(k,l)∈W45◦ {D(38+k,89+ l),

median(k,l)∈W90◦ {D(38+k,89+ l),median(k,l)∈W135◦ {D(38+k,89+ l)}
}

(2.21)

= max{median{74,83,95},median{87,83,87},median{95,83,74},

median{104,83,62}}

= max
{

median{74, 83 ,95},median{83, 87 ,87},median{74, 83 ,95},

median{62, 83 ,104}
}

= max{83,87,83,83}

= 87

2.2.6 Switching Median Filter

Nowadays, one of the popular median filtering approaches is switching median filter, or also

known as decision based median filter [4, 20, 25, 26, 30, 32, 34–44, 46, 47, 50–52]. Switch-

ing median filter tries to minimize the undesired alterationof uncorrupted pixels by the filter.

Therefore, in order to overcome this problem, switching median filter checks each input pixel

whether it has been corrupted by impulse noise or not. Then itchanges only the intensity of

noisy pixel candidates, while left the other pixels unchanged. Normally, switching median fil-

ter is built from two stages, as shown in Figure 2.7. The first stage is for noise detection, while

the second stage is for noise cancellation.

Noise detection
M

D FNoise cancellation

Figure 2.7: Block diagram presenting switching median filter
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The output from the noise detection stage is a noise maskM . This mask is a binary mask,

and normally defined as follow:

M(i, j) =































1 : impulse noise candidate

0 : otherwise

(2.22)

Noise detection procedure used by researchers are normallydepending on the noise model been

used. For fixed-valued impulse noise (i.e. salt-and-peppernoise), mostly the noise detection is

done by thresholding the intensity values of the damaged image. Other popular noise detection

methods include by checking the difference between intensity of the current pixel with its

surrounding, inspecting the difference of the damaged image with its median filtered versions,

or by applying some special filter. Next, maskM will be used in the noise cancellation stage.
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(b) Restored imageF

Figure 2.8: Example of restoring corrupted image using switching median filter

In noise cancellation stage, only pixels withM = 1 are processed by the median filter. For

the calculation of median, only "noise-free" pixels (i.e. pixels with M = 0) are taken as the

sample. This can be defined as:

F(i, j) =median(k,l)∈Wh,w;M(i+k, j+l)=0{D(i +k, j + l)} (2.23)
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Figure 2.8 shows an example for this procedure. In this example, the damaged image is already

shown in Figure 2.1(a). Let assume that Figure 2.8(a) shows aportion of maskM . In this

figure, only pixels at positions (40,91) and (42,92) are detected as impulse noise from the noise

detection stage. Therefore, only this two pixels are processed in the noise cancellation stage.

For example, at coordinates (40,91), the output intensity calculated by this stage, by using a

window of size 3×3 pixelsW3,3, is:

F(40,91) = median(k,l)∈Wh,w;M(40+k,91+l)=0{D(40+k,91+ l)} (2.24)

= median{104,116,128,116,137,128,137,147}

= median{104,116,116, 128, 128,137,137,147}

= (128+128)/2 = 128

Similarly, at coordinates (42,92):

F(42,92) = median(k,l)∈Wh,w;M(42+k,92+l)=0{D(42+k,92+ l)} (2.25)

= median{137,147,158,149,168,161,170,179}

= median{137,147,149, 158, 161,168,170,179}

= (158+161)/2 = 160

2.2.7 Adaptive Median Filter

Actually, the concentration of impulse noise on an image is varied because impulse noise is

a random noise. Therefore, there are regions of the image with high level of corruption, and

there are also regions with low level of corruption. For an effective noise filtering process, a

larger filter should be applied to regions with high level of corruption. In contrast, a smaller

filter should be applied to regions with low level of corruption. Therefore, many works, such
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as [35, 38–40, 50–52, 83–85], have proposed methods that areable to adjust the size of the

filter accordingly based on the local noise content. Becausethe size of the filter is adapted to

the local noise content, this type of median filter is known asadaptive median filter.

Commonly, the filter size at each processing locations is initially set to 3×3. The size of

the filter is then gradually expanding until it met certain criteria. These criteria can include

the number of potential noise free pixels, local mean, localmaximum, local minimum or local

median value. Sometimes, these criteria can never be met. Therefore, some methods restrict

the expansion of the filter up to certain size only. Although adaptive median filters are good

in restoring image corrupted by impulse noise, these filtersnormally require considerably long

computational time when the image is highly corrupted.

2.2.8 Median Filter Incorporating Fuzzy Logic

In order to preserve the local details of the image, median filter should only change the intensity

of corrupted pixels on the damaged image. However, it is veryto difficult detect the corrupted

pixels from this image correctly. Even for fixed-valued impulse noise (i.e. salt-and-pepper

noise), where the noise only takes values 0 andL−1, simple thresholding method still cannot

classify the pixels effectively. This is because some of the uncorrupted pixels arealso been

presented by these two values. Thus, some researchers incorporate fuzzy logic approach into

median filtering process [3, 14–16, 21, 24–26, 37, 41, 53, 55].

There are several ways on how fuzzy logic been used in median filtering process. Fuzzy

logic can be used to grade how high a pixel has been corrupted by impulse noise. Normally,

based on this fuzzy degradation measure, a proper correction will be applied. On the other

hand, some of the methods use fuzzy logic as a decision maker that selects a proper filter, from

a filter bank, for a given input image.
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