
ROLE OF CYCLOOXYGENASES IN ZEBRAFISH OOGENESIS AND 

THEIR TRANSCRIPTIONAL REGULATION BY PEROXISOME 

PROLIFERATOR ACTIVATED RECEPTOR GAMMA 

 

 

by 

 

 

VANI KHARE 

 

 

Thesis submitted in fulfillment of the requirements  

for the degree of  

Doctor of Philosophy 

 

 

FEBRUARY 2013 

 

 

 

 

 



 

 

ii 

 

DEDICATION 

 

I dedicate this thesis to my father Dr. Prem Kumar Khare, a scientist, a teacher and 

my inspiration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

iii 

 

ACKNOWLEDGEMENT 

It is my privilege and pleasure to express my gratitude to those individuals who have 

made this work possible. 

First of all, I’d like to thank Professor Alexander Chong, my supervisor, for 

providing me the opportunity to work in his lab. He gave me the space to think and 

create even as he made himself available to answer my every query, no matter how 

trivial, and also to correct me when I lost my way. I am deeply honored to be his 

student.  

 Thanks are also due, in no small measure, to Dr. Tengku Sifzizul Tengku 

Muhammad for helping me understand the concepts of promoter study and providing 

me access to his lab. I’d also like to thank the IPS staff for being so kind and helpful 

during my PhD tenure.  Needless to say, I also feel grateful towards the University 

Sains Malaysia (USM) for providing me with a Fellowship, thereby supporting me 

financially during my stay in Penang.  

It is my pleasure to thank all my labmates - Meng Kiat, Sze Huey, Hung Huey, 

Wang Kah Loon, Phiak Siew, Guat Siew and Wai Kwan - for helping me out in the 

lab and for sharing joyful moments with me during this fulfilling journey. I’d also 

like to thank the lab staff and technicians for providing me support during my 

experiments. 

I am so grateful to my friends for their constant support throughout. Keith , thanks 

for being my sunshine and cloning expert. Enyu, thanks for being the best coffee 

mate and protein guru. Sai, thanks for the kenari flights and Malay translations. 



 

 

iv 

Kuan Shern, thank you for the wonderful stories. I truly enjoyed being with you guys 

and never for once I felt like I an outsider in your presence. Eshwar, thanks for being 

patient and editing this thesis even though you are busy becoming a famous writer 

and RNA extraction is mystifying territory to you. Pankaj, thank you for giving me 

zinc finger protein concept and helping me understand not only EMSA but also that 

perplexing game called cricket.  

I’d like to thank some very successful and strong women who are my friends for life 

and from whom I have learned to persevere and triumph. Mumtaz Becker, thanks for 

making me realize that nothing is impossible and that the sky is the limit. Lekshmi 

Nair, thanks for teaching me that the greatest pleasure lies in the small acts of love 

towards the loved ones. Nisha Padmanabhan, thank you for proactively encouraging 

me to get a doctorate. You are the reason why this journey began in the first place. 

Annette Jayaram, nothing I write will do justice to the role you have played all 

along. That is why I am just mentioning your name and leaving it at that. 

I’d like to thank my family, my mom Mrs Veena Khare, my father-in-law Mr. Ram 

Bahadur Khare, my brother Varun and my sister-in-law Shweta. Thank you being 

there and believing in me. 

Finally, I’d like to thank the two most important men of my life, Rahul and Siddhant. 

Rahul, I’d have never been able to do this work alone. You have provided me the 

space, encouraged my dreams and nurtured my thoughts. Thanks for putting up with 

my frustration after each failed experiment. You have been a pillar of strength for 

me.  Thanks for bestowing me with your love and support.  You have been my best 

friend and life partner in the truest sense and I am honored to be your wife.  



 

 

v 

Siddhant, mamma wants you to know that you are the most wonderful thing that has 

happened to me. Thanks for being so understanding and letting mamma go for work. 

Mamma has missed many precious first moments of your childhood, but you kept 

showering me with unconditional love and a smile that can melt any heart. Being 

your mamma is my best achievement so far. I love you “Sid”. 

Lastly I’d like to acknowledge my father, who cultivated my interest in science and 

research. He was my friend, philosopher and guide. He has always been the 

inspiration for the path that I have chosen for myself.  

           

Vani Khare                                                                                          February 2013 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

vi 

 

 

CHAPTER   1:  INTRODUCTION  

 1.1     Background 1 

 1.2     Objectives                 4 

CHAPTER   2:  LITERATURE REVIEW  

                  2.1      Cyclooxygenase 5 

 2.1.1 Historical background of Cyclooxygenase 6 

 2.1.2 Discovery of two Cyclooxygenase isozymes 6 

 2.1.3 Cyclooxygenase-1 (COX-1) 8 

 2.1.4 Cyclooxygenase-2 (COX-2) 9 

 2.1.5    Structure of Cyclooxygenase protein 10 

 2.1.6 Evolution of Cyclooxygenase 13 

 2.1.7 Mode of Action of Cyclooxygenase enzyme 15 

 2.1.8 Functional Expression of Cyclooxygenase 16 

TABLE OF CONTENTS 

  Page 

ACKNOWLEDGEMENT  iii 

TABLE OF CONTENTS  vi 

LIST OF TABLES  Xi 

LIST OF FIGURES  Xii 

LIST OF SYMBOLS  Xiv 

LIST OF ABBREVIATIONS  Xv 

ABSTRAK  Xvii 

ABSTRACT  Xix 



 

 

vii 

 2.1.9 Physiological and pathophysiological functions of 

Cyclooxygenase 

18 

 2.1.10 Role of cyclooxygenases in female reproduction 20 

 2.1.11 Regulation of Cyclooxygenase 23 

2.2 Peroxisome proliferator activated receptor gamma (PPARγ) 25 

 2.2.1 Structure, function and tissue distribution of PPAR 

isoforms 

26 

 2.2.2    Activation of PPAR 28 

 2.2.3 PPAR ligands and cofactors 30 

 2.2.4    Peroxisome proliferator response element 30 

 2.2.5 Role of PPARγ in oogenesis 31 

 2.2.6    PPARγ mediated regulation of genes involved in 

oogenesis 

33 

 2.2.7  PPARγ mediated regulation of Cyclooxygenase 34 

2.3 Vertebrate oocyte development (Oogenesis) 36 

 2.3.1 Meiotic arrest (Oocyte growth and vitellogenesis) 38 

 2.3.2 Meiotic resumption (Oocyte maturation) 38 

2.4 Zebrafish as a model organism for studying the role of 

cyclooxygenase in oocyte development and maturation 

39 

 2.4.1 Cyclooxygenase in zebrafish 41 

 2.4.2 Zebrafish PPARγ 41 

 2.4.3 Zebrafish oogenesis 42 

 2.4.4 Developmental stages of Zebrafish oocytes 44 

 

 

CHAPTER  

 

 

3 :  MATERIALS AND METHOD 

 

 

 

3.1 Materials 51 

3.2 Media and stock solutions 51 



 

 

viii 

3.3 Chemicals and consumables          51 

3.4 Methods              55 

 3.4.1 Zebrafish maintenance              55 

 3.4.2 Oocyte collection             56 

 3.4.3 Cell line culture and maintenance            57 

 

CHAPTER  

 

4 :  EXPRESSION OF COX-1 AND COX-2 IN 

VITELLOGENIC AND MATURE ZEBRAFISH 

OOCYTES 

 

58 

4.1 Introduction 58 

4.2 Method 61 

 4.2.1    Total RNA extraction 61 

 4.2.2 Primer Design 61 

 4.2.3  Amplification, Cloning and Analysis of mRNA 

fragment 

62 

 4.2.4 Semi-quantitative real time PCR analysis 63 

4.3 Results 65 

 4.3.1 RNA Isolation 65 

 4.3.2 Amplification and validation of zebrafish COX-1 and 

COX-2 fragments 

66 

 4.3.3  Expression analysis of COX-1 and COX-2 in 

vitellogenic and mature stage of oocytes 

69 

4.4  Discussion 

 

73 

CHAPTER  5 :  EFFECT OF ANTISENSE MORHOLINO 

MEDIATED KNOCKDOWN OF COX-1 ON IN VITRO 

MATURATION OF ZEBRAFISH OOCYTES 

         75 

5.1 Introduction               75 

5.2 Methods          80 



 

 

ix 

 5.2.1 Morpholino design, order and storage 80 

 5.2.2 Amplification of PCR template for in vitro 

transcription and translation 

81 

 5.2.3 In vitro transcription and translation for the expression 

of PCR template 

81 

 5.2.4 Protein extraction from the oocytes 82 

 5.2.5 SDS PAGE and Western blotting 82 

 5.2.6 Morpholino microinjection in zebrafish oocytes 83 

 5.2.7 In vitro maturation assay 85 

5.3 Results 85 

 5.3.1 Determination of Efficacy of Morpholino 85 

 5.3.2 Effect of COX-1 knockdown on in vitro maturation of 

zebrafish oocytes 

89 

5.4 Discussion 94 

 

CHAPTER  

 

6 :  TRANSCRIPTIONAL REGULATION OF COX BY 

PPARγ DURING OOGENESIS 

 

97 

6.1 Introduction        97 

6.2 Methods 99 

 6.2.1 Semi-quantitative Real Time PCR analysis of PPARγ 99 

 6.2.2 Bioinformatical analysis of COX-1 and COX-2 

promoter 

99 

 6.2.3 Extraction of genomic DNA from zebrafish ovary 100 

 6.2.4 Preparation of promoter reporter constructs of 

zebrafish COX-1 promoter 

100 

 6.2.5 Transient transfection of promoter reporter constructs 

in HepG2 cell lines 

102 

 6.2.6 Co-transfection of HepG2 cell lines with promoter 

reporter construct and pSVsport-PPARγ vector 

103 



 

 

x 

 6.2.7 Luciferase assay 103 

 6.2.8 Extraction of nuclear protein from zebrafish ovary and 

synthesis of probes 

104 

 6.2.9  Electrophoretic Mobility Shift Assay (EMSA) 105 

6.3 Result 107 

 6.3. 1 Expression of PPARγ in vitellogenic and mature 

oocyte 

107 

 6.3.2 In silico detection of PPRE sequence on COX-1 and 

COX-2 promoter of zebrafish 

110 

 6.3.3 The role of PPARγ in regulating the transcriptional 

activity of zebrafish COX-1 promoter 

112 

 6.3.4 PPARγ protein from zebrafish ovary binds to the 

putative PPRE site of COX-1 promoter 

118 

6.4 Discussion 120 

 

CHAPTER  

 

7:  CONCLUSION AND FUTURE STUDIES 

 

122 

7.1 Conclusion 122 

7.2 Future direction 124 

REFERENCES  127 

 

 

 

 

 

 

 



 

 

xi 

LIST OF TABLES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Page 

Table 3.1  List of culture media  52 

Table 3.2 List of stock solutions 52 

Table 3.3 List of chemicals and consumables 54 

Table 4.1  Primers used for real time PCR 62 

Table 6.1  Primers to generate deletion construct of COX-1 promoter 104 

Table 6.2  Position and sizes of five deletion constructs derived from zebrafish 

COX-1 promoter 

113 



 

 

xii 

LIST OF FIGURES 

  Page 

Figure 2.1 Gene structures of Human COX-1 and COX-2 8 

Figure 2.2 Domain structure of COX-1 and COX-2 11 

Figure 2.3 Dendrogram representing phylogenetic relationships between 

vertebrate COX-1 and COX-2 enzymes and invertebrate (Coral) 

COX enzymes 

14 

Figure 2.4 Mechanism of action of cyclooxygenases 16 

Figure 2.5 Schematic presentation of  regulatory elements in Human COX-1 

and COX-2 promoter 

24 

Figure 2.6 Structural and functional domains of PPARγ 28 

Figure 2.7 Mechanism of PPARγ action 29 

Figure 2.8 Impact of PPARγ on ovarian function 36 

Figure 2.9 Reproductive cycle of a mammalian female 37 

Figure 2.10 Amino acid alignment of zebrafish COX-1 and COX-2 with its 

human orthologs 

41 

Figure 2.11 Schematic drawing of five developmental stages of zebrafish 

oocytes 

43 

Figure 2.12 Zebrafish oocyte in different stages of development 45 

Figure 4.1 RNA extraction from zebrafish oocyte 66 

Figure 4.2 Amplification of COX-1 67 

Figure 4.3 Amplification of COX-2 68 

Figure 4.4 Sequence alignment of zebrafish COX-1 68 

Figure 4.5 Sequence alignment of zebrafish COX-2 69 

Figure 4.6 Melt curve analysis of COX-1 and COX-2 71 

Figure 4.7 mRNA expression of COX-1 and COX-2 72 

Figure 5.1 Structure of morpholino 77 

Figure 5.2 Mode of action of morpholino 78 



 

 

xiii 

Figure 5.3 In vitro measurement of COX-1 Morpholino efficacy 87 

Figure 5.4 In vivo measurement of COX-1 Morpholino efficacy  88 

Figure 5.5 Effect of COX-1 knockdown on oocyte maturation 92 

Figure 5.6

  

Graphical representation of COX-1 knockdown on oocyte 

maturation 

93 

Figure 6.1 pGL3 basic vector map 101 

Figure 6.2 Amplification and sequencing of PPARγ 109 

Figure 6.3 mRNA Expression of PPARγ in oocytes  110 

Figure 6.4 Position of PPRE on COX-1 A5 promoter sequence 111 

Figure 6.5 Amplification of COX-1 promoter constructs  114 

Figure 6.6 

 

Transfection of COX-1 promoter reporter constructs in HepG2 

cells 

116 

Figure 6.7 Co-transfection of A5 in HepG2 cells with pSVsport PPAR 

expression plasmid 

117 

Figure 6.8 Functional verification of putative PPRE present on COX-1 

promoter 

119 

 

 

 

 

 

 

 

 



 

 

xiv 

LIST OF SYMBOLS 

Nl Nanoliter 

µl Microliter 

Ml milliliter 

Ng nanogram 

µg microgram 

Mg milligram 

µM micromolar 

mM Gmail.com 

Α alpha 

Β beta 

Γ gamma 

Ω Omega 

Δ Delta 

 

 

 

 

 

 



 

 

xv 

 

LIST OF ABBREVIATIONS 

 

DNA Deoxyribonucleic Acid 

RNA Ribonucleic Acid 

mRNA messenger RNA 

PG Prostaglandin 

AA Arachidonic Acid 

PUFA Poly Unsaturated Fatty Acid 

LH Luteinizing Hormone 

FSH Follicle Stimulating Hormone 

EMV Early and mid vitellogenic 

MV Mid vitellogenic 

LV Late vitellogenic/Full grown 

M Mature 

GVBD Germinal Vesicle Break Down 

MO Morpholino 

mmMO Mismatch Morpholino 

DB Danieau Buffer 

PCR Polymerase Chain Reaction 

EMSA Electrophoretic mobility shift assay 

PAGE PolyAcrylamide Gel Electrophoresis 

TBE Tris Borate EDTA 

TE Tris EDTA 

PBS Phosphate Buffer Saline 

EDTA EthyleneDiamineTetraAceticAcid 



 

 

xvi 

TRIS Tris(hydroxymethyl)aminomethane 

TEMED Tetramethylethylenediamine 

APS Ammonium persulphate 

SDS Sodium dodecyl sulphate 

kDa Kilodalton 

kb Kilobase 

bp Basepair 

PVDF Polyvinylidene fluoride 

LB Luria Bertani 

dH2O Distilled water 

COX Cyclooxygenase 

PPAR Peroxisome Proliferator Activated Receptor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

xvii 

 

PERANAN SIKLOOKSIGENASES DALAM OOGENESIS DAN 

PERATURAN  TRANSKRIPSI  MEREKA OLEH RESEPTOR AKTIVASI 
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ABSTRAK 

 

Prostaglandin adalah perlu untuk kejayaan perkembangan dan kefungsian sistem 

pembiakan betina veterbrata. Sintesis prostaglandin bergantung kepada aktiviti 

pemangkin dua isobentuk siklooksigenase (COX-1 dan COX-2). Pelbagai penemuan 

telah menunjukkan bahawa kedua-dua isobentuk COX berperanan penting dalam 

penghasilan prostaglandin, dan juga semasa pertumbuhan, kematangan serta ovulasi 

oosit. Namun masih terdapat jurang maklumat tentang peranan COX-1 jika 

dibandingkan dengan COX-2 terutamanya di dalam pembiakan. Walaupun COX-2 

telah dikenalpasti sebagai penanda yang kukuh semasa ovulasi berlaku, pada masa 

yang sama fungsinya dalam perkembangan dan kematangan oosit masih perlu 

diterokai. Oleh itu, untuk membezakan peranan COX-1 dan COX-2 semasa 

kematangan dan ovulasi oosit ikan zebrafish, ekspresi mRNA kedua-dua isobentuk 

ini mula-mula dikaji dalam peringkat-peringkat oosit tersebut. Peningkatan ekspresi 

mRNA COX-1 folikel zebrafish diperhatikan berlaku semasa oosit tumbuh dan 

matang. Walau bagaimanpun, ekspresi COX-2 telah terencat secara drastik dalam 

oosit berkenaan. Lebih-lebih lagi, kepentingan fungsi COX-1 dalam kematangan 

oosit telah dikenalpasti melalui eksperimen penindasan penghantaran-pengantara 

morfolino telah mendedahkan bahawa terdapat penurunan peratus folikel vitelogenik 

yang melalui kematangan spontan in vitro. Tambahan lagi, siasatan tentang regulasi 

COX-1 dan COX-2 oleh reseptor aktivasi pembiakan peroksisom gamma (PPARγ) 



 

 

xviii 

yang merupakan peregulasi COX dalam pelbagai aspek kesuburan betina juga 

dijalankan. Analisis PCR-masa nyata menunjukkan penurunan PPARγ yang 

signifikan dalam folikel zebrafish yang sedang berkembang dan matang. Apabila 

dibandingkan dengan COX-1, PPARγ menunjukkan corak mRNA terbalik yang 

mana ianya menyokong fakta bahawa regulasi transkripsi pengantara PPARγ 

menghasilkan perencatan gen sasaran. Tiada kolerasi dilihat antara COX-2 dan corak 

expresi PPARγ. Untuk mengesahkan kebarangkalian bahawa terdapat regulasi 

transkripsi langsung pengantara PPARγ untuk COX-1 dan COX-2, fragmen 

promoter 3kb kedua-dua gen diimbas menggunakan perisian Matinspector untuk 

kehadiran tapak pelekatan PPARγ (PPRE). PPRE telah ditemui di kawasan -2573/-

1952 bp promoter COX-1. PPRE tidak ditemui pada COX-2, yang mana ini 

memansuhkan anggapan bahawa gen ini diregulasi secara langsung oleh PPARγ. 

Keputusan juga menunjukkan bahawa PPARγ telah menekan COX-1 melalui PPRE 

yang terletak di kawasan -2573/-1952 bp menggunakan sel-sel HepG2 yang telah di 

transfeksi dengan pengantar luciferase yang terdiri daripada 2.7 kb promoter COX-1 

ikan zebrafish. Esei anjakan mobiliti elektroforetik menunjukkan pelekatan khusus 

PPARγ kepada kawasan PPRE. Keseluruhannya, kajian ini telah menyerlahkan 

fungsi COX-1 dalam kematangan oosit dan potensi regulasi oleh PPARγ. 
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ROLE OF CYCLOOXYGENASES IN ZEBRAFISH OOGENESIS AND 

THEIR TRANSCRIPTIONAL REGULATION BY PEROXISOME 

PROLIFERATOR ACTIVATED RECEPTOR GAMMA 

 

ABSTRACT 

 

Prostaglandins are required for the successful development and functioning of the 

female reproductive system in vertebrates. The synthesis of prostaglandin relies on 

the catalytic activities of two cyclooxygenase isoforms (COX-1 and COX-2). 

Various reports emphasize that both COX isoforms are essential for the production 

of prostaglandin during various stages of oogenesis, such as oocyte growth, 

maturation and ovulation. In comparison to COX-2, there is a paucity of knowledge 

on the role of COX-1, especially in oogenesis. At the same time, while COX-2 is a 

well established marker in ovulation, its function in growth and maturation of oocyte 

requires further exploration. This study, thereby, distinguishes the role of COX-1 

and COX-2 during zebrafish oocyte growth and maturation, firstly by examining the 

mRNA expression of both the isoforms in these oocyte stages. An increase in 

zebrafish follicle COX-1 mRNA expression was observed as the oocytes develop 

and mature. However, the expression of COX-2 was drastically inhibited in these 

oocytes. Further, functional importance of COX-1 in oocyte maturation was verified 

in a morpholino delivery-mediated knockdown experiment, which revealed a 

decrease in the percentage of zebrafish vitellogenic follicles undergoing in vitro 

spontaneous maturation. Additionally, regulation of COX-1 and COX-2 by a known 

COX regulator, peroxisome-proliferator-activated receptor gamma (PPARγ), which 



 

 

xx 

also regulates various aspects of female fertility, was investigated. Real time-PCR 

analysis showed a significant reduction of PPARγ in developing and mature 

zebrafish follicles. When compared with COX-1, PPARγ exhibited inverse mRNA 

pattern in oocytes, which was in agreement with the fact that PPARγ mediated 

transcriptional regulation results into the inhibition of its target gene. No such 

correlation was seen in between COX-2 and PPARγ expression pattern. To confirm 

the possibility of the PPARγ mediated direct transcriptional regulation of COX-1 and 

COX-2, 3kb promoter fragments of both the genes were scanned using Matinspector 

software for the presence of PPARγ binding site (PPRE). The PPRE was found to be 

located within the -2573/-1952 bp region of COX-1 promoter. PPRE was not found 

on COX-2 promoter, which eliminated the possibility of this gene being directly 

regulated by PPARγ. Using HepG2 cells transfected with luciferase reporter 

constructs of 2.7 kb zebrafish COX-1 promoter, it was demonstrated that PPARγ 

transcriptionally repressed COX-1 through PPRE which was located at -2573/-1952 

bp region. Furthermore, electrophoretic mobility shift assay revealed the specific 

binding of PPARγ to this PPRE region. Overall, this study highlighted the function 

of COX-1 in oocyte maturation and its potential regulation by PPARγ
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  CHAPTER 1 

INTRODUCTION 

 

1.1 Background  

The occurrence of Cyclooxygenases (COX) pathway is essential for the 

normal functioning of vertebrate physiology. It affects various aspects of 

gastrointestinal, cardiovascular, muscular, renal, immunological and reproductive 

systems. Inhibition or overexpression in normal physiological conditions, or even 

normal expression of COX in abnormal physiological conditions, results in 

progression of diseases such as cancer, Alzheimer’s and heart disorders.COX act as 

the rate limiting enzymes in production of prostaglandin. COX  enzymatically 

derives prostaglandin from essential fatty acids (EFAs), specifically, arachidonic 

acid (AA) in almost all the nucleated cells of human body. Two isoforms of COX 

(COX-1 and COX-2) produce prostaglandin in the vicinity of the target cells by 

cyclizing and oxygenating AA in autocrine and paracrine manner.  

In this study, the role and regulation of COX is examined during oogenesis. 

Oogenesis is the process of development of the egg. It is one of the key events that 

determine the success of the reproductive process. Key features of reproduction such 

as establishment and continuation of pregnancy, embryo endurance and foetus 

development rely heavily on the health and quality of oocytes, acquired at the 

growth and maturation phase of oogenesis. A disrupted oogenesis not only results in 
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reproductive failure, but can also cause diseases in adults. As mentioned above 

oocyte growth and maturation are two critical events necessary to equip the oocytes 

with developmental competence. The oocytes go through the process of meiotic 

arrest at the time of their development from germ cell. Inside the ovary, they grow 

and attain vitality and vigor. Finally, with the advent of luteinizing hormone surge, 

they resume meiosis. The process of meiotic resumption is called maturation, a 

critical process necessary for the oocyte to attain haploid status and get ovulated as 

egg (ovulation). Even with numerous on-going studies, there is much to be 

discovered in the maturation process. 

Experiments performed on various animal models like Drosophila, mouse 

and zebrafish show that COX derived prostaglandins are indeed required for the 

successful oogenesis. The role of COX in ovulation is well-documented in humans 

and other vertebrates. Of the two isoforms, COX-2 is critically important for this 

process. The induction of COX-2 is believed to be the marker of ovulation. But at 

the same time, the role of COX-2 in oocyte maturation needs further exploration. It 

has been reported that COX-1 homologue of Drosophila is critical for oocyte 

maturation (Tootle & Spradling, 2008). However it has not been explored yet, if 

COX-1 is indispensible for maturation in higher animals as well. Recently, COX-1 

expression was reported during human oogenesis along with COX-2. Taken 

together, it still needs to be determined whether only one or both isoforms of COX 

are required for the production of prostaglandin during growth and maturation of 

oocytes. At the same time it is also interesting to know about the regulation of COX 

during oogenesis. 

When it comes to understanding the regulation of COX, its relationship with 

Peroxisome Proliferator Activated Receptor Gamma (PPARγ) cannot be overlooked. 
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PPARγ is a nuclear receptor which acts as a transcription factor. COX-2 isoform in 

human shows the presence of PPARγ binding site on its promoter and on frequent 

occasions, regulatory inhibition of COX-2 by PPARγ is demonstrated in humans. 

Similarly, reciprocal expression pattern between COX-1 and PPARγ is seen in 

diseases like cancer and Alzheimer’s. However, a direct regulation of COX-1 by 

PPARγ still needs to be proven. Interestingly, the fact that PPARγ is known to 

regulate most of the genes involved with oogenesis and female fertility suggests the 

possible control of this gene on prostaglandin production during oocyte development 

via COX regulation. 

The aim of this study is to demonstrate the functional role of COX isoforms 

in oocyte development and maturation. To facilitate the complete picture of COX 

regulation during oogenesis, this study also aims to subsequently determine the 

regulation of COX by PPARγ. Zebrafish has been used as the model organism in this 

study to achieve the aim mentioned above. Zebrafish is a well established model 

system which comes with a completely sequenced genome and the ease with which 

reverse genetics can be performed. Being a vertebrate, zebrafish physiological 

pathways and functions are highly similar to mammals and it does not come with the 

complications of mouse model or limitations of Drosophila model. The ability of 

zebrafish oocytes to mature in vitro is also taken into consideration when it was 

selected as the model used in this study. Zebrafish produces prostaglandins by COX 

enzymatic actions via AA pathway similar to human. 

This study focuses on providing a clearer understanding of COX regulation 

during oocyte development ( vitellogenesis in zebrafish ) and maturation. 

Nevertheless by doing so, this study also opens up a possibility to use this 

understanding in  acquiring high quality, healthy oocytes, in order to meet the 
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demands of breakthrough medical techniques like in vitro fertilization. Connection 

between PPARγ and COX can also lead towards the development of novel 

therapeutic approaches in diseases like cancer and Alzheimer’s  

1.2 Objective of the study   

Target of present study is to establish the role of COX isoforms and their 

regulation by PPARγ during oogenesis, especially maturation. To achieve this 

target following objectives were determined.   

 To ascertain the expression pattern of COX-1 and COX-2 isoforms in 

developing oocytes. 

 To determine the effect of functional absence of COX on oocyte 

maturation. 

 To elucidate the expression pattern of PPARγ in developing oocytes 

and its comparison with COX isoform expression. 

 To establish the interaction between COX and PPARγ. 

 To elucidate the regulation of COX promoter by PPARγ. 
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CHAPTER 2 

Literature Review 

 

2.1 Cyclooxygenase  

Cyclooxygenase genes are present in all the vertebrates examined. However 

their  

existence is not known in unicellular organisms, insects and plants. In mammalian 

species, two different COX isozymes, encoded by separate genes have been 

identified; COX-1 and COX-2. Both COX proteins have 60% conserved amino acid 

sequence. They have identical three dimensional structure and they catalyze the 

same reaction (Kujubu et al., 1991; O'Banion et al., 1991; W. L. Xie et al., 1991) 

Arachidonic Acids (AA) are produced by the enzymatic action of COX. AA 

is a polyunsaturated fatty acid present in the cell membranes. Basically it is a 20- 

carbon tetraenoic fatty acid (C20:4 ω6) that acts as a precursor for the synthesis of 

PGs (Bergstroem et al., 1964; Van D et al., 1964).  The process of conversion of AA 

to PGs involves two critical steps. In the first step, AA undergoes cyclization and 

oxygenation reactions catalyzed by COX enzyme in order to produce prostaglandin 

G2 (PGG2) which contains endoperoxyside. The second step involves the reduction 

of a hydroperoxyl present in PGG2 to a hydroxyl to form prostaglandin H2 (PGH2). 

This step is also catalyzed by COX, with the aid of a separate peroxidase site present 

on the enzyme. PGH2 is then utilized by numerous isomerases and oxidoreductases 

to produce various prostaglandins.  

 



 

 

6 

2.1.1 Historical background of Cyclooxygenase 

 COX was first purified from sheep and bovine seminal vesicle (Hemler & 

Lands, 1976; Minghetti et al., 1988). The purified COX enzyme demonstrated 

cyclooxygenase and peroxides activity on separate sites. It was categorized as 

integral microsomal membrane protein, based on the requirement of detergents like 

Tween-20 to solubilize it. The size of enzyme was approximately 67 kDa. COX was 

found to be inhibited by the action of popular nonsteroidal anti-inflammatory drugs 

(NSAIDs) (Vane & Williams, 1972). This discovery played a big role in determining 

the mode of actions of these popular drugs. 

In the early 1970s, COX was commonly known as prostaglandin synthetase.  

However due to the non-requirement of ATP in the COX mediated reaction it was 

changed to synthase. Currently this enzyme is popularly referred as cyclooxygenase 

(COX), prostaglandin G/H synthase (PGHS) or prostaglandin endoperoxide synthase 

(E.C.1.14.99.1). COX (now known as COX-1) was cloned and characterized by De 

Witt and Smith from sheep vesicular gland. They isolated 2.7 kilobase 

complementary DNA (cDNA) coding for 600 amino acids  (DeWitt et al., 1990). 

 

2.1.2 Discovery of two Cyclooxygenase isozymes 

Findings like inhibition of COX by acetaminophen in dog brain but not in  

rabbit spleen (Flower & Vane, 1972), and presence of two catalytically distinct COX 

activities in acetone powder extracts of sheep vesicular glands (Smith & Lands, 

1972)  led many researchers to speculate the presence of  more than one COX 

enzyme.  

At the same time, researchers also observed the variation in the time course 

of prostaglandin synthesis. In platelet-derived-growth factor-treated Swiss 3T3 cells, 
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prostaglandin synthesis was reported twice, once in a matter of few minutes and then 

after few hours (Habenicht et al., 1985) indicating two distinct enzyme mediated 

activities. However the biggest limitation in the acknowledgement of the presence of 

another COX isoform was the unavailability of specific antibody and nucleic acid 

probes. Using the antibody and probes derived from the COX ( COX-1) present in 

the seminal vesicle, only a marginal increase in COX was seen; while prostaglandin 

synthesis was increased many fold. 

In the late 80s and early 90s the possibility of existence of two 

cyclooxygenases became evident. Rosen and colleagues reported the presence of an 

inducible 4.0-kb mRNA together with a 2.8-kb mRNA in their northern blot probed 

by ovine seminal vesicle COX cDNA (Rosen et al.,1989).   

Finally, Simmons discovered the presence of another form of COX induced 

by Rous sarcoma virus in chicken embryo fibroblast. Analysis of the resultant 

protein sequence showed 59% amino acid similarity with sheep COX (COX-1) 

(Simmons et al.,1989).  In the same year, Herschman cloned and characterized the 

COX-2 cDNA from Swiss 3T3 cells induced by 12-O-Tetradecanoylphorbol to 

produce rapid prostaglandin (Kujubu et al., 1991; Varnum et al., 1989). However 

they called this gene TIS10. 

A partial predicted sequence of COX-2 from mouse cDNA was subsequently 

reported. Using this cDNA as probe, human homologue was identified and named as 

COX-2 (O’Banion et al.1991), finally establishing the existence of two 

cyclooxygenase enzymes, COX-1 and COX-2. 
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2.1.3 Cyclooxygenase-1 (COX-1) 

As mentioned in section 2.1.1, COX-1 enzyme was first purified from ovine 

and bovine vesicular glands. Since then, COX-1 cDNA of many species have been 

cloned successfully. COX-1 is a single copy gene mapped on chromosome number 9 

in human and chromosome number 1 in mouse. The length of COX-1 gene is >22 kb 

with the coding region of 1797 bp. In northern blot analysis, COX-1 cDNA 

hybridizes with 2.8 kb mRNA species (DeWitt et al., 1990; Diaz et al., 1992; 

Yokoyama et al., 1988; Yokoyama & Tanabe, 1989). Vertebrate COX-1 has 11 

exons and 10 introns.  3’ untranslated region of this gene contains only one 

polyadenylation site in all the species sequenced (Figure 2.1). 5’ flanking region of 

COX-1 harbors several transcription binding sites like two Sp1 motifs, two AP-2 

sites, an NF-IL6 motif, and a GATA sequence. COX-1 lacks TATA box (L. H. 

Wang et al., 1993; W. Xie et al., 1993). 

 

 

Figure 2.1 Gene structures of Human COX-1 and COX-2. COX-1 has 11 

exons and COX-2 has 10 exons. Numbers in italics indicate nucleotides present in 

each exon. (Adapted from Tanabe and Tohnai 2002). 
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In mouse, human, rat and sheep COX-1 shares 90% homology of DNA. 

COX-1 protein is found in the lumen of the nuclear envelops and endoplasmic 

reticulum. It is characterized as membrane glycoprotein. On the SDS-PAGE it 

separates as a single band, with a molecular weight of 72kDa (Inoue et al., 1994; 

Otto et al., 1993). Long signal peptides of varying length in different species of 

COX-1 are reported. Removal of these signal peptides, produce mature 576 amino 

acid long COX-1. Like DNA, 90% similarity is reported in the amino acid sequences 

of mouse, human and sheep COX-1 as well. 

 

2.1.4 Cyclooxygenase-2 (COX-2) 

Like COX-1, COX-2 is a single copy gene present on chromosome number 1  

of human and mouse (Jones et al., 1993; Kosaka et al., 1994; W. Xie et al., 1993). 

The length of this gene is 8-9 kb with 10 exons, 9 introns and a coding region of 

1812 bp (Figure 2.1). Its cDNA probe hybridizes around 4-4.5 kb mRNA. The 3’ 

untranslated region of COX-2 is remarkably different from COX-1 due to the 

presence of 23 Shaw-Kamen motifs (ATTTA) which are related to enhanced mRNA 

degradation contributing to the RNA instability of this isoform (Shaw & Kamen, 

1986). The 3’untranslated region of COX-2 also contains multiple polyadynelation 

sites, a feature which is different from COX-1. The 5’ flanking region of this gene 

has several potential transcription regulatory elements, including TATA box, an NF-

IL6 motif, two AP-2 sites, three Sp1 sites, two NF- кB sites, a CRE motif and an E-

box. cDNA of COX-2 of mouse, human and rat show 90% homology (Kosaka et al., 

1994; Kraemer et al., 1992). All the exon-intron junctions are strikingly conserved in 

COX-1 and COX-2. However both the genes still have few differences, COX-2 does 
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not possess the first intron of COX-1 and the other introns of COX-2 are smaller in 

length than COX-1.  

COX-2 protein contains 603 to 604 amino acids. It separates as two bands on 

SDS-PAGE at 72 and 74 kDa (Inoue et al., 1994; Otto et al., 1993). COX-2 protein 

shares 70 to 90% homology across the vertebrate species and shows 60 to 65% 

similarity with COX-1 protein.   

Among the differences between the two COX proteins, the most remarkable 

is the presence of a large hydrophobic signal peptide at the N-terminus in COX-1 

which is replaced by a cleaved smaller signal peptide in COX-2. Similarly at the C-

terminus, COX-2 has 18 amino acid insert which is absent in COX-1. This difference 

of amino acid at the C-terminus contributes towards the specificity of antibodies for 

both the isoforms. 

As stated previously, both COX isozymes have similar enzymatic action and 

their protein structures are identical; however differences do exist. In section 2.1.5, 

the protein structure of COX has been described in detail. Differences between the 

structures of both the isoforms are also mentioned in the same section. 

 

2.1.5 Structure of Cyclooxygenase protein  

Both COX isozymes are found in the lumen of nuclear envelop and 

endoplasmic reticulum. They comprise of four domains. The three dimensional 

structures of both COX isoforms are almost super imposable (Garavito et al., 2002; 

Picot et al., 1994). Figure 2.2 B represents the four domains of COX. 
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A) 

 

B) 

 

 

Figure 2.2 Domain structure of COX-1 and COX-2. A) Crystallographic 

structure of homodimers of ovine COX-1 and murine COX-2 showing membrane 

binding domain (yellow), dimerization domain (green) catalytic domain (blue) and 

bound heme (red). B) Diagrammatic representation of COX-1 and COX-2 domains. 

Numbers represent amino acids comprising each domain. (Modified and adapted 

from Simmons et al., 2004). 

 

Amino Terminal Signal Peptide Domain  

Amino terminal signal peptides facilitate the delivery of nascent COX in the 

lumen of nuclear envelop and endoplasmic reticulum. Signal peptides are 

hydrophobic and their numbers vary in both protein. The COX-1 signal peptide 
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consists of 22 to 26 amino acids and a large hydrophobic core with lucines and 

isolucines. On the other hand, the COX-2 signal peptide is made up of 17 amino 

acids and is less hydrophobic as compared to COX-1. Also, the signal peptide of 

COX-1 is followed by 8 amino acids which are missing in COX-2. 

Dimerization Domain  

COX-1 and COX-2 both exist in the form of dimer (Figure 2.2 A). Each 

monomer of COX is held together in a dimerization domain by hydrophobic 

interaction, involving hydrogen bond and salt bridges. There are no reports of 

heterodimerization between COX-1 and COX-2. This domain consists of 50 amino 

acids. It is held together by three hydrogen bonds to form a structure resembling the 

epidermal growth factor.  Dimerization domain is linked to the globular catalytic 

domain by fourth hydrogen bond. 

Membrane Binding Domain  

As the name suggests, this domain binds cyclooxygenase to the microsomal 

membrane. The domain is encoded by 50 amino acids, forming a series of four 

amphipathic helices. These helices create a hydrophobic surface which penetrates the 

hydrophobic core of the lipid bilayer towards lumen. These helices facilitate the 

floating of the COX dimer on the surface of lumen. Most of the protein protrudes out 

in the luminal space. This domain also forms the mouth of the narrow hydrophobic 

channel of the cyclooxygenase active site. 

Catalytic Domain  

This domain is made up of 480 amino acid representing 80% of the total 

COX protein. It is globular with two intervening lobes. It has two individual 

enzymatically active sites. In the peroxidase active site the intersurface of the 

intervening lobes create a shallow cleft which acts as the site of peroxidase activity. 
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Heme binding occurs at this site by iron-histidine bond. Heme binds on this site in 

such a way that its large portion is exposed in the cleft for its interaction with PGG2 

and other lipid peroxides. The cyclooxygenase active site is composed by four 

amphepathic helices of membrane binding domain mentioned above. It is a long, 

narrow, dead-end channel of hydrophobic nature. It is 8Ǻ wide and spans around 

25Ǻ in globular catalytic domain. The channel narrows down further, Arginine 120 

(numbering of amino acids is deduced from sheep COX-1) protrudes in the channel 

and creates a hydrogen bond network with Glutamate 524 and Tyrosine 355. In 

COX-1, Arginine 120 is required for the binding of carboxylate containing NSAIDs 

and other substrates. In COX-2 the presence of Arginine 120 is not required for the 

binding of substrates and NSAID to happen. The catalytic pocket of the channel 

consists of Tyrosine 385 which abstracts hydrogen bond from pro-S side of carbon 

13 of Arachidonic Acid to form the Arachidonyl radical. The Arachidonyl radical 

then undergoes cyclization/oxygenation. The hydrophobic pocket of channel 

contains Serine 530 which together with Valine 349 controls the stereochemistry of 

the oxygen attack happening on 15 carbon of AA to produce PGG2. 

 

2.1.6 Evolution of Cyclooxygenase  

COX-1 and COX-2 are characterized from various vertebrate species, 

including  

bony and cartilaginous fish, birds and mammals. COX is also present in invertebrate 

organisms. COX of coral and sea squirts have been identified indicating the presence 

of the Arachidonic Acid pathway in early invertebrate speciation. The presence of 

isoforms, COX-1 and COX-2 occur to be the result of gene duplication which took 

place either during early vertebrate speciation or before that (Jarving et al., 2004; 
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Valmsen et al., 2001). Dendrogram in Figure 2.3 shows the phylogenetic 

relationship between COX of different vertebrate species and their invertebrate 

ancestry.  

 

COX has not been reported in unicellular organism, insects and plants.  

However in monocotyledons, dicotyledonous plants, C. elegans (Caenorhabditis 

elegans) and bacteria, enzymes known as pathogen-inducible oxygenases (PIOXs) 

are involved with the oxygenation of polyunsaturated fatty acids. Interestingly, 

PIOXs share 30% identity with COX (Hornsten et al., 1999; Sanz et al.,1998). 

 

 

 

Figure 2.3 Dendrogram representing phylogenetic relationships between 

vertebrate COX-1 and COX-2 enzymes and invertebrate (Coral) COX enzymes. 

Genetic distances were calculated using neighbour joining methodology. (Adapted 

from FitzGerald et al.2002) 
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2.1.7 Mode of Action of Cyclooxygenase enzyme 

Cyclooxygenase reaction mechanism has been reviewed in great detail 

(Chandrasekharan & Simmons, 2004; Simmons et al., 2004; Van der Donk et al., 

2002). COX facilitates two activities while converting AA to PGs, a cyclooxygenase 

activity and a peroxidase activity. The cyclooxgenase activity of COX oxygenates 

AA to a cyclopentane hydroperoxy endoperoxide known as prostaglandin G2 

(PGG2).  PGG2 is then reduced to the corresponding alcohol prostaglandin H2 by 

peroxidase activity of COX (Figure 2.4 A and B). The cyclooxygenase catalysis 

begins with the activation of the COX enzyme. This process depends on the 

peroxidase activity of enzyme and thus involves the peroxidase site of catalytic 

domain. Two electrons are reduced from peroxide substrate causing the oxidation of 

ferric heme to the oxo-ferryl porphyrin radical cation. An electron is transferred from 

Tyr-385 of the COX protein to heme resulting in the generation of a tyrosyl radical 

in the cyclooxygenase active site. This radical abstracts the Pro-S hydrogen from 

carbon-13 (C-13) of AA, to convert it into Arachidonyl radical. The first molecule of 

oxygen is then added at C-11 and the second oxygen is added at C-15 to yield PGG2. 

After the initiation of cyclooxygenase activity, peroxidase reduces the 15 

hydroperoxy of PGG2 to form PGH2 (Figure 2.4 C).  Due to the regeneration of 

tyrosyl radical in each catalytic cycle, continues peroxidase activation of 

cyclooxygenase activity is not required. The catalytic time span of COX is very short 

(1-2 minutes V max in vitro) and the enzyme is auto-inactivated. 

PGH2 is the root prostaglandin which is later converted to the prostaglandin  

isomers like prostacyclin and thromboxane by isomerization and oxidation or 

reduction. 
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Figure 2.4 Mechanism of action of cyclooxygenases. A) Arachidonic acid 

pathway flowchart. B) Cyclooxygenase activity of COX enzymes converts AA to 

PGG2 and peroxidase activity causes conversion of PGG2 to PGH2. C) 

Cyclooxygenase and peroxidase activity (Adapted and modified from Dubois et al., 

1998. Chandrashekharan and Simmons 2004). 

 

2.1.8 Functional Expression of Cyclooxygenase 

COX-1 mRNA and protein are expressed constitutively in most of the tissues 

and cells. It is believed to be a housekeeping gene (Crofford LJ. 1997), attributed to 

its ubiquitous expression, presence of GC rich 5’ flanking region and lack of TATA 

or CAAT box. COX-1 expression is higher than normal in differentiated cells. 

Vascular endothelia (DeWitt et al., 1983), platelets (Funk et al., 1991), renal 

collecting tubule epithelia (Huslig et al., 1979), and monocytes (Lee et al., 1992) are 

reported to have elevated expression of COX-1. 

A)

B)

C)
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 In normal conditions COX-2 is barely detectable in the tissues (Feng et al., 

1993). However expression of COX-2 increases significantly in response to 

proinflammatory factors like IL-1 (Jones et al., 1993), TNF α, INFγ, LPS and TPA; 

hormones: follicle-stimulating hormone (FSH), luteinizing hormone (LH) and 

estrogen; growth factors: EGF, PDGF and FGF; oncogenes: v-Src and v-Ras 

(Tanabe & Tohnai, 2002). Even though COX-2 expression is induced, it’s 

constitutive expression is also reported from mouse prostate, brain and rat kidney 

(Harris et al., 1994). High levels of COX-2 have been detected by RT –PCR in 

human prostate and lungs. Intermediate and low levels of COX-2 are found in 

human uterus, small intestine, mammary gland, stomach, thymus, liver, kidney, testis 

pancreas, and brain (O'Neill & Ford-Hutchinson, 1993).  

Similarly, even though COX-1 is known to be constitutive in expression,  

many reports confirm its induction during the differentiation of the cell lines. 

Induction of COX-1 has been documented even without differentiation. Treatment of 

TPA causes the maturation of human megakaryoblastic cells to megakaryocyte-like 

cells, at the same time increasing the expression of COX-1 mRNA and protein 5-20 

folds (Ueda et al., 1997). Sheer stress also causes the increase in COX-1 level in 

HUVEC (Human Umbilical Vein Endothelial Cell) which lasted for 12 hours 

(Okahara et al., 1998). COX-1 is also induced in during lipopolysaccharide (LPS)-

mediated inflammatory response.  TGFβ, VEGF, tobacco carcinogen and retinoic 

acid are some of the known COX-1 inducers which are extensively studied and 

reviewed (Goppelt-Struebe, 1995). Based on the findings mentioned above, it can be 

stated that the constitutive ness and induction of COX-1 and COX-2 is process and 

tissue specific. Their expression cannot be categorized as either constitutive or 

induced. 
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2.1.9 Physiological and pathophysiological functions of Cyclooxygenase  

Both COX isoforms are encoded by different genes, however the  

difference doesn’t end here. COX-1 knock-in at COX-2 locus of mouse shows that 

COX-1 does not completely compensate the PGI2 deficiency resulting in the 

phenotypes with renal and reproductive defects (Yu et al., 2007). This study clearly 

demonstrates that both the isoforms are not interchangeable at the protein level. It is 

evident from the studies that both of the isoforms have different expression patterns 

and they play different roles physiologically. The physiological and 

pathophysiological functions of COX have been reviewed elsewhere (Morita, 2002; 

Simmons et al., 2004). 

COX-1 is expressed in vascular endothelial cells and smooth muscle cells. 

COX-1 derived prostacyclin is critical for blood flow, blood pressure and anti-

aggregation of platelets. In platelets only COX-1 is present, and thromboxane A2 

generated from COX-1 is required for thrombosis (Matijevic-Aleksic et al., 1995). 

During megakaryogenesis both COX-1 and COX-2 are detected (Morita et al., 

1995). When increased COX-2 expression is reported in pathological condition, it is 

known to promote the hypotension (Leach et al.,1998). 

COX-1 is important for the normal function of kidney. It is involved in  

glomerulogenesis, and regulation of renal blood flow. In adult humans, COX-1 

signals are detected in collecting ducts, the loops of Henle, interstitial cells, 

endothelial cells, smooth muscle cells and pre- or post-glomerular vessels. Fetal 

kidney also shows the expression of COX-1 in podocytes and collecting duct cells 

(Komhoff et al.,1997). 

COX-2 is expressed in renal vasculature, medullary interstitial cells, and the  
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macula densa. COX-2 is also detected in the podocytes at advanced stages of renal 

development suggesting the requirement of COX-2 in renal perfusion and 

glomerular hemodynamics (Nantel et al., 1999). 

COX-2 is involved in the functioning of the brain, it plays a key role in 

neuronal development and adaptation. COX-2 is activated during the advanced stage 

of brain development and brain modeling. Its activation corresponds to the 

environmental influences on developing brain (Kaufmann et al., 1997). COX-2 

remains involved with the neuronal responses in adult life. Dramatic increase in the 

level of COX-2 has been reported after seizures. COX-2 has also been associated 

with neuronal degeneration (Tocco et al., 1997). 

Much less is known about the involvement of COX-1 in brain functions.  

Many findings suggest that COX-1 has been detected brain related disease and brain 

injuries. It has been proposed that COX-1 may contribute to CNS pathology as it has 

been detected in various parts of injured and Alzheimer-affected human brains 

(Yermakova et al., 1999). 

  COX-1 is known to play major role in the maintenance of the glandular 

architecture. It is also involved with the crypt cell regeneration. COX-1 expression is 

inhibited during the exposure of intestinal epithelial cell to radiations that also cause 

the death of these cells (Cohn et al., 1997). COX-2 expression is induced in response 

to infection or bacterial invasion in epithelial cells. It mediates the flushing of 

bacteria from the intestine (Eckmann et al., 1997). 

 Amniotic fluid is discovered as one of the earliest sites where PGs were 

found. Similarly contraction of the uterine myometrium was one of the first known 

biological function attributed to PGs. Thus it is evident that COX play major role in 

female reproductive physiology. Both the isoforms are responsible for the 
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development and successful function of female reproductive system. As this study 

has been conducted in the same area, the topic is described in detail in section 2.1.10. 

Both the isoforms are involved with the process of inflammation.  However 

their functions are different. COX-1 is involved in the resolution of inflammation 

and COX-2 is required for the progress of inflammation.COX-1 expression in 

glomeruli during the repair from experimentally induced mesangioproliferative 

glomerulonephritis and delaying of the ulcer healing process in the presence of 

COX-1 selective inhibitors, indicates that COX-1 is involved in healing (Hartner et 

al., 2000).  

Dramatic increases in COX-2 mRNA level in inflamed tissues and its inhibition by 

NSAIDs which are also known to reduce inflammation exhibit that COX-2 is 

involved in the progression of inflammation (Hempel et al., 1994; Samad et al.,  

2001). 

Cyclooxygenases are involved in the development of malignant tumors. 

COX-1 expression is detected in vascular endothelial cells. COX-1 is involved in 

angiogenesis, growth of tumors, endometrial growth, wound healing and 

inflammation. Inhibition of COX-1 using antisense oligo suppresses tube formation 

induced by colon cancer (Tsujii et al., 1998). While there is little knowledge about 

COX-1 in tumor formation, many findings show the heavy involvement of COX-2 in 

tumorigenesis. Tumor cells escape the apoptosis and enter the matrix when COX-2 is 

over expressed (Sheng et al., 1998; Tsujii & DuBois, 1995).  

 

2.1.10 Role of cyclooxygenases in female reproduction 

Success of reproduction largely depends on the successful development and 

function of the female reproductive system. A well-developed healthy egg is the 
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prerequisite for successful fertilization and embryonic development. The process of 

development of egg is called oogenesis which involves development of oocytes, 

their maturation (resumption of meiosis) and ovulation (rupture of follicle and 

release of egg). The step by step process of oogenesis is described in section 2.3 and 

1.2.4.3. Oogenesis is a complicated process involving intervention of various 

enzymes, growth factors and hormones. A lot of signaling occurs between oocytes 

and follicles (somatic cells surrounding oocytes) in order to deliver the mature egg.  

Developing oocytes are arrested in Meiotic prophase-1. Resumption of meiosis 

occurs during oocyte maturation. The process of oocyte maturation which is 

described in section 2.3.2 in detail is a developmental milestone for oocytes, as the 

release or ovulation of egg depends on maturational success. However due to the 

lack of complete knowledge of involvement and regulation of hormones, enzymes 

and growth factors which come into play, extensive exploration of this process is 

still required.   

Cyclooxygenase produced prostaglandin are known to influence various 

aspects of female reproduction.  Many studies have established the involvement of 

prostaglandin and COX in oogenesis. Prostaglandins have the reputation of being the 

modulator of oogenesis. In other words, they do not induce oogenesis but their 

presence or absence transforms oogenesis in a positive or negative way. 

Prostaglandins are known to mimic the actions of luteinizing hormone (LH). They 

are required for follicle maturation and rupture, oocyte maturation, ovulation  

(Armstrong, 1981; Armstrong et al.,1974; Lau et al., 1974) and formation and 

regression of corpus luteum (Howard & Britt, 1990). PGs are also required for the 

menstrual shedding of the endometrium of primates (Eldering et al., 1993). Most of 

these actions are reported to be obliterated in the presence of cyclooxygenase 
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inhibitors including germinal vesicle breakdown which happens in the oocytes when 

they undergo maturation (Takahashi et al., 2006). 

Researchers have shown the requirement of both the COX isoforms to ensure 

the success of female reproductive process. However, compared to COX-1, COX-2 

has been studied extensively in the process of oogenesis. COX-2 null mice 

demonstrate infertility, abnormal ovulation, implantation and fertilization (Lim et al., 

1997). It has also been shown that COX-2 derived PGE2 is critical for oocyte 

maturation (Takahashi et al., 2006). Also COX-2 selective inhibitor is known to 

inhibit the Mitogen Activated Protein Kinase (MAPK) activation. The COX-1 null 

mice were completely fertile although their parturition was impaired (Langenbach et 

al., 1995). Recent studies like enhanced COX-1 derived PGE2 level in monkey 

ovarian surface epithelium (Cabrera et al., 2006), increase in the level of COX-1 in 

salmon and brook trout during ovulatory stage (Daikoku et al., 2005; Roberts et al., 

2000), continuous increase in the amount of COX-1 as zebrafish oocytes reach 

towards maturation (Grosser et al., 2002; Lister & Van Der Kraak, 2008; Lister & 

Van Der Kraak, 2009), indicate the definite but poorly understood role of this 

isoform in oogenesis. The involvement of COX-1 in the major events of oogenesis 

has gained strong support in recent times, ever since its expression was reported in 

human ovary. Like COX-2, COX-1 was also detected in cumulus cell and was 

shown to be regulated by follicle stimulating hormone (FSH) in the same way as 

COX-2 (Adriaenssens et al 2010.), thus indicating the possibility of synergy between 

COX-1 and COX-2 in oogenesis. 

It can be deduced from the facts mentioned above that these isoforms are 

involved in oocyte development and maturation, but the degree of their involvement 

and regulation remains unclear.  
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2.1.11 Regulation of Cyclooxygenase  

Cyclooxygenase regulation is a complicated process as it differs in different  

cell types as well as in the same cells type of different species. Many stimuli via 

various signaling pathways activate both, the COX-1 and COX-2, genes. The type of 

stimulus, time of stimulus and cell type determines which isoform of COX will 

contribute to a given signaling pathway at that point in time. These conditions also 

determine the association of the transcription factor with COX promoter. The basic 

understanding of COX-2 regulation has been established now but same is not true for 

COX-1. There still is paucity of knowledge about the regulation of COX-1.  

Several potential transcriptional regulatory element binding sites have been  

identified in the 5’ flanking region of  human COX-2 including a peroxisome 

proliferator response element (PPRE), two cyclic AMP response elements (CRE), a 

sterol response element (SRE), two nuclear factor kappa B (NF-κB) sites, an SP1 

site, a CAAT enhancer binding protein (C/EBP, or nuclear factor for interleukin-6 

expression (NF-IL6) motif, two AP-2 sites, an E-box, and a TATA box (Kang et al., 

2007) . Interspecies differences have also been found in the promoter region of 

COX-2 in terms of presence, absence and arrangement of these binding sites in 

human, mouse, rat, cow and horse. Involvement of COX-2 in various cell types and 

in various signaling pathways has been studied extensively. Still, the fact that 

regulation of COX depends on various stimuli at different time points and in 

different signaling pathways makes it difficult to establish the complete 

understanding of its regulation.  

Classically, it has been believed that COX-1 exhibits housekeeping features 

while COX-2 is inducible. The COX-1 promoter has many transcriptional start sites, 

its GC rich and it lacks canonical TATA or CAAT box attributing to its 
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housekeeping job (Figure 2.5). Transcription factor SP1 is known to be involved 

with the constitutive  COX-1 expression in human umbilical vein endothelial cells 

(HUVEC). Mutation in one or both the sites reduces the COX-1 expression by 29% 

(Tanabe & Tohnai, 2002). In many cases, COX-1 expression is induced contrary to 

the belief that its expression is constitutive . The promoter of COX-1 also consists of 

many putative binding sites for different transcription activators. Inducing agents for 

COX-1 are mentioned in section 2.1.8. However the potential of COX-1 promoter 

has not been studied and other than a few reports, the regulation of COX-1 remains 

unknown. 

 

 

Figure 2.5 Schematic presentation of  regulatory elements in Human COX-1 

and COX-2 promoter.  Arrow indicates transcription start site. (Adapted from 

Tanabe and Tohnai 2002).  

 

Together with induction, transcription factors are also involved in 

cyclooxygenase suppression. Peroxisome proliferator activated receptor gamma 
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(PPARγ) and glucocorticoids are major COX suppressers (Inoue et al., 2000; 

Newton et al., 1998; Scheinman et al., 1995; Subbaramaiah et al., 2001). 

Glucocorticoids are known to suppress the action of both COX-1 and COX-2.  

PPARγ is known to be the master regulator of female fertility. Like prostaglandin, 

PPARγ is also expressed in granulosa cells of ovary and is regulated by LH. Thus 

the possibility of PPARγ mediated regulation of COX in oogenesis cannot be ruled 

out. 

However, to date, PPARγ mediated suppression is only studied in COX-2. 

The presence of PPRE (binding site for PPARγ) is reported on human COX-2 

promoter but direct suppression of COX-2 expression by PPARγ is not shown 

distinctly and PPARγ- mediated suppression of COX-1 has not been explored but the 

likelihood of this event cannot be overlooked 

 

2.2 Peroxisome proliferator activated receptor gamma (PPARγ) 

Peroxisome proliferator activated receptor gamma (PPARγ) is a ligand 

inducible transcription factor which belongs to the nuclear hormone receptor (NHR) 

super family. Nuclear receptors are transcription factors with multiple domains, 

which regulate the expression of their target gene by binding to a specific DNA 

sequence present in the promoter of that gene.  NHR super family contains receptors 

for thyroid hormone, steroid hormones and vitamin D, together with PPAR. PPAR 

has three isoforms, PPARα, PPARβ/δ and PPARγ.  Each isoform is encoded by 

different genes present on different chromosome (Desvergne & Wahli, 1999; Hihi et 

al., 2002). The expression patterns of these isoforms are distinct from each other. To 

date PPARs have been identified from a variety of species including human, rodents, 



 

 

26 

fish and insects (Escher & Wahli, 2000; Ibabe et al., 2002; Meng et al., 2005). 

PPARγ and PPARα isoforms are studied in great detail compared to PPARβ/δ.  

 

2.2.1 Structure, function and tissue distribution of PPAR isoforms 

Structurally, PPAR isoforms resemble each other and their domain structures  

are similar to any other steroid receptors. PPAR consists of four domains A/B, C, D 

and E/F (Desvergne & Wahli, 1999; Diradourian et al., 2005; Lazennec et al.,2000).  

A/B domain is proximal to N terminal and is the most poorly conserved  

domain. It acts as a ligand independent transcription activator. This domain either 

provides site for protein phosphorylation or it directly interacts with other regulatory 

proteins and receptor domains. Due to their ligand independent transcription 

activation function they are also designated as AF-1. 

C domain is the central DNA Binding Domain (DBD). This domain is highly 

conserved and contains 2 zinc finger binding sites which recognize the PPRE 

(peroxisome proliferated response element) present at the 5’ flanking region of the 

targeted gene. PPRE sites are discussed in detail in section 2.2.4. 

D domain, or the hinge region, plays a role in receptor dimerization and 

cofactors interaction. E/F domain is also known as Ligand Binding Domain (LBD). 

Hydrophobic molecules bind to LBD to facilitate the binding of co-regulators. As 

LBD exhibits ligand dependent transcriptional activation function, it is also referred 

to as AF-2. Structural and functional domains of PPARγ are shown in Figure 2.6. 

PPARα is highly expressed in liver, heart, small intestine, kidney and brown 

adipose tissues. It is known to play a major role in fatty acid metabolism and it is 

also involved in inflammation. PPARβ/δ is ubiquitously expressed and is basically 

involved in development, embryo implantation, wound healing, proliferation of 
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epidermal cell and lipid metabolism. PPARγ is expressed in adipose tissues mainly; 

however it is also expressed in colon, retina, immune systems, ovary and testis. It is 

involved in adipocyte differentiation, glucose and lipid homeostasis, cell cycle, 

carcinogenesis and inflammation (Desvergne & Wahli, 1999; Kersten et al., 2000).  

Of the three isoforms, PPARγ is mostly involved with various aspects of 

female fertility. PPARγ is detected in the ovaries of the mouse (Cui et al., 2002), rat 

(Komar et al., 2001), pig (Schoppee et al., 2002), sheep (Froment et al., 2003), cow 

(Lohrke et al., 1998), human (Lambe & Tugwood, 1996) and zebrafish (Ibabe et al., 

2002). Strong expression of PPAR γ is detected in granulosa cells of various species. 

PPAR γ is also expressed in different developmental stages of follicles and is down 

regulated when LH surge occurs (Froment et al., 2003; Komar et al., 2001; Komar & 

Curry, 2002). Direct and indirect involvement of PPAR γ in oocyte maturation has 

been speculated; however there are no direct reports to prove such involvement. 
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Figure 2.6 Structural and functional domains of PPARγ. Dark boxes 

represent the exonic region of four domains. (Adapted and modified from Evain-

Brion et al., 2007) 

 

2.2.2 Activation of PPAR  

PPAR are basically involved in the transcriptional activation of their target 

gene. They were first identified as the receptors that are activated in the presence of 

broad spectrum of chemicals known as peroxisome proliferators. These chemicals 

are known to be involved in the function of peroxisome proliferation in rodents 

(Issemann & Green, 1990). To date, diverse range of natural and synthetic PPAR 

ligands have been identified including polyunsaturated fatty acids, eicosanoids, 

antidiabetic drugs and hipolypidemic agents (Forman et al., 1997; Kliewer et al., 

1997; Krey et al., 1997). PPAR binds to the targeted gene on the special sequence 

present on their promoter known as PPRE. Classically, PPRE are the direct repeat 

element of DR-1 types separated by one base pair. However the PPRE sequences are 
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not completely conserved; they show sequence diversity in different genes as well as 

different species. PPRE are discussed in detail in section 2.2.4.  

PPAR forms heterodimer with retinoid X receptor on PPRE of target gene 

(Keller et al., 1993; Kliewer et al., 1992). Presence of the ligands for PPAR and 

RXR results in the conformational changes in LBD domain (E domain) which causes 

the release and recruitment of corepressors and coactivator proteins. As shown in 

Figure 2.7, this process is followed by the assembly of protein complex and 

subsequent transcriptional activation of the targeted gene (Xu et al., 1999). Most of 

the PPAR targeted genes have roles in lipid and glucose metabolism and most of the 

PPAR ligands are the substrate and /or the product of the enzymes encoded by genes 

regulated by PPAR. 

 

 

Figure 2.7 Mechanism of PPARγ action. PPARγ heterodimerizes with RXR in 

the presence and absence of ligands, causing conformational changes in LBD. The 

conformational changes result in dissociation of corepressor and binding of 

coactivators. Activated PPARγ protein complex binds to DR1 site present on the 

promoter of target gene. (Adapted from Komar 2005). 
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2.2.3 PPAR ligands and cofactors 

Specificity of some degree can be seen in the ligands of PPAR isoforms.  

Thiazolidinediones like troglitazone, ciglitazone, pioglitazone, rosiglitazone and 

NSAID which inhibit COX actions are specifically PPAR γ activating ligands 

(Escher & Wahli, 2000). Prostaglandins can activate all PPAR members but some 

specific prostaglandins preferentially activate PPAR γ and PPARδ (Forman et al., 

1995). Fibrates and polyunsaturated fatty acids prefer to activate PPARα. Their 

higher concentrations also activate PPARγ (Desvergne & Wahli, 1999). 

PPAR cofactors can be corepressors or coactivators. Conformational changes 

in the LBD that occur due to the ligand binding cause the dissociation of corepressor 

from the receptor and binding of the coactivators resulting the  activation of 

repressed receptor. Nuclear receptor corepressor (NCoR) and silencing mediator for 

retinoid- and thyroid-hormone receptors (SMRT) are some commonly known 

receptor repressors (Zhu et al., 2000). 

Steroid receptor coactivator-1 (SRC-1) and CREB binding protein/p300  

(CBP), RIP140, ARA70,  members of the DRIP/TRAP family, PPAR interacting 

protein PPAR γ coactivator-1 and PPAR binding protein (PBP) are PPAR specific 

coactivators which mostly bind to PPAR in ligand dependent manner (Berger & 

Moller, 2002). However some of them also bind to PPAR in ligand independent 

manner. 

 

2.2.4 Peroxisome proliferator response element 

PPAR-RXR heterodimer binds to the DNA sequence present on the promoter  

of the target gene. This DNA sequence is known as Peroxisome Proliferator 

activated Receptor Element or PPRE. In a classical case, PPRE is a direct repeat of 
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sequence AGGTCA separated by a random base (AGGTCA N AGGTCA). The first 

of the PPRE is taken by PPAR and second half by RXR. The 5’ flanking region 

adjacent to PPRE has been reported to play some role with the PPAR binding to 

DNA (Chandra et al., 2008).  

Analysis of different genes in the same and different species shows that  

PPRE sequence is not completely conserved. A lot of variations from the above- 

mentioned wild type sequence have been seen. In mouse, human and chimpanzee, 

PPRE sequences for Catalase gene differ from each other (Okuno et al.).Sequence of 

PPRE in human carnitine palmitoyltransferase (CPT) is only partially conserved 

(Barrero et al., 2003). Meta analysis of large number of PPRE obtained from 

genome wide screening of PPAR targeted genes shows a lot of variation from the 

normal consensus. Occurrence of bases and their positions on PPRE can result into 

strong, medium or weak binding of PPAR protein. For example, presence of G 

continuously on first, second and third position shows strong PPARγ binding 

(Heinaniemi et al., 2007). 

 

2.2.5 Role of PPARγ in oogenesis  

As mentioned above, PPARγ acts by regulating its target genes, involved in  

various pathways. Many important pathways are known to be active at the time of 

oogenesis and it has been reported that PPARγ regulates the rate limiting enzymes 

involved in these pathways. PPARγ can suppress or enhance the expression of same 

gene based on the availability of ligands, cofactors, cellular environment and 

requirement. It has been seen that PPARγ mostly regulates genes involved in the 

critical oogenetic events and causes inhibition of their expression.  
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PPARγ is presumed to be the master regulator of female fertility; disruption 

of PPARγ in female mice resulted in sterile and sub-fertile females with severe 

inconsistency in their normal ovarian function (Cui et al., 2002). As mentioned in 

section 2.2.1, its expression is detected in the ovary of various species. PPARγ 

expression is high in granulosa and theca cells (Schoppee et al., 2002). It is also 

detected from the oocytes of zebrafish (Ibabe et al., 2002), cattle (Mohan et al., 

2002) and xenopus (Dreyer & Ellinger-Ziegelbauer, 1996). In mammals, like sheep 

and rats, PPARγ expression is restricted to the granulosa cells of developing 

follicles. Other isoforms of PPAR expressed in ovary have consistent expression 

throughout, contrary to the expression of PPARγ that downregulates with the LH 

surge. It has been reported that PPARγ is endogenously active in the ovary because 

the promoter reporter construct the expression of which is driven by PPRE was 

transfected in granulosa cell of sheep and rat, showed enhanced activity in the 

presence and absence of exogenous agonists (Froment et al., 2003). Thus, it can be 

deduced that PPARγ is functional in granulosa cells and the ligands required for its 

activation are also endogenously present in granulosa cells. Presence of complete 

PPARγ machinery granulosa cells and its downregulation with the arrival of LH 

surge establishes that PPARγ regulates oocyte maturation. 

PPARγ is also involved in the regulation of steroidogenesis. The ovaries with 

disrupted PPARγ show reduction in the level of progesterone. It regulates the 

remodeling of ovary in all the aspects right from the development of a primordial 

follicle to the ovulated egg. PPARγ is also involved in cell cycle regulation and 

ovarian tumor development (Komar, 2005). 
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2.2.6 PPARγ mediated regulation of genes involved in oogenesis 

As pointed out in section 2.2.5, there is a significant involvement of PPARγ 

in regulation of ovarian functions. As a well known transcriptional regulator, PPARγ 

is known to control the transcription of the genes critically involved with oogenesis. 

Interestingly, the preferred mode of control that PPARγ exhibits on the ovarian 

genes is downregulation.  For example, PPARγ inhibits the gonadotropin induced 

progesterone production and level of aromatase in granulosa cells (Yanase et al., 

2001). An inverse relationship between the mRNA of PPARγ and the mRNA of 

P450 the rate limiting enzyme in the production of progesterone in rat garnulosa cell 

also goes in favor of this argument (Keller et al., 1995; Komar & Curry, 2003). 

PPARγ mediated direct transcriptional downregulation of promoter of proteases like 

MMP-3 and MMP-9 has been demonstrated by ensuring the presence of PPRE site 

on them, suggesting the involvement of PPARγ in tissue remodeling(Eberhardt et 

al., 2002; Yee et al., 1997). Similarly, PPARγ also binds with Estrogen Response 

Elements (EREs) and regulate the ability of estradiol to produce the cellular 

responses which influence ovarian functions (Keller et al., 1995; Nunez et al., 1997). 

Few more examples of the genes involed with ovarian functions and 

exhibiting the downregulational control of PPAR γ are stated further. Genes 

involved in the blood vessels formation in ovary, like vascular endothelial growth 

factors and their receptors are also reported to be inhibited by PPARγ. Likewise 

endothelin-1 (ET-1) and nitrous oxide synthase (NOS)  genes, which contribute in 

ovarian vasculature formation as well as in ovarian cyclicity, ovulation, oocyte 

maturation and follicular development are also reported  to be inhibited by the 

intervention of PPARγ (Jablonka-Shariff & Olson, 1998; Jablonka-Shariff et al., 

1999; Matsumi et al., 1998; Nakamura et al., 1999). Figure 2.8 demonstrates how 



 

 

34 

PPARγ controls various aspects of female fertility by regulating the genes involved 

in ovarian functions. 

 

2.2.7  PPARγ-mediated regulation of Cyclooxygenase 

Interestingly, it has been frequently reported by researchers that AA which is 

a substrate of COX (Kliewer et al., 1997) and PGs which are product of COX act as 

the activators of PPARγ (Negishi & Katoh, 2002) . Even the selective and non 

selective COX inhibitors are reported to activate PPARγ in higher concentration 

(Eibl et al., 2004; Funahashi et al., 2007). In various forms of cancers like colon 

cancer, pancreatic cancer, ovarian cancer etc, increased expression of COX and 

reduced expression of PPARγ is evident (H. J. Kim et al., 2007). While most of the 

researchers are focused on the COX-2 and PPARγ expression patterns, upregulation 

of COX-1 in ovarian cancer indicates that possibility of COX-1 regulation by 

PPARγ cannot be denied as well. (Daikoku et al., 2006).  In the gastric mucosa of 

children infected with Helicobacter pylori COX-1 and COX-2 expression was 

upregulated and PPARγ expression was downregulated (Haruna et al., 2008).  

Findings like induction of COX-2 promoter getting inhibited by PPARγ 

agonists like rosiglitazone, clearly points out towards direct or indirect possibility of 

regulation of COX by PPARγ (Funahashi et al., 2007). The Cox-2 promoter is 

reported to contain an upstream PPRE in human at the position -3721/-3707 (Meade 

et al., 1999; Pontsler et al., 2002). The reciprocal and negative regulation between 

COX-2 and PPARγ has been demonstrated in human cervical cancer cells (Daikoku 

et al., 2006). However a clear approach showing that PPARγ transcriptionally 

downregulates COX is in normal physiological processes is still not available. 
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 Prostaglandins are the modulator of oogenesis, influencing development, 

maturation, ovulation and oocyte growth and PPARγ is the key regulator of female 

fertility (Minge et al., 2008). The speculations, that PPARγ can mediate COX 

regulation during the events of female reproduction are obvious because both 

prostaglandin and PPARγ are detected in granulosa cells (Froment et al., 2003) and 

low expression of PPARγ and increase in amount of PGs is seen with the occurrence 

of the LH surge (Banerjee & Komar, 2006; Duffy & Stouffer, 2001). As mentioned 

before, prostaglandins are also PPARγ ligands which can endogenously activate 

PPARγ. Their presence together in granulosa cells of developing and mature follicles 

implies the possibility of PPARγ mediated regulation of the production of 

prostaglandins by regulating the rate limiting enzyme COX. A cyclic relationship 

between the presence and absence of prostaglandins, activation and/or inhibition of 

PPARs and feedback to the prostaglandin synthesizing enzyme COX is evident. 

PPARγ mediated regulation of COX is not a mere presumption, presence of 

PPRE has been reported long back on human COX-2 promoter (Meade et al., 1999), 

indicating direct control of PPARγ on COX-2 gene. An inverse relationship between 

COX-2 and PPARγ mRNA expression has been seen in placenta (Dunn-Albanese et 

al., 2004). In rat granulosa cells, reduction of PPARγ and increment in COX-2 has 

been reported in the follicles nearing ovulation (Komar et al., 2001; Sirois et al., 

1992).  

LH surge causes the maturation and ovulation of oocytes. While maturation 

is the process where oocytes resume the meiotic division and develop into egg, 

ovulation is the process of release of this egg from ovarian follicles. Connections 

have already been established between PPARγ and COX-2 in ovulation (J. Kim et 

al., 2008). Nonetheless, oocyte maturation is a lesser-explored field in this context. 
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With the studies being conducted recently, even the role of COX-1 cannot be denied 

in oogenesis. As we have seen earlier, PPARγ-mediated regulation is dependent of 

cell type, cofactors, ligand, environment and process; so the possibility of other COX 

isozymes (COX-1) being regulated by PPARγ cannot be overlooked (Figure 2.8).  

 

 

 

Figure 2.8 Impact of PPARγ on ovarian function. PPARγ controls all the 

aspects of female fertility by inhibiting or enhancing the expression of genes 

(including COX) involved in ovarian functions. Possible interaction of COX, PPARγ 

and ovarian function is demonstrated by encircling them. (Adapted and modified 

from Komar 2005). 

 

2.3 Vertebrate oocyte development (Oogenesis) 

The fact that oocytes have the capacity to transform from a single cell into a 

totipotent linage, which produces the early embryo, makes oogenesis a critical 

process for reproductive success (Rodrigues et al., 2008). All vertebrate eggs are 

developed from the primordial germ cells (PGCs). PGCs develop from the zygote 
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and migrate to the genital ridge. The bipotential genital ridge either develops into 

ovary or testis. Eventually when the ovary is formed from the undifferentiated gonad 

it allows the migrated PGCs to differentiate into primary oocytes (Edson et al., 

2009). These primary oocytes get surrounded by the single layer of flattened 

epithelial cells and become primordial follicle. The first step of meiosis occurs in the 

primordial follicle, after which its DNA replicates, followed by the immediate 

meiotic arrest at diplotene step of prophase 1. With the advent of the LH surge, the 

oocytes again resume meiosis and transform themselves to metaphase 1. This 

process is known as meiotic maturation. At the end of this, ovulation takes place. 

The mammalian female reproductive cycle is represented in Figure 2.9.  

 

 

 

Figure 2.9 Reproductive cycle of a mammalian Female. Sperm and egg fuse to 

form a diploid zygote which divides to form somatic and primordial germ cells 

(PGC). PGCs migrate and form oocytes. Oocytes undergo first meiotic division (M1) 

but get arrested at prophase 1. They grow and develop eventually and resume 

Maturation
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meiosis after which the haploid egg (ovulation) is formed. (Adapted from Matzuk et 

al., 2009). 

 

2.3.1 Meiotic arrest (Oocyte growth and vitellogenesis) 

As described in section 2.3.1 primordial follicles enter into meiosis and get  

arrested in the diplotene stage of prophase 1 (Figure 2.9).  In fish and amphibians, 

during this arrest, oocytes undergo massive growth and vitellogenesis where these 

oocytes assemble nutritional reserve required for the development of embryo after 

fertilization. At the same time these oocytes also accumulate maternal RNA and 

differentiate their cellular and noncellular envelope. Oocytes complete their 

vitellogenesis before undergoing meiosis resumption (Lubzens et al., 2010).  In 

many vertebrates including humans, oocyte development is suspended after birth for 

months or years, and gets resumed when the female reaches puberty.  The oocytes 

undergo further development and they grow up to a thousand-fold in size (Wolpert, 

2002).   

 

2.3.2 Meiotic resumption (Oocyte maturation) 

Oocytes of vertebrates are arrested in the meiotic prophase-1 and complete  

the meiosis in response to the intracellular signaling that occurs during the process 

called maturation. In other words, maturation is the elevation of oocytes arrested at 

the diplotine stage of prophase-1 to the metaphase-2. This resumption of meiosis is 

essential for the normal ovulation and the fertilization (Jamnongjit & Hammes, 

2005). The term ‘meiotic maturation’ was coined by Wilson, describing it as the 

cascade of physiological changes that occur once the meiosis is resumed in the 

oocytes until zygote formation (Wilson, 1925). Germinal vesicle break down, 
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chromosome condensation, spindle assembly and the formation of first polar body 

are the milestones achieved by oocytes during maturation (Senthilkumaran, 2011). 

As the oocytes progress towards maturation it requires the change in the  

balance created by factors which promote meiotic arrest and meiotic resumption 

(Jamnongjit & Hammes, 2005). Thus it is evident that maturation is a tightly 

regulated process which involves complicated intracellular signaling.  

 

2.4 Zebrafish as a model organism for studying the role of cyclooxygenase in 

oocyte development and maturation. 

Zebrafish comes with a huge bioinformatical database and a completely 

sequenced genome. Zebrafish has fully functional arachidonic acid pathway. Both 

the COX isoforms and all the PPAR isoforms are present in zebrafish and expressed 

in the ovary. The fact that all the stages of developing oocytes are available in large 

number in zebrafish ovary makes it a suitable model for developmental biologists. 

The ease with which the zebrafish oocytes can be grown and made to undergo 

maturation in vitro, together with their effortless micro-manipulation for applications 

such as gene knockdown and over-expression, provide the fascinating opportunity to 

understand role of important genes involved in ovarian physiology. 

 

2.4.1 Cyclooxygenase in zebrafish 

Both the isoforms of Cyclooxygenase (COX-1 and COX-2) have been 

characterized in zebrafish. In zebrafish, COX is involved with formation of 

prostaglandin in the same way as in other species (Grosser et al., 2002). Zebrafish 

COX-1 (zCOX-1) is located on chromosome number 5 with RXRG and NOTCH1B. 

Its position and synteny with the other two genes mentioned above is similar to 
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human COX-1 present at chromosome 9. zCOX-1 contains 2094 bp of cDNA which 

includes 1794 bp of ORF, 126 bp of 5’ UTR and 124 bp of 3’ UTR. The cDNA of 

zCOX-1 is shorter than that of human, as in human 3’ UTR extends to 1.5 bp. 

zCOX-1 translates into 597 amino acid protein. 

Zebrafish COX-2 (zCOX-2) is located on chromosome 2 in close vicinity  

with CPLA-2. The synteny and position of zCOX-2 is similar to human COX-2 

present on chromosome 1. zCOX-2, cDNA consists of 2150 bp including 1806 bp of 

ORF, 68 bp of 5’UTR and 276 bp of 3’ UTR. 3’ UTR has AU rich elements, a 

typical characteristic of COX-2. Human COX-2 cDNA has almost similar length of 

2539bp. zCOX-2 translates into a 601 amino acid protein. 

Like COX isoforms in other species, the distinct N-terminal and C-terminal  

features are conserved. zCOX-1 has 12 amino acid N-terminal motif  which is absent 

in COX-2, and COX-2 has 18 amino acid C-terminal motif absent in COX-1. Each 

isoform of zebrafish COX shares 67% identity with other species. More specifically 

72% homology was present in epidermal growth factor domain and catalytic domain. 

Figure 2.10 demonstrates the alignment of human and zebrafish COX proteins, 

showing the conserved and differing amino acids. Almost all the residues including 

glycosylation site and potential heme coordinating histidines required for catalysis 

are conserved in zCOXs. One surprising difference that is seen in zCOX-1 from 

human COX-1 is the presence of Val and Arg in position 523 and 513; These amino 

acids are present in the same position in human COX-2 creating an access in the 

form of side pocket to the arachidonate channel for the selective COX-2 inhibitor. 

How this orientation of COX-1 affects its function is unknown. 

zCOX-1 expression is found to be high in ovary, gut and gills followed by  
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muscles, heart, testis and liver. zCOX-1 is not expressed in brain. zCOX-2 is 

expressed in gut, testis , heart, muscle and brain. Very low expression was seen in 

ovary and it was completely undetectable in liver. The dominant product of 

arachidonic acid catalysis by COX in zebrafish is PGE2.  

 

 

Figure 2.10 Amino acid alignment of zebrafish COX-1 and COX-2 with its 

human orthologs. Identical regions are indicated by dots. Gaps are represented by 

dashes. Highlighted boxes represent residues important for enzyme catalysis. N-

glycosylation sites are marked by * (Adapted from Grosser et al., 2002). 

 

2.4.2 Zebrafish PPARγ 

 In zebrafish, study of PPAR isoforms is rather new. 100bp DBD of all the 

PPARwas cloned in 1997 but there are no morphological or expression studies done 

till 2004. In 2004, Cajaraville et al., for the first time did the expression profiling of 

PPAR in male, female, adult, juvenile, and larvae (Ibabe et al., 2005). All the 

isoforms of PPAR are encoded by separate genes. PPARγ is found on chromosome 
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number 11 (Gene ID: 557037). Recently, studies revolving around obesity, diabetes, 

muscle and neural development are looking into the involvement of PPARγ using 

zebrafish as the model organism. PPARγ shows different expression patterns in 

juvenile, adult and larvae indicating its involvement in the regulation of various 

developmental pathways. PPARγ is expressed in hepatocytes, adipocytes, pancreatic 

cells, skin, kidney proximal tubule, glomeruli, intestine, speramatogonia, ovary and 

skeletal muscles. 

Immunostaining of PPARγ in oocytes shows strong expression in early staged 

oocytes and weak expression in late-stage oocytes. 

 

2.4.3 Zebrafish oogenesis 

Development, differentiation and maturation of zebrafish oocyte is similar to 

higher vertebrates and is regulated by the hormones of hypothalamus-pituitary-

gonadal axis. Similar to other species, Follicle Stimulating Hormone (FSH) 

promotes the growth and vitellogenesis of oocytes by inducing estradiols. LH 

stimulates the production of 17α,20-β-dihydroxy-4-pregnen-3-one (17,20β DHP) a 

fish specific maturation inducing hormone (MIH) which induces the maturation 

promoting factor  which promotes the oocyte maturation (E. Clelland & Peng, 2009). 

In zebrafish, ovary development is initiated ten days after hatching. In three 

months the fish become sexually mature with an ovary containing large amount of 

follicles of all the developmental stages. In proper conditions, spawning can be 

achieved easily (Ge, 2005). Development of oocytes in zebrafish is asyncronic, 

which means all the stages of development can be seen in the ovary at any given 

point of time. During oogenesis, oocytes transform themselves from primary ovarian 

follicles to egg. Primordial Germ Cells (PGC) migrate towards genetic ridge and 
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transform into oogonia. While meiosis starts, they develop into primary oocytes. 

Once the meiosis is arrested in diplotene stage, oocytes grow in size, followed by 

vitellogenesis and development of inner and outer envelope. After the required 

growth and vitellogenesis is achieved, meiosis is resumed.  Resumption of meiosis 

marks the advent of maturation in oocytes. Oocyte maturation accompanies 

Germinal Vesicle Break Down (GVBD), causing oocytes to become transparent. 

Completion of first meiotic division results in formation of cells with two different 

sizes. The small cell with a polar body ends up getting degenerated and the large cell 

left is known as secondary oocyte. Process of maturation concludes at this point. The 

secondary oocyte comes out of its follicular casing and goes to the abdominal cavity. 

This step is called ovulation. Occurrence of second meiotic division produces 

haploid female gamete or ovum. During fertilization, the haploid ovum nucleus fuses 

with the haploid nucleus of sperm. 

  

 

Figure 2.11 Schematic drawing of five developmental stages of zebrafish 

oocytes. based on the classification (Selman et al., 1993). (Adapted from Clelland 

and Peng 2009). 
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2.4.4 Developmental stages of Zebrafish oocytes 

 Zebrafish ovary is a bilobed structure consisting of a thin epithelium, oogonia 

and follicles. Follicles contain oocytes surrounded by somatic cells and interstitial 

tissues (stroma). Follicles of different developmental stages are randomly arranged 

in ovigerous lamellae, the chambers made up of connective tissues projecting 

longitudinally from the ovarian wall into the ovary. The ovary is connected to the 

ovarian lumen, where the oocytes are ovulated. A small oviduct connects ovarian 

lumen to a genital opening following the anus (Kelly Selman, 1993).  

Zebrafish oocyte is surrounded by a layer of vitelline envelope, known as  

zona radiata which connects the oocyte to a single layer of granulosa cells which is 

further surrounded by a vascularized theca layer. The theca layer contains fibroblast 

and steroidgenic theca cells. Though structurally different, these granulosa and theca 

cell layers are found to be functionally homologous to mammals (Ge, 2005). 

Oocytes pass through various developmental stages during oogenesis. Based 

on the size and structure of developing  oocytes, Wallace and Selman   have 

classified them into 5 stages (Kelly Selman, 1993). This classification is mostly 

followed in most of the zebrafish oogenetic studies, including this study. These 

stages are primary growth stage, cortical alveolus stage, vitellogenesis, maturation 

and mature egg (Figure 2.11, 2.12). 
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Figure 2.12 Zebrafish oocyte in different stages of development. Stage PV is 

pre vitellogenic and Stage EV is early vitellogenic. Smaller dark oocytes of stage 

MV are mid vitellogenic and stage LV late vitellogenic. Stage M represents mature 

oocytes. Pictures from PV to LV are provided by Ms Annette Jayaram and M is 

Adapted from (Kelly Selman, 1993). 

 

Primary Growth Stage (PG) The follicle size at this stage, ranges from 7-

140µm in diameter. During this phase of development, oocyte grows and undergoes 

the prophase of meiosis 1 and follicles are formed. At the end of this stage, meiotic 

division is arrested. Based on the fact whether the developing oocyte is resting in a 

nest or in follicle, this stage is subdivided into two more stages. 

1. Pre follicle phase The oocytes at this stage measure 7-20 µm and lie in the nest. 

The oocyte nest is surrounded by a single layer of prefollicle cells which segregates 

it from oocyte stroma and other follicles. At this stage the oocyte nucleus is larger 

than the cytoplasm. Chromosomes start appearing in the form of thin thread; nucleoli 

also appear. Now these oocytes are in the leptotene stage of prophase. The oocytes 

grow and further condensation of chromosomes continues. Finally the oocytes form 

PV EV 
MV 

LV 
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a layer of definite prefollicle sheath around it. At this time, the oocytes go through 

the zygotene and pachyene phase. They are released from the nest but do not enter 

the diplotene stage yet. 

2. Follicle Phase The follicles at this stage are transparent with a nucleus in the  

center, their size ranges from 20-140µm. A single layer of follicle cells surrounds the 

oocytes. Inside the nucleus, decondensation of chromosome starts and the oocyte 

enters the diplotene stage. Meiosis gets arrested now. From this point onwards, 

oocytes grow and develop until meiosis is resumed. By the end of this stage, the 

germinal vesicle enlarges. Oocyte becomes a definite follicle by getting surrounded 

with few cellular envelope layers. The first layer surrounding the oocyte follicle cells 

is a basement membrane. This whole complex opens up in a chamber of connective 

tissues known as theca which is covered by surface epithelium. The end of this stage 

can be marked by the appearance of the vitelline envelope. 

Cortical alveolus stage At the beginning of this stage, cortical alveoli 

appears in the oocytes. The size of oocyte ranges from 0.14 to 0.34 mm in diameter. 

Cortical alveoli are also known as yolk vesicle. At this stage, the follicles appear 

translucent and foamy. But as the follicles grow in size, the yolk vesicle also grows 

and increases in number making the oocytes opaque. Now the germinal vesicle is not 

visible. At the end of this stage due to the rapid growth of cortical alveoli, almost all 

the ooplasm is covered. Germinal vesicle grows and becomes irregular in shape. 

Other cellular organelles also grow and differentiate. A tripartite vitelline envelop is 

formed with the three layers, known as zona externa (outer), zona radiata (middle) 

and zona interna. The follicle cells surrounding the oocytes also continue to grow 

and divide. Ovarian interstitial cells start to appear and increase in number, these 

cells are believed to be steroid secreting cells. 
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Vitellogenesis stage The follicle size ranges from 0.34 to 0.69 in diameter, at 

this stage. This is the major growth phase for the oocytes. At the end of this stage 

they acquire maturational competence. This stage is marked by the voluminous 

increase in the protein and yolk inside the oocyte. During vitellogenesis follicles 

become increasingly opaque and the germinal vesicle is completely murky. Female 

yolk precursor protein, vitellogenin, is hepatically derived and transformed into yolk 

protein and gets collected in yolk bodies. These yolk bodies start appearing at 0.34 

mm sized follicles and increase in number as the follicles enlarge. The vitelline 

envelope starts thinning; theca cells enlarge and keep increasing in size. Germinal 

vesicle acquires a smooth outline and at the end of this stage, it migrates away from 

the center of the ooplasm. Yolk bodies come towards the center and the cortical 

alveoli move towards the periphery. The most important event that occurs at the end 

of this stage is that oocytes become competent and respond to the endogenous 

hormones. These oocytes now contain maternal mRNAs, proteins, lipids, 

carbohydrate, vitamins and hormones that are important for the proper development 

of the embryo. Based on the acquired maturational competence in response to the 

hormones and steroids, vitellogenic stage has been subdivided into two stages (Kohli 

et al., 2003). 

1. Early vitellogenic stage These are oocytes of the size below 0.52 

mm in size. At this stage, oocytes are not able to respond to the hormones which lead 

them towards maturation. Thus the oocytes are maturationally incompetent. When 

cultured, in vitro in leibovitz L-15 medium these oocytes fail to respond to the MIH 

and hCG (human gonadotropin hormone).  

2.       Late vitellogenic stage Oocyte are now sized above 0.52 mm, acquire  
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maturational competence and respond to the maturation promoting hormones. These 

oocytes have capacity to undergo maturation in response to fish- specific MIH and 

hCG when they are cultured in vitro. The oocytes of this size are being utilized by 

developmental biologists for hormonally induced in vitro maturation to understand 

the intricate signaling that happens while the oocyte matures. 

Meiotic Maturation Zebrafish oocyte maturation is a complex event that 

involves a number of cellular changes. Meiosis resumes in maturational competent 

vitellogenic oocytes, in response to the LH surge. Germinal vesicle migrates towards 

the periphery and the nuclear envelop breaks down. First meiotic division occurs and 

chromosomes proceed towards the second meiotic division metaphase. The division 

is again arrested here and  oocytes are converted to egg now. As the maturation 

proceeds, oocytes become translucent, at this stage oocytes can be matured in vitro 

in the medium alone without any assistance of external supply of hormones. Major 

events that take place while oocytes undergo maturation are,  

1. Germinal vesicle migration (GVM)  

2. Dissolution of germinal vesicle, which is also known as Germinal Vesicle 

Break Down (GVBD)  

3. Ooplasm clearing  

4. Development of osmoregulation in fresh water  

5. Formation of future animal pole  

Zebrafish maturation is very well studied. It is essentially a three step process, 

involving induction of gonadotropin (LH), maturation inducing hormone (MIH) and 

maturation promoting factor (MPF). LH acts on the follicles cells to induce the 

production of MIH which is 17alpha, 20beta-dihydroxy-4-pregnen-3-one (DHP) in 
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zebrafish. DHP in-turn stimulates the production MPF to trigger maturation 

(Nagahama & Yamashita 2008).  

Zebrafish oocyte maturation can also be performed in vitro. If late 

vitellogenic oocytes, typically sized from 0.575 to 0.624 mm diameter are incubated 

in Leibovitz L-15 medium containing 1 μg/ml of DHP for 8-24 hours at room 

temperature, they undergo maturation. The in vitro occurrence of maturation is 

tracked by germinal vesicle breakdown event. Morphologically, the dense dark 

oocytes become transparent with the advent of maturation. At the same time 

maturation can also be induced in midvitellogenic oocytes (which are incompetent to 

undergo meiosis), by incubating them with Human Gonadotropin Hormone (HCG) 

in L-15 medium prior to the addition of DHP (Selman et al., 1994). Detailed 

description of in vitro induced maturation is provided in chapter 4, section 4.1. 

Due to the ease at which zebrafish maturation assay can be performed in 

vitro, it has emerged as a very powerful model for maturation related studies. 

Transcriptomic and proteiomic studies have been carried out in order to understand 

the molecular pathway of maturation (Knoll-Gellida et al., 2006). Zebrafish studies 

have contributed largely to understand the transcriptional, endocrine, and paracrine 

control of maturation. Multidimensional studies are in progress, to elucidate various 

pathways which promote maturation. One such pathway that involves the critical 

interaction of activins, inhibins, and follistatins with LH and MIH is being explored 

in detail (Wang & Ge 2003; Wu et al., 2000). Simultaneously the studies looking at 

the involvement of growth factors during maturation are also going on. Interesting 

findings, like TGF-beta-1 having inhibitory effect on maturation and BMP-15 

preventing premature maturation increases the enthusiasm further to explore 

zebrafish maturation (Clelland et al., 2007; Kohli et al., 2005). Researchers have also 
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connected the dots between Highly Unsaturated Fatty Acids (HUFA) biosynthetic 

pathway and zebrafish maturation. Specifically desaurase, an enzyme of HUFA 

pathway was found to be highly expressed in mature oocytes indicating the 

interaction of HUFA and its downstream products with the maturation process (Ishak 

et al., 2008). Having said that, it can also be perceived that COX pathway is 

involved in maturation and hence comes across as an area worth exploring.   

Mature eggs (Ovulation) Translucent eggs of the size 0.73-0.75 mm are 

released from the surrounding follicle cells to be fertilized. The release of oocyte 

from the surrounding follicle cells to the ovarian or abdominal cavity is known as 

ovulation. The release of oocyte happens after the rupture of follicle wall. The 

rupture and release are the function of complex biophysical and biochemical events 

(Carnevali et al., 2010). Preovulatory LH surge is believed to trigger ovulation by 

increase in the production of prostaglanding. Marked in increase in COX-2 enzyme 

is reported in time dependent manner when follicles approach ovulation. This 

indicates like other species, in zebrafish COX-2 plays an important role during 

ovulation. 
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CHAPTER 3 

MATERIALS AND METHOD 

 

3.1 Materials  

 The focus of this study is to establish the role of cyclooxygenase enzyme 

isoforms COX-1 and COX-2 during oogenesis, specifically development and 

maturation of oocytes. To achieve this target zebrafish was used as model organism 

in this study because all developmental stages of oocytes are easily distinguishable 

and readily available in the ovaries of these fish.  The core material utilized to 

peruse this work was zebrafish ovaries and oocytes collected from sexually mature 

female fish. Zebrafish attain sexual maturity at the age of 3 to 4 months. Collection 

of various stages of oocytes can be done easily with the help of forceps; under the 

microscope. Oocyte collection is described in detail in section 3.4.2. 

 

3.2 Media and stock solutions 

 Culture media, stock solutions used for this study are listed in Table 3.1 and 

Table 3.2 together with their formulation. 

3.3 Chemicals and consumables  

The chemicals and other material used in this study are documented in Table 

3.3. 
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Table 3.1 List of Culture Media 

Medium Composition 

 

LB Broth 

 

1.0% Tryptone, 0.5% yeast extract, 1% NaCl. pH 7.0 

LB Agar 1.0% Tryptone, 0.5% yeast extract, 1% NaCl. pH 7.0, 

agar (15g/L), ampicillin (50mg/ml) 

Dulbecco’s 

modified 

eagle’s medium 

(DMEM) 

1X DMEM, 10% fetal bovine serum, 2mM L-glutamine, 

100 U/ml penicillin, and 100 µg/ml streptomycin 

 

 

Leibovitz (L-

15) medium 

60% L-15 medium, 100u/ml penicillin, 100 µg/ml 

gentamycin 

  

 

 

Table 3.2  List of Stock Solutions 

Buffer Composition Volume 

 

5 X TBE buffer 

 

54.0 g tris base, 25.5 g boric acid, 0.5 M 

EDTA (20 ml) 

 

  

1 L 

10 X DNA gel 

loading buffer 

500 µl  1X TBE, 500 µl glycerol, 2.5 µg 

bromophenol blue 

 

1 ml 

RNA loading 

buffer 

50% Glycerol, 1mM EDTA, 0.4% 

bromophenol blue, 1mg/ml ethidium 

bromide 

 

10 ml 

RNA sample 

buffer 

10.0 ml deionized formamide, 3.5ml 37% 

formaldehyde, 2.0ml of 5X MOPS 

15 ml 
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10 X 

Phosphate-

buffered saline 

(PBS) 

80 g NaCl, 2 g KCL, 11.1 g anhydrous 

NA2HPO4, 2 g KH2PO4 in 1L sterile 

dH2O 

 

 

1 L 

10 X TBS  800 ml dd H2O, 12.11 g tris, 116.88 g NaCl 

pH 7.4. 

 

1L 

1 X TBST 

(Washing 

buffer) 

50 ml 10 X TBS, 500 µl Tween 20, 400 ml 

ddH2O 

 

 

500 ml 

5X sample 

buffer 

0. 3125 M Tris-Cl pH 6.8, 10%SDS, 25% 2-

mercaptoethenol, 50% glycerol and 25 µg 

bromophenol blue 

 

10 ml 

10 X running 

buffer  

800 ml ddH2O, 30 g tris, 144.4 g Glycene, 

0.1% (w/v) SDS while making 1X running 

buffer 

 

1L 

Transfer buffer 100 ml 1 X running buffer, 200 ml 100% 

methanol, 700 ml ddH2O 

 

1 L 

50 X Danieau’s 

buffer 

33.9 mg NaCl, 0.52 mg KCl, 0.98 mg 

MgSO4, 1.4 mg Ca(NO3)2, 13 mg HEPES, 

10 ml dH2O, pH 7.6 

10 ml 
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Table 3.3 List of chemicals and consumables 

Suppliers Chemicals 

 

Molecular Research 

Centre 

 

TRI Reagent 

Bioneer Oligonucleotides 

Vivantis SDS, Glycine, Agarose, DNAladder 

Promega Renilla Luciferase Assay System, 

pGL-3 basic vector, pGEM®-T Easy Vector System, 

RQ1 RNase- Free DNase, TNT T7 Quick Couple 

transcription /translation system,TNTVR T7 PCR 

Quick master mix 

Bio-Rad Tris, TEMED, iScript™ MMLV Reverse 

Transcriptase, SYBR® Green 

Qiagen RQ1 RNase- Free DNase, QIAprep Spin Miniprep 

Fermentas PageRuler™ Prestained Protein Ladder,  BglII  

restriction enzyme, HINDIII  restriction enzyme   

Merck Methanol  

USB Corporation Ammonium persulphate     

Fluka D-mannitol  

GeneTools LLC. Antisense Morpholino 

Invirogen Lipofectin 

Gibco Dulbecco’s modified eagle’s medium (DMEM), Fetal 

bovine serum, L-glutamine, Penicillin, Streptomycin 

Hyclone 

 

Streptomycin 

 

Addgene pSVsport PPARγ vector 

Pierce Biotechnology 

 

NE-PER Nuclear and Cytoplasmic Extraction Kit, 

Biotin 3’-End DNA Labeling Kit, Light Shift 

Chemiluminescent EMSA Kit 
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Santacruz Biotechnology PPARγ H-100 antibody 

Sigma 

 

COX-1 (PTGS-1) Antibody (Rabbit polyclonal), 

Leibovitz L-15 medium Chorionic gonadotropin 

human (hCG), 17α, 20β-dihydroxy-4-pregnen-3-one 

(DHP) 

Abcam Rabbit IgG-H&L (HRP) 

Millipore Immobilon-P PVDF membrane 

GE Healthcare ECL Western  Blotting  Detection  Reagents 

American Type Culture 

Collection 

HePG2 cell lines 

R&M Chemicals 

 

Sodium chloride   

 

 

 

3.4 Methods 

3.4.1 Zebrafish maintenance  

 Wild type zebrafish (Danio rerio) were maintained in Aquaculture Research 

Complex (University Sains Malaysia, Penang) at 14 hours of light and 10 hours of 

dark period maintained using an automated timer. Windows were covered with dark 

sheets in order to block the light coming from outside during dark period. The fish 

were fed with the combination diet of blood worms and live brine shrimps, Artemia 

sp. twice daily until satiation. Excess food was removed from the fish tank in order 

to avoid water contamination. Male and female fish were maintained in separate 

tanks. 
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3.4.2 Oocyte collection 

 Sexually mature zebrafish ranging between four to eight months were 

collected randomly, few hours before the dark period usually around 1pm-3pm and 

the ovaries from 10-15 fish were dissected out after anesthetizing the fish with 

tricaine solution made from 0.2mg/ml tricaine methane sulphonate (MS222) in 

distilled water. Ovaries were recovered and placed in 60% Leibovitz-15 (L-15) 

medium. L-15 medium is used for CO2 free cell culture systems, to maintain 

physiological pH balance. This medium supports the growth of various established 

cell lines in CO2 free environment. L-15 medium is used in zebrafish labs as 

common practice to facilitate the growth of isolated follicles in vitro.  

Follicles were separated manually with the help of fine tipped forceps. 

Follicles were staged based on classification given by Kelly Selman with some 

modification (k. Selman et al., 1994; W. R. A. Selman et al., 1993). Early and mid 

vitellogenic follicle (EMV 0.34-0.61mm) and late vitellogenic follicles that can also 

be termed as full grown but immature follicles (LV 0.62-0.70mm) were sampled 

separately. To collect mature follicles, female fish were kept together in the 

breeding tank separated by a plastic sheet in dark. Mature follicles, which were 

translucent due to in vivo germinal vesicle breakdown (M ~ 0.70 mm), were 

collected 30 minutes before the end of the dark period. EMV, LV and M follicle 

samples were used for RNA extraction (Section 4.2.1). 

 Mid vitellogenic (MV) zebrafish follicles ranging from 0.52 mm to 0.62 mm 

were collected for the knockdown study described in chapter 4 due to their known 

response to hormonal-assisted in vitro maturation (Selman et al. 1994).  
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3.4.3 Cell line culture and maintenance  

HepG2 (Human liver hepatocellular carcinoma) cell lines were used in the 

experiments involving cell lines. HepG2 are adherent epithelial like cells, which 

grow in monolayer in small aggregates. This cell line was originally derived from 

15 years old Caucasian male with differentiated hepatocellular carcinoma. These 

cells exhibit high degree of morphological and functional differentiation in vitro 

thus acting as a suitable model for the study of membrane protein, lipid and fatty 

acid metabolism.  

Cells were grown in 1 X Dulbecco’s modified eagle’s medium (Gibco), 

supplemented with 10% fetal bovine serum (v/v), 2mM L-glutamine, 100 U/ml 

penicillin, and 100 µg/ml streptomycin (Hyclone).  Cultures were maintained at 

37°C with 5% CO2 (v/v) supply.  

 Culture medium was replenished every 2 to 3 days and fresh medium. Cells 

were split 1:4 every third or fourth day. Before splitting, cells were washed by 

1xPBS twice and passaged by adding prewarmed (37°C) 0.05% Trypsin-EDTA 

solution on the cell monolayer. Once the cells are dispersed, equal volume of 

complete growth medium was added to deactivate Trypsin and cells were 

distributed in fresh culture flasks replenished with the culture medium. Cells at 60% 

confluence on the day of experiment were used for transient transfection. 
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CHAPTER 4 

EXPRESSION OF COX-1 AND COX-2 IN VITELLOGENIC AND MATURE 

ZEBRAFISH OOCYTES 

 

4.1 Introduction 

 Successful maturation of oocytes is a prerequisite for successful ovulation 

and fertilization. Maturation involves the resumption of meiosis (Wilson, 1925) and 

thus requires complicated signaling process (Jamnongjit & Hammes, 2005). It has 

been well established that cyclooxygenase derived prostaglandins are required for 

developmental and maturational success of the oocytes (Armstrong, 1981; 

Armstrong et al., 1974; Lau et al., 1974). Prostaglandins are believed to be formed in 

the granulosa cells of the preovulatory follicles, by the enzymatic action of COX on 

AA. Their amount increases at the time of LH surge (while oocytes mature) and is 

highest in the oocytes nearing ovulation (Dennefors et al., 1983; Hanzen, 1984; 

Tsutsumi, 1993).  

As cyclooxygenase is the rate limiting enzyme in the production of 

prostaglandin, it is important to understand the involvement of both the isoforms of 

cyclooxygenase in oogenesis. COX-2 is known to be induced few hours after the LH 

surge, specifically at the time while follicles approach ovulation in zebrafish (Lister 

& Van Der Kraak, 2009), mouse, bovine and rat (Sirois et al., 2004) indicating the 

requirement of COX-2 derived prostaglandin during ovulation. COX-2 derived 
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prostaglandins are also reported to be required for the oocyte maturation in mouse 

(Takahashi et al., 2006).  

In comparison to COX-2, requirement of COX-1 in oogenesis is poorly understood, 

however emerging evidences strongly support involvement of COX-1 in oocyte 

development and maturation. For example COX-1 derived PGE2 was detected in 

monkey ovarian surface epithelium (Cabrera et al., 2006). Studies in both salmon 

and brook trout reveal increased COX-1 levels during ovulatory stage (Roberts et al., 

2000). In medaka, both COX isoforms were shown to be necessary to sustain female 

reproductive performances. Continuous presence of COX-1 in human (Adriaenssens 

et al.) and adult zebrafish oocytes (Grosser et al., 2002; Lister & Van Der Kraak, 

2008) strongly implies a plausible function for COX-1 during maturation or 

ovulation.  

The study that marked COX-2 as critical factor for oogenetic success was 

based on the implications that COX-2 knockout mouse had disrupted ovarian 

functions like ovulation and fertilization (Langenbach et al., 1995; Lim et al.,1997). 

Interestingly, when COX-2 knockout was produced in the mouse under different 

genetic background (CD-1) the ovulatory phenotype was rescued. The rescue was 

contributed to the ability of COX-1 to replace COX-2 and perform the functions that 

are generally attributed to COX-2 (H. Wang et al., 2004) .  

Although we have a clear understanding that COX are essential for success 

of ovarian functions, the extent of involvement of COX-1 during vitellogenesis and 

maturation is still unclear. Contrary to COX-1 which requires extensive 

investigation, COX-2 is marked essential for ovulation and its inhibition results in 

ovulatory disorders. In spite of having a significant effect on ovulation, a study 
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revealed that COX-2 specific inhibitor failed to inhibit zebrafish maturation and 

elevated COX-2 expression was not seen in vitellogenic and mature zebrafish 

follicles (Lister & Van Der Kraak, 2008). However, the results were regarded as 

non-conclusive due to the arguments about COX-2 inducibility, sample handling and 

lack of repeatability. Thus, in the wake of present scenario, analysis of mRNA 

expression of both COX isoforms, in order to elucidate their significance during 

vitellogenesis and maturation is required. 

Zebrafish has a functional AA pathway, and both COX isoforms are 

expressed in this model system (Grosser et al., 2002). Zebrafish ovary is 

asynchronous, in other words it contains all the developmental stages of oocytes (E. 

Clelland & Peng, 2009). Also when it comes to understanding the functional role of 

a gene, the simplicity of this model system holds a great advantage.  In order to 

distinguish the participation of COX isoforms during development and maturation of 

zebrafish oocytes, the mRNA expression pattern of COX-1 and COX-2 in  EMV 

oocytes, LV oocytes and M oocytes was observed through semi quantitative real 

time PCR. It is one of the most sensitive ways to analyze and compare the mRNA 

expression, as the amplification is monitored in “real time” which means signal is 

detected in terms of fluorescence the moment amplification starts.  Thus it also 

allows the accurate quantification of a target mRNA in biological samples at 

different times of development. The data obtained is in terms of Ct value (threshold 

cycle), which represents the number of cycle at which fluorescent signals are 

obtained from the amplification crosses the threshold (background). Ct values are 

inversely propositional to the amount of nucleic acid present in the sample. mRNA 

expression is calculated  by using these Ct values (See section 4.2.4) 
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4.2  Method 

4.2.1 Total RNA extraction 

Total RNA was extracted from the oocytes of three developmental stages, 

early and mid-vitellogenic (EMV), Full grown (LV) and Mature (M) respectively. 

RNA extraction was done using TRI Reagent, following the manufacturer’s 

specifications. Purity and concentration of RNA was determined by spectroscopy 

(Bio-Rad SmartSpec™Plus Spectrophotometer). RNA was subjected to gel 

electrophoresis (1% w/v agarose gel) to ensure the integrity. To eliminate the 

possibility of DNA contamination 2µg of total RNA was treated with RQ1 RNase 

Free DNase. Treated RNA was stored in -80˚C before using it for real-time PCR. 

 

4.2.2 Primer Design 

Gene specific primers were designed using the published mRNA sequences 

of zebrafish COX-1 (Genebank: BC116575), COX-2 (Genebank: BC063232.1) and 

β-actin (Genebank: AF057040). Primers were designed using Primer3 (version 

0.4.0) online program (http://frodo.wi.mit.edu/primer3/). Primers present on the 

exon-exon junctions were selected. Strict parameters like 20-25bp length of primer, 

40-60% of GC content, 55 to 65˚ C annealing temperature (Ta) and 100-250 bp 

product size were taken into account while designing the primers. Primers with the 

tendency of hairpin loop, homodimers and herterodimers formation were avoided. 

Sequences of the primers together with amplicon size are given in Table 4.1 

 

 

http://frodo.wi.mit.edu/primer3/
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Table 4.1 Primers used for real time PCR  

Name                            Sequence 5’-3’ Amplicon size (bp) 

 

COX-1 

 

Forward 5’GCTGAAGTGGACGGTGATTT 3’ 

Reverse 5’GACAAGGGTAATAGCAACAAGG 3’ 

 

 

104 

 

COX-2 

 

Forward 5’ CTGTCCGATGGTGTCCTTTC 3’ 

Reverse 5’ AACTCCGCTCGTTCAAAACA 3’ 

 

 

125 

β-actin  

Forward 5’CCGTGACATCAAGGAGAAGCT 3’ 

Reverse 5’TCGTGGATACCGCAAGATTCC 3’ 

 

 

201 

 

4.2.3  Amplification, Cloning and Analysis of mRNA fragment 

Fragments of zebrafish COX-1 and COX-2 were amplified by PCR using the 

primers mentioned above. These fragments were ligated in pGEMT-easy vector and 

transformed in DH5α strain of E.Coli using heat shock method.  Transformed 

bacterial cells were grown in LB medium till they reach exponential phase and 

spread on agar plate supplemented with LB medium. Recombinant colonies were 

selected via blue/white selection and inoculated on a seperate LB-agar plate. 

Fragment insert was confirmed in these selected colonies by PCR amplification of 

recombinant DNA using these colonies as template. Colonies containing the 

fragment matching the size were further propagated in LB medium overnight. 

Recombinant plasmids were extracted using QIAprep Spin Miniprep kit following 

the manufacturer’s instructions. Extracted plasmids were sent for sequencing and 

retrieved sequences were verified using NCBI nucleotide BLAST 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) 
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4.2.4 Semi-quantitative real time PCR analysis  

Semi-quantitave real time PCR was performed to check the expression of 

COX-1 and COX-2 in oocytes.  RNA extracted from EMV, LV and M stages of 

oocytes was used as template for the PCR. DNAse treatment was first performed on 

the RNA, in order to get rid of DNA contamination.  For DNase treatment, 2µg of 

sample RNA was mixed with 1µl of DNase (Promega, USA), 2µL 10X DNase 

buffer and sterilized MiliQ water to constitute the final reaction volume of 10µl. This 

mixtures was incubated at 37°C for 30 minutes, followed by 10 minutes incubation 

at 65°C to inactivate the enzyme. 

One-step RT-PCR was conducted in iCycler iQ 4 Real Time PCR Detection 

System  (Bio-Rad), using iScript
TM

 One-Step RT-PCR Kit (Bio-Rad, USA) along 

with DNAse treated RNA and COX-1, COX-2 and β-actin primers mentioned in 

table 4.1.  Recipe of mastermix is given below:  

RNA template      300ng 

iScript reverse transcriptase    1 µl 

2XSYBR Green RT-PCR reaction mix  15µl 

Forward primer     0.2 μM 

Reverse primer     0.2 μM 

Nuclease-free water     Add up to 30 µL 

 

At first, the RNA templates were reversed transcribed at 20°C for 20 minutes 

to generate the first cDNA strand, followed by heat inactivation of enzyme at 95°C 
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for 5 minutes. Similar PCR cycling conditions were used for COX-1, COX-2 and 

reference gene β-actin. Denaturation was performed at 90˚C for 20 seconds; 

annealing step was done for 30 seconds at specific melting temperature for COX-1 

and COX- 2 and β-actin. Extension step was carried out for 72˚C for 30 seconds. 

After the last cycles of PCR reaction, the PCR products were subjected to melt curve 

analysis (81 repeats). 

Samples were run in triplicates during each PCR run for the amplification of 

COX-1 and COX-2 along with reference gene β-actin. Data was obtained in the form 

of Ct (calculated threshold cycle) values, from which the gene expression was 

calculated using the iCycler iQ Real Time PCR Detection System software version 

3.1 (Bio-Rad) provided by the manufacturer. The formula used to calculate the gene 

expression is given below. 

Expression of COX = 2 
(Ct β -actin -Ct COX) 

Expression (control) = 2
(Ct  β-actin -Ct COX)

 lowest COX expression is used as control. 

Expression (target) = 2
(Ct  β-actin -Ct COX)

 for other two stages. 

Expression level = Ratio expression (control/target) 

The PCR was repeated with three biological replicates of the samples, in 

order to get statistically significant data.  Results were analyzed by one-way analysis 

of variance (ANOVA) and Tukey's HSD (Honestly Significant Difference) post hoc 

test. The statistical analyses were performed using SPSS 10.0.1.  The results are 

expressed as mean ± SEM for the number of experiments (n=3) performed.  P < 0.05 

was considered significant. 
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4.3       Results 

4.3.1 RNA Isolation 

Total RNA is used as the starting material for mRNA expression analysis, the 

success of downstream experiments depends on the high quality of total RNA. Total 

RNA isolated from the samples EMV, LV and M was separated as two bands on 1% 

(w/v) agarose gel. Presence of the intact, brighter 28S and a less bright 18S rRNA 

band ensured the integrity of total RNA extracted from the samples (Figure 4.1). 

Isolated RNA samples had the A260/A280 ratio and A260/230 ratio, ranging 

from1.8 to 2.0, indicating that the RNA samples used for downstream applications 

are free from protein, chaotropic salts or phenol impurities. Subsequent DNase 

treatment ensured that RNA is free from any DNA contamination 
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Lane 1 Early and Midvitellogenic oocytes (EMV) 

Lane 2 Full grown but immature oocytes (LV) 

Lane 3 Mature oocyte 

Figure 4.1 RNA extraction from zebrafish oocyte. Total RNA obtained from 

each oocyte stage resolved in the form of two bands on 1%w/v agarose gel. 

 

4.3.2 Amplification and validation of zebrafish COX-1 and COX-2 fragments 

Validation of amplicons is required in order to be sure, beforehand, that the 

amplified PCR product is COX-1 and COX-2 indeed.  Using the primers mentioned 

in Table 4.1 COX-1 and COX-2 were amplified using conventional PCR. PCR 

products were run on 1.5% w/v agarose gel. COX-1 and COX-2 were separated at 

104bp (figure 4.2) and 125 bp (Figure 4.3) respectively in the form of single bright 

bands. There were no primer dimers seen on the gel. These amplicons were cloned in 

pGEMT easy vector and sequenced. Deduced sequences of both COX-1 and COX-2 

28S rRNA 

18S rRNA  

     1                  2             3 
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were identical to zebrafish COX-1 and COX-2 published sequences mentioned in 

section 4.2.2 (Figure 4.4 and 4.5). 

 

              

             Lane 4 104 bp COX-1 fragment 

Figure 4.2 Amplification of COX-1 COX-1 resolved on 1.5% agarose gel as 

sharp 104 bp band 

 

 

 

 

   1      2     3 4 

200bp 
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Lane 2 125bp COX-2 fragment 

Figure 4.3 Amplification of COX-2 COX-2 resolved on 1.5% agarose gel as 

sharp 125 bp band 

 

 

Figure 4.4 Sequence alignment of zebrafish COX-1 COX-1 sequence aligned 

with published zebrafish COX-1. Letters in bold represent primers used for PCR 

amplification  

  

 

 

 200bp 

    1         2 
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Figure 4.5 Sequence alignment of zebrafish COX-2 COX-2 sequence aligned 

with published zebrafish COX-2. Letters in bold represent primers used for PCR 

amplification  

 

4.3.3  Expression analysis of COX-1 and COX-2 in vitellogenic and mature 

stage of oocytes 

mRNA expression analysis is a reliable way of predicting the gene 

expression as it mostly correlates to the protein which is the functional expression of 

gene. To know the contribution of COX-1 and COX-2 in vitellogenesis, their mRNA 

was amplified in EMV, LV and M oocyte samples by real time PCR amplification. 

Data obtained at the end of the PCR was analyzed to get the expression of mRNA. 

The melt curve obtained at the end of PCR showed a single peak, demonstrating that 

only the desired PCR products are amplified, and the primers are very specific and 

free of dimer formation. (Figure 4.6 A, B). Data is collected in the form of Ct value 

from which mRNA expression of COX-1 and COX-2 was calculated as mentioned 

in section 4.2.4.  
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mRNA expression pattern of COX-1 showed a significant gradual increase 

from EMV to LV to M follicles COX-1 expression was increased at each oocyte 

stage analyzed, indicating the ongoing enhanced requirement of COX-1 at the time 

of vitellogenesis and maturation (Figure 4.7 A). Surprisingly COX-2 mRNA showed 

a significant gradual decrease of expression in EMV and LV follicles. The mRNA 

transcript of COX-2 was almost nil during maturation (Figure 4.7 B). 
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Figure 4.6 Melt curve analysis of COX-1 and COX-2 demonstrated single 

specific peak indicating the specificity of the primers and amplification. 
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Figure 4.7 mRNA expression of COX-1 and COX-2 in early and mid 

vitellogenic (EMV), Full grown (LV) and matured (M) zebrafish follicles.  Mean 

values with different letters are significantly different (P<0.05). 
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4.4  Discussion  

Both COX-1 and COX-2 show a distinct expression pattern in vitellogenic 

and mature oocytes. Gradual increase in the expression of COX-1 and strong 

suppression of COX-2 from late vitellogenic to mature oocytes indicates that COX-1 

can be critical during vitellogenesis and maturation.  

In mice, it has been shown that COX derived PGE2 are critical for the 

induction of various pathways which leads to meiotic resumption, and cumulus cell 

expansion, the event that takes place during maturation (Takahashi et al., 2006). In 

bovine, it is exhibited that COX-1 expression increases in maturing oocytes and the 

expression of COX-2 remains unchanged (Nuttinck et al., 2008) which is also 

concurrent with increased expression of COX-1 in our study.  

Low level of COX-2 expression in full grown and mature follicles of 

zebrafish indicates the non requirement of this isoform during vitellogenesis and 

maturation.  COX-2 is also established as a marker for ovulation in various species. 

COX-2 is induced at the time of ovulation in zebrafish follicles (Lister & Van Der 

Kraak, 2009) suggesting the requirement of COX-2 in follicular rupture and 

ovulation. In other words, the possibility of COX-1 derived PGs modulating 

vitellogenic and maturational events and COX-2 derived PGs contributing towards 

ovulation in zebrafish cannot be overruled. 

In teleosts, responsiveness of the oocytes towards maturation inducing 

hormone (MIH) is prerequisite for the resumption of meiosis and GVBD (Germinal 

Vesicle Break Down) . In zebrafish, the steroid 17α, 20β -DHP has been identified as 

a form of MIH capable of inducing maturation in vitro (Selman et al., 1994). COX 

derived prostaglandin are known to be necessary for the production of MIH in 
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various fish species. Elevated expression of COX-1 in this study suggests that COX-

1 can be critical for the maturational events of zebrafish and its absence can hinder 

this process. To examine the effect of functional absence of COX-1 on oocyte 

maturation, COX-1 knockdown was performed in oocytes. This approach is 

described in next chapter in detail. 
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CHAPTER 5 

EFFECT OF ANTISENSE MORHOLINO MEDIATED KNOCKDOWN OF 

COX-1 ON IN VITRO MATURATION OF ZEBRAFISH OOCYTES 

 

5.1 Introduction 

mRNA expression analysis of COX-1 and COX-2 revealed that contrary to 

COX-2, COX-1 is upregulated during vitellogenesis and maturation of oocytes. A 

significant increase in its expression from full grown to maturating oocytes indicates 

that COX-1 can be critical for the maturation of zebrafish oocytes. However, in order 

to demonstrate that COX-1 is functionally indispensible for this process, it is 

necessary to examine how absence of COX-1 affects the oocyte maturation in vivo. 

To achieve this target functional knockdown or knockout of COX-1 will be required. 

The functional studies involve in vivo inhibition of protein function by either 

eliminating the protein (knockdown) or its corresponding DNA (knockout), thus 

directly establishing the function of a gene in a biological process. Using the 

knockout approach on mouse, it was demonstrated that knock out of COX-2 resulted 

in anovulation phenotype while knockout of COX-1 produced no phenotypic effects 

(Langenbach et al., 1995; Lim et al., 1997). However COX-2 knock out mouse of a 

different genetic background demonstrated that compensatory upregulation of COX-

1 rescued the phenotypic defects caused by the loss of COX-2 (H. Wang et al., 

2004). Hence in order to specifically understand the contribution of COX-1, a 
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simpler model system with a more streamlined in vivo inhibitory approach is 

required.  

With the help of antisense technology, it is possible to specifically knockdown the 

protein expression of a gene on transcriptional or translational level. There are many 

powerful antisense agents available, but morpholino (MO) have gained popularity in 

vertebrate systems like zebrafish, xenopus, chick and mouse due to their strong and 

specific knockdown effects (Heasman, 2002).   

Morpholinos are the radically redesigned nucleic acid analogs with modified 

sugar phosphate backbone. 5 ringed sugar and negatively charged phosphate 

intersubunit linkage of nucleic acid is replaced by 6 ringed morpholine ring and non 

ionic phosphorodiamidate linkage (Figure 5.1). These properties contribute towards 

morpholino stability, reduced toxicity and enhanced affinity to complementary 

mRNA in a biological system (Summerton, 2007). 

Morpholinos work in two ways, either by blocking the translation of a protein 

or by modifying the splicing of pre mRNA. To inhibit the translation, morpholinos 

bind to the complementary mRNA through Watson and Crick pairing and causing 

the steric blocking of the start codon (Figure 5.2). Other type of morpholinos modify 

the splicing of pre mRNA by blocking the splice junctions and resulting into altered 

translation product (Karkare & Bhatnagar, 2006). To accomplish a successful 

knockdown experiment, it is imperative to also show that morpholino is able to 

inhibit the translation of targeted protein in vitro and in vivo. The former can be 

achieved by translating and knocking down the protein in vitro. If an antibody 

specific to the protein is available, morpholino mediated protein inhibition in an in 

vivo system can be shown with the help of a western blot. It is also necessary to have 
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a control morpholino, which is similar to the experimental morpholino but will not 

cause the inhibition of protein. This morpholino demonstrates that the presence of 

morpholino structure and the delivery method does not hinder normal biological 

function. This morpholino is called mismatch morpholino. A mismatch morpholino 

differs in 5 out of 25 nucleotides selected from its targeted mRNA sequence and as it 

is unable to bind the target site, it does not interfere with the translation process 

(Eisen & Smith, 2008). 

 

 

Figure 5.1 Structure of morpholino. Comparison of DNA and Morpholino 

structure. A five member morpholine ring can be distinguished from a six member 

sugar ring of DNA. Morpholino is non ionic compared to DNA which is negatively 

charged.  
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Figure 5.2 Mode of action of morpholino. By steric blocking of the start codon 

by morpholino does not allow the ribosomal units to assemble hence stopping the 

protein synthesis (B). (Adapted and modified from Summerton 2007). 

 

Strong specificity of morpholino towards its target has been witnessed time 

and again as morpholino mediated knockdowns mimicked the known genetic 

mutants in various studies (Karlen & Rebagliati, 2001; Lele et al; 2001; Nasevicius 

& Ekker, 2000). In zebrafish, MOs are proved to produce specific and powerful 

knockdowns. Initially MOs were used to assign functions to the genes in zebrafish 

embryo development. However at present zebrafish embryo model system with the 

aid of MO is being used for drug resisitance, toxicity testing (Sipes, Padilla, and 

Knudsen 2011), hematopoieses (Ellett and Lieschke 2010), genetically modified 

platelets studies (Thijs, Deckmyn and Broos 2012), and for the study of diabetetic 

(Jörgens et al., 2012), cardicac (Miura and Yelon 2011), muscular  diseases (Guyon 

et al., 2007) etc. 

While not as abundant as embryonic studies, frequently oognetic studies have 

also been performed utilizing the MO antisense technology and in vitro oocyte 
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maturation assay.  With the help of MO knockdown various genes were established 

as inhibitor or promoter of maturation and there potential role in the pathway that 

leads to maturation was determined. The control of Human G protein-coupled 

receptor 30 (GPR30) on meiotic arrest was realized when GPR 30 antisense 

moroholino blocked the inhibitory effect of estrogen on oocyte maturation (Pang, 

Dong and Thomas 2008). Knocking down of BMP-15 in oocytes resulted in 

maturation of premature oocytes, indicating its role in oocyte quality control (Peng, 

Clelland and Tan, 2009). 

In the area of COX study, COX-1 MO knockdown has been performed on 

embryos establishing the requirement of COX-1 in embryogenesis (Grosser et al., 

2002), vasculature formation and gastrulation (Cha, Kim, Solnica-Krezel, & Dubois, 

2005). However functional requirement of COX-1 during oocyte maturation has not 

been demonstrated yet. Tracking the effect of functional absence of COX-1 protein 

in maturing oocyte is a straight forward approach to demonstrate that COX-1 acts as 

a rate limiting enzyme in AA pathway happening during maturation. 

To elucidate the functionality of COX-1 during maturation, it is necessary to 

block the translation of COX-1 mRNA in oocytes by using translation blocking 

morpholino and observing if the maturation of oocytes is hindered which can be 

achieved in in vitro oocyte maturation assay. 

Maturation can be induced in vitro in the zebrafish oocytes of certain size 

that are still meiotically incompetent. These oocytes are categorized as mid 

vitellogenic oocytes ranging from 0.52 mm to 0.62 mm (Pang & Ge, 2002). By 

maintaining oocytes in Leibovitz L-15 medium and incubating it with hCG (human 

gonadotropin hormone) maturational competence in the oocyte can be induced.  
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Later on administration of 17α, 20β-dihydroxy-4-pregnen-3-one (17α, 20β-DHP) 

which acts as MIH in zebrafish induces the maturation. Success of these events 

requires enhanced supply of prostaglandin. Based on the results of real time PCR it 

can be stated that COX-1 is largely involved with oocyte maturation and the absence 

of COX-1 may affect the maturation process.  

In order to confirm this hypothesis further morpholino mediated knockdown 

of COX-1 in MV oocyte followed by in vitro maturation assay was carried out. 

 

5.2  Methods 

 

5.2.1 Morpholino design, order and storage 

Antisense translation blocking morpholino oligonucleotide covering the start 

codon of zebrafish COX-1 (5’-TCAGCAAAAAGTTACACTCTCTCAT-3’) 

designated as COX-1 MO and its mismatched morpholino (5’-

TCACCAAAAACTTAGACTGTGTCAT-3’) designated as COX-1mm MO were 

designed and ordered from Gene Tool, LLC (Philomath, OR) at website 

http://www.gene-tools.com/. Few parameters that were taken into consideration 

while approving the morpholino design which are, length of morpholino around 25 

bp, GC content around 50%, the sequence should snap between 5’ cap and about 25 

bases 3’ of the AUG start codon. BLAST search was carried out to confirm that the 

morpholino sequence is not present anywhere in the zebrafish genome. Stock 

solution of 1mM concentration was prepared by dissolving the lyophilized 

http://www.gene-tools.com/
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morpholinos in sterile distilled water. Morpholinos were stored at room temperature 

and diluted further for the injections.  

5.2.2 Amplification of PCR template for in vitro transcription and translation  

Primers were designed complementary to the open reading frame of COX-1. Start 

codon was included in the forward primer together with a T7 promoter and a Kozak 

sequence. Forward primer was designed according to this template: 5’ (N)6–10-T7 

Promoter-Spacer-Kozak-AUG-(N)17–22 3’. The N towards the 5’ end of primer and 

the spacers can be any nucleotides. And the N after AUG represents the nucleotides 

complementary to zebrafish COX-1. T7 promoter sequence is 

TAATACGACTCACTATAGGG which is added to facilitate in vitro transcription. 

Kozak Sequence ACCACC was added after the spacer to initiate the translation 

process. Sequence 

5’CAAAACTACATAATACGACTCACTATAGGGAACAACCACCATGAGAG

AGTGTAACTTTTTGC 3’ (T7 promoter indicated in bold, kozak sequence 

indicated in bold italics and started codon indicated in bold) was used as forward 

primer. At the 5’ end of the reverse primer poly T sequence (reverse compliment of 

the poly A tail) and reverse compliment of stop codon (CTA) was added to stop the 

translation. Sequence 

5’TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTCTACTGGTGTAGGTGATGT

TGGAATAA 3’ was used as reverse primer (Poly T sequence in bold and stop 

codon in bold italics). Using these forward and reverse primers, zebrafish COX-1 

PCR fragment was amplified and used for in vitro transcription and translation. 

 

5.2.3 In vitro transcription and translation for the expression of PCR template 
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TNTT7 Quick for PCR DNA kit (Promega) was used to achieve the 

transcription and translation of PCR templates.  PCR fragment containing a T7 

promoter was added to the TNTT7Quick for PCR master mix from the kit and 

incubated for 90 minutes at 30°C in the presence and absence of COX-1 MO and 

COX-1 mmMO. Synthesized proteins were subjected to western blotting for further 

analysis. 

5.2.4 Protein extraction from the oocytes 

Protein was extracted from the oocytes injected with COX-1 MO, COX-1 

mmMO and Danieau’s buffer respectively, after one hour of incubation in Leibovitz 

L-15 medium, using the protocol modified from ReadyPrep™ Sequential Extraction 

Kit (Bio-Rad). Concentration of protein was determined using RC DC protein assay 

(Bio-Rad). Various dilutions of BSA were used for the standard curve plotting. This 

plot was used as the reference to measure the protein concentrations. The proteins 

were subjected to western blot analysis. 

5.2.5 SDS PAGE and Western blotting 

SDS-PAGE gel was casted which consists of two gels. Upper 5% stacking 

gel (0.125M Tris-HCl pH6.8, 0.1%  SDS, 5% acrylamide/bis, 0.2% TEMED, 0.1% 

APS) for the stacking of protein and lower 10% resolving gel (0.375M Tris-HCl 

pH8.8, 0.1% SDS, 10% acrylamide/bis, 0.1% TEMED,  0.1% APS) for the protein 

denaturation and separation according to their size. Presence of SDS causes the 

denaturing of the protein. All the protein samples were mixed in equal concentration 

with 1X sample buffer and loaded with 5µl of prestained protein ladder. Gel was run 

for 2 hours at 100 V. Proteins were transferred on the PVDF membrane (Millipore) 

by blotting the gel and membrane. Gel and membrane were aligned together 
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sandwiched between sponges and blotting papers in a cassette. The cassette was 

placed in the blotting apparatus which was run at 100 V for 2 hours at 4˚C in transfer 

buffer with continues stirring. 

PVDF membrane with transferred proteins on it was blocked in 50 ml of 8% 

skimmed milk powder in TBST for 60 minutes. Blocking solution was discarded and 

membrane was washed five times in 1X TBST.  Membrane was incubated with 

primary anti COX-1 antibody produced in rabbit (Sigma) in 1:1000 dilutions with 

1xTBST. It was followed by the washes with 1xTBST (2 times, 5 minutes) and 5M 

NaCl2 (1 time, 5 minutes) and then again with 1xTBST (2times, 5 minutes). 

Membrane was then incubated for two hours with anti-rabbit IgG-H&L (HRP) 

(Abcam) which was used as secondary antibody in 1:2500 dilutions. Washing step 

was repeated. ECL Western Blotting Detection Reagents (Amersham) was used to 

obtain chemiluminescence. Protein bands were visualized using ChemiDoc XRS+ 

System (Bio-Rad). Primary antibody step was eliminated while detecting the in vitro 

synthesized proteins because the proteins are biotin labeled and Streptavidin-

Horseradish Peroxidase Conjugate was used as secondary antibody. 

5.2.6 Morpholino microinjection in zebrafish oocytes 

In order to examine the inhibition of COX-1 protein in oocytes, morpholinos 

were delivered in zebrafish oocytes by microinjection. Working solution of COX-1 

MO and COX-1 mmMO was prepared by diluting the stock in 1 X Danieau’s’s 

buffer (DB). Final concentration of working solution was achieved by adding 0.05% 

phenol red dye, which helped to track the injection. 

Injection needles were pulled from borosilicate glass capillaries using 

micropipette puller (Narishige). The tip of the needle was cut using sharp razor 
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under the microscope so that a fine opening is formed. Needle was filled with 

morpholino using microloader tips (Eppendorf). Needle was attached to the FemtoJet 

express injector (Eppendorf) which was connected to the InjectMan NI2 (Eppendorf) 

for the pressure supply and the manipulation of the injection. In most of the in vitro 

maturation studies, the volume of morpholino injected in the oocytes is 

approximately 1nl (E. S. Clelland et al., 2007; Zhu et al.,2003) which is also 

followed in this study. The volume of microinjection was adjusted with the help of 

InjectMan NI2 (Eppendorf) by optimizing the injection pressure (Pi) and injection 

timing (Ti). A constant compensation pressure was maintained throughout the 

injection in order to avoid the backflow in the capillary. Volume of each injection 

was calculated by mineral oil droplet method (Nüsslein-Volhard, 2002).  

MV oocytes were used for morpholino microinjection, their separation 

process and timing are mentioned in section 3.4.2 of chapter 3. Oocytes were aligned 

on the stand specially prepared for oocyte microinjection in microinjection chamber. 

Oocytes were set in a desired direction after the removal of excess medium with the 

help of forceps. Needle filled with morpholino was positioned right above the 

oocytes and injections were performed with COX-1 MO, COX-1 mmMO and 

Danieau’s buffer (DB). DB was used as negative control to demonstrate that oocytes 

were not harmed with injection process or the presence of buffer. After the injections 

oocytes were collected and kept in Leibovitz L-15 medium, only healthy looking 

oocytes were used for further applications. 
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5.2.7 In vitro maturation assay   

Healthy looking injected oocytes (n=60) were used for the in vitro maturation 

assay (Selman et al., 1994).  The oocytes were incubated in a six well plate with 2 

ml of Leibovitz L-15 medium in which 20 IU/ml hCG was added. After 6 hours the 

medium was replaced with the fresh medium and 5ng/ml 17α, 20 β –DHP was 

added. Both the incubations were done at 28˚C. Oocytes were scored for %GVBD 

after 10 hours. Oocytes which turned transparent were counted and percentage was 

calculated. Experiment was repeated three times to confirm the results. Data 

regarding the percentage of maturation was analyzed by one way ANOVA and 

Tukey's HSD post hoc test. 

 

5.3 Results 

5.3.1 Determination of Efficacy of Morpholino 

To examine the efficacy of morpholino, its in vitro and in vivo inhibition was 

observed by western blotting. The in vitro transcribed and translated protein using 

TNTT7 quick for PCR DNA, in the presence or absence of COX-1 MO and COX-1 

mmMO were separated by SDS-PAGE and blotted. Low intensity protein bands 

(lane 3) obtained after western blotting, confirmed significantly inhibited protein 

expression of COX-1 protein, translated in the presence of COX-1 MO in vitro. 

Bright bands in lane 2 and lane 1 show that the expression of protein in case of 

COX-1 mmMO was equivalent to the expression of protein in the absence of any 

morpholinos (control) (Figure 5.3). Densitometric analysis of the protein bands 

obtained from western blotting demonstrates significant decreases in the COX-1 
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protein amount caused by the presence of COX-1 MO compared to Mismatch and 

Control. 

Inside oocytes, COX-1 MO inhibited COX-1 protein production with in one 

hour. Sharp reduction in the protein band obtained from COX-1 MO injected oocytes 

can be seen in lane 3 compared to the bright bands obtained from COX-1 mmMO 

and Danieau’s buffer injected oocytes in lane 2 and lane 1 (Figure 5.4).  

Combined together, these results demonstrate that COX-1 MO knocked 

down the COX-1 protein with the same efficiency in vitro and in vivo. Strong 

suppression in the amount of COX-1 protein from the oocyte with in one hour 

demonstrates the strong inhibition caused by COX-1 MO. At the same time strong 

bands of protein obtained from COX-1 mmMO and Danieau’s buffer injected 

oocytes show that presence of morpholino, buffer or injecting process did not have 

any effect on COX-1 protein expression. 
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Figure 5.3 In vitro measurement of COX-1 Morpholino efficacy 

Presence of COX-1 MO inhibits the in vitro translation of COX-1 protein which can 

be seen by decresed band intensity. In the presence of COX-mm MO and absence of 

MO ( MO-ve) in which no morpholinos were added (MO-ve) translation is not 

affected. Protein density was measured and graphically represented in terms of 

arbitrary units (A.U.) to see the efficiency of inhibition.  
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Figure 5.4 In vivo measurement of COX-1 Morpholino efficacy Presence of 

COX-1 MO inhibits the in vivo translation of COX-1 protein in oocytes. Protein 

level of oocyte microinjected with COX-1 MO goes down drastically compared to 

COX-1 mmMO and Danieau’s buffer (DB) injected oocytes. ß actin was used as 

control. Protein density was measured and graphically represented in terms of 

arbitrary units (A.U.) to see the efficiency of inhibition. 
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5.3.2 Effect of COX-1 knockdown on in vitro maturation of zebrafish oocytes 

In order to investigate the effect of absence of COX-1 on oocyte maturation, 

COX-1 protein synthesis was inhibited in vivo by microinjecting anti COX-1 

morpholino (COX-1 MO) in MV oocytes. The strong inhibitory action of this 

morpholino was already displayed in section 5.3.1. Mismatch morpholino, COX-1 

mmMO and Danieau’s buffer were injected as control. Oocytes were then allowed to 

undergo in vitro maturation in the presence of hCG and DHP. Oocyte maturation 

accompanies GVBD which transforms dark MV oocytes into transparent mature 

oocyte. Transparent oocytes become the benchmark for maturation.  

After 10 hours of incubation in DHP, it was observed that, most of the 

oocytes injected with COX-1 MO did not undergo GVBD. Morphologically, they 

did not turn transparent and remained same in appearance as before. In other words 

COX-1 MO injected oocytes did not mature and remained arrested in MV stage. 

(Figure 5.5 a). At the same time, oocytes injected with COX-1 mmMO matured 

successfully and became transparent due to GVBD. Similarly most of the DB 

injected oocytes also matured. (Figure 5.5 b and c.) 

Percentage GVBD was calculated by counting the oocytes that went through 

GVBD after incubation of 10 hours in DHP. Figure 5.6 is the statistical 

representation of % GVBD that occurred in the oocytes injected with COX-1 MO, 

COX-1 mmMO and DB in three independent experiments.  

Morpholino mediated knockdown of COX-1 caused by COX-1 MO injection 

in MV oocytes, resulted in significant reduction in the percentage of maturation in 

vitro(10+/-1.2%). In comparison, more than 60% of the oocytes injected with COX-

1 mmMO and DB matured in vitro. 



 

 

90 

It was demonstrated that knocking down the expression of COX-1, in 

oocytes, radically inhibits the maturation process. As the oocytes mature 

successfully in the presence of mismatch morpholino and Danieau’s buffer, it 

demonstrates that the sole cause of maturation arrest is absence of COX-1 protein 

and not the injection process or presence of morpholino in the oocytes. 
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Figure 5.5 Effect of COX-1 knockdown on oocyte maturation. COX-1 MO 

treated oocytes failed to mature (a) Translucent matured oocytes acquired after 

COX-1 mmMO injection (b) Translucent mature oocytes obtained after DB 

injections (c). Mature oocytes are marked arrow and the oocytes arrested in MV 

stage are marked by dotted arrow. 
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Figure 5.6 Graphical representation of COX-1 knockdown on oocyte 

maturation. COX-1 MO treated oocytes failed to mature (a) Translucent matured 

oocytes acquired after COX-1 mmMO injection (b) Translucent mature oocytes 

obtained after DB injections (c). Mature oocytes are marked arrow and the oocytes 

arrested in MV stage are marked by dotted arrow (A). Percentage (mean + SEM) of 

COX-1 MO injected, COX-1 mmMO injected and DB injected MV follicles 

undergoing germinal vesicle breakdown (GVBD) in hCG and 17α, 20β-DHP 

induced in vitro maturation assay (B). Mean values with different letters are 

significantly different (P<0.05). 
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5.4 Discussion 

 In this chapter it was established that functional absence of COX-1 in 

zebrafish oocytes resulted in maturation failure. In chapter 4 it was observed that 

mRNA expression of COX-1 increases significantly during maturation. Taken 

together these findings indicate that the presence of COX-1 is critical for the 

maturational success of zebrafish oocytes. Based on the literature reviews, this is the 

first study which establishes the functional role of COX-1 in vertebrate oocyte 

maturation. Previously it has been demonstrated that COX non selective inhibitor 

indometacin (INDO) inhibits the zebrafish oocyte maturation. But inconsistent 

results were obtained with COX-1 and COX-2 selective inhibitors (Lister & Van Der 

Kraak, 2008). In medaka fish, exposure to COX-1 inhibitor reduced the amount of 

mature oocytes. Interestingly in invertebrate model system Drosophila, various 

COX-1 selective inhibitors disrupted the oocyte maturation and COX-2 selective 

inhibitor failed to do so (Tootle & Spradling, 2008). A Drosophila homologue of 

COX-1 known as Pxt was identified, which was highly expressed in late vitellogenic 

oocytes. Absence of Pxt resulted into the phenotypes with disrupted ovarian 

function. Interestingly, mouse COX-1 functionally rescued the Pxt phenotypes 

indicating that functional role of COX-1 in maturation might be evolutionary 

conserved (Tootle & Spradling, 2008).  

The results of this study, taken together with the findings mentioned before 

strongly promote the role of COX-1 in vertebrate oocyte maturation. These results 

are also supported by the fact that non selective COX inhibitor indometacin (INDO), 

which is believed to be a stronger suppressor of COX-1 than COX-2 is reported to 

impede the GVBD of oocytes in mice (Downs & Longo, 1982, 1983) and European 

Sea bass (Sorbera, Asturiano, Carrillo, & Zanuy, 2001). It inhibits the early 
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development of follicles in rabbit (Spanel-Borowski, Sohn, & Schlegel, 1986) as 

well.  

Previously the role of COX-1 was suggested to be that of a housekeeping 

gene (Crofford LJ. 1997). It was believed that it produces the basal level of PGs to 

maintain homeostasis. On the other hand COX-2, the inducible isoform of 

cyclooxygenase was believed to be involved with tumerogenesis, inflammation and 

processes like ovulation (Smith, DeWitt, & Garavito, 2000). As mentioned before in 

chapter 2, recently strong evidences which indicate the involvement of COX-1 in 

many degenerating conditions like ovarian and breast cancers, pain and neuro-

inflammation are coming into picture (Niknami et al.). In zebrafish, it was already 

demonstrated that COX-1 is critically involved with various aspects of embryo 

development. COX-1 knockdown embryos resulted in the lethal developmental 

phenotypes. Surprisingly there was no effect of COX-2 knockdown on embryo 

development (Grosser et al., 2002). For example, COX-1 knockdown resulted in 

gastrulation arrest, impaired formation of vasculature and pronephric duct (Cha et 

al., 2005). In this chapter, it has been confirmed that COX-1 is also required for the 

successful maturation of zebrafish oocytes. Taken together these findings specify the 

role of COX-1 as an important developmental gene. 

Subsequently it was also demonstrated that PGs produced during gastrulation 

period are solely sustained by COX-1 and COX-2 arises only at the end of the 

gastrulation (Cha, Solnica-Krezel, & DuBois, 2006). This indicates a switch in the 

isoforms from one embryonic event to another. A possibility of similar switching 

cannot be overruled in oogenesis. Oocytes could not escape the fate of maturation 

arrest caused by COX-1 knockdown indicating the possibility of COX-1 being the 

provider of PGs during vitellogenesis and maturation. Elsewhere it is shown that 
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COX-2 induction occurs when oocytes approach ovulation (Lister & Van Der Kraak, 

2009). Taken together these findings indicate the possibility of COX isoform 

switching during oogenetic events as well. However this transitory role of COX 

isoform in oogenesis needs more exploration.  

It is established in chapter 4 and 5 that COX-1 is required for folliculogenesis 

and maturation. As regulatory connection between COX-2 and PPARγ has been 

demonstrated in human on few occasions, possibility of COX-1 being regulated by 

PPARγ cannot be overruled as well, specially, because PPARγ is known to regulate 

various genes involved in oogenesis. In next chapter the possibility of PPARγ 

mediated transcriptional regulation of COX is explored. 
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CHAPTER 6 

TRANSCRIPTIONAL REGULATION OF COX BY PPARγ DURING 

OOGENESIS 

6.1 Introduction 

Gene expression in eukaryotes is regulated at the level of replication, 

transcription and translation. Transcriptional regulation of a gene which is a primary 

level of expression control happens with the help of transcription factors. 

Transcription factors are regulatory DNA binding proteins which function to activate 

or inhibit the expression of genes by binding on the special sequences present on 

their promoter. In eukaryotes a combinatorial regulation of gene expression happens, 

involving transcription factors with various other proteins acting as ligands, 

corepressors or coactivators (Described in section 2.2.2 and  2.2.3 of chapter 2).  

It has been described in Chapter 2, that PPARγ, a DNA binding protein, acts 

as transcription factor and controls most of the ovarian functions. It regulates the rate 

limiting enzymes of the pathways involved in oogenesis. PPARγ is known to control 

various reproductive events including follicular development, oocyte maturation and 

ovulation (Froment et al., 2006). PPARγ is expressed in the ovaries of various 

mammalian species. Genes targeted by PPARγ  are expressed in inverse pattern of 

its own expression mostly. For example mRNA expression of PPARγ and 

Aromatase in granuslosa cells shows an inverse relationship (Yanase et al., 2001) . 

Similarly PPARγ and P450 the rate limiting enzyme for the production of 

progesterone, also show inverse mRNA expression pattern (Komar & Curry, 2003). 
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MMP-3 and MMP-9 genes, involved in tissue remodeling during oogenesis also 

have inverse relationship with mRNA expression of PPARγ (Yee et al., 1997).  

It is known that both PPARγ and prostaglandins are found in the granulosa 

cells of the oocytes. These cells are the signaling hub for oocyte maturation. The 

process of maturation is triggered by LH surge. With the advent of LH surge 

prostaglandin production gets induced and PPARγ expression gets inhibited, 

indicating an inverse correlation between prostaglandin production and PPARγ 

expression (Froment et al., 2006; Komar et al., 2001; Komar & Curry, 2003).  

It has already been established that COX-2, the rate limiting enzyme in 

prostaglandin production, exhibits inverse mRNA expression pattern with  PPARγ  

in human placenta (Dunn-Albanese et al., 2004) and rat granulosa cells (Komar & 

Curry, 2002). However in chapter 4 it has been demonstrated that mRNA expression 

of COX-1 increases from full grown to mature oocytes while expression on COX-2 

is low compared to COX-1 and it reduces from full grown to mature oocytes. In 

chapter 5 requirement of COX-1 during maturation has been demonstrated 

functionally. Based on these findings, it can be deduced that instead of COX-2, 

COX-1 acts as the rate limiting enzyme in prostaglandin production during 

vitellogenesis and maturation. Thus the possibility of COX-1 being regulated by 

PPARγ cannot be denied as well. While presence of PPRE has been reported on the 

human COX-2 promoter (Meade et al., 1999)  there are no reports on  human COX-1 

promoter being explored for PPRE yet.  
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In this chapter, correlation in the expression pattern of COX-1, COX-2 and 

PPARγ in developing oocytes was studied. As well as, the possibility of direct 

transcriptional regulation of COX by PPARγ was also examined. 

 

6.2  Methods 

 

6.2.1 Semi-quantitative Real Time PCR analysis of PPARγ 

 Total RNA extraction, sequence cloning, validation and real time analysis of 

PPARγ was carried out as described in chapter 4 (from section 4.2.1 to section 

4.2.4.) For real time PCR, Zebrafish PPARγ specific primers (5’-

GTGGAAGGCGAGCAGATGAT-3’ and 5’-GGACTGGTAGCTGTGGAAGAAG-

3’) were designed using published zebrafish PPARγ sequence (Genebank: U93477). 

6.2.2 Bioinformatical analysis of COX-1 and COX-2 promoter 

 A 3kb promoter sequence, upstream of start codon from Zebrafish COX-1 

and COX-2 gene was extracted with the help of Ensembl genome browser 

(www.ensembl.org). Promoter sequences were run through the MatInspector 

software in search of PPRE. This program is available online through the website 

http://www.genomatix.de. It is a reliable program and it utilizes the large library of 

matrix descriptions of transcription factor binding sites to locate their matches in 

DNA sequences.  

 

 

http://www.ensembl.org/
http://www.genomatix.de/
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6.2.3 Extraction of genomic DNA from zebrafish ovary 

 Genomic DNA was freshly extracted from zebrafish ovary using DNeasy 

Blood and Tissue kit (Qiagen). Manufactures’ instructions were followed to extract 

the DNA. Integrity of genomic DNA was verified by running it on 0.7% (w/v) 

agarose gel. The concentration and purity of DNA was tested using spectroscopy.   

 

6.2.4 Preparation of promoter reporter constructs of zebrafish COX-1 

promoter 

 To examine the functional activity of zebrafish COX-1 promoter, promoter 

reporter constructs were prepared by cloning the PCR generated deletion fragments 

of 2.7kb zebrafish COX-1 promoter into pGL3 basic vector (Promega). pGL3 vector 

provides the platform for quantitative analysis of the factors that regulate gene 

expression such as promoters, enhancers, cis-acting elements and trans-acting 

elements. The vector contains modified coding region for firefly (Photinus 

pyramids) optimized to monitoring transcriptional activity in transfected eukaryotic 

cells. pGL3 vector lacks a eukaryotic promoter and enhancer sequence providing  the 

maximum flexibility to clone a putative promoter (Figure 6.1). 

 Five 5’ deletion fragments of different sizes covering 2.7 kb span of zebrafish 

COX-1 promoter were PCR amplified. These fragments were designated as A1 (-

428/+134), A2 (-1067/+134), A3 (-1369/+134), A4 (-1952/+134) and A5 (-

2573/+134). The forward primers used to amplify fragments A1, A2, A3 and A4 

were A1 (-428/+134)F, A2 (-1067/+134)F, A3 (-1369/+134)F, A4 (-1952/+134)F, 

A5 (-2573/+134). A (+134) R was used as common reverse primer to amplify all the 
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fragments.  To facilitate the cloning, restriction sites BglII and HindIII were added in 

the in the forward and reverse primers respectively. These primer sequences are 

mentioned in table 6.1.  For PCR amplification, 34 cycles of denaturation at 94˚C for 

60 seconds, annealing at primer specific temperature for 30 seconds, and extension 

72˚C for 2 minutes was performed. The presence of PCR products was validated by 

gel electrophoresis. To create the promoter reporter constructs, these fragments were 

cloned in pGL3 basic vector and transformed in Ecoli JM109, screened and sent for 

sequencin  

Figure 6.1 pGL3 basic vector map. pGL3 basic vector contains firefly 

luciferase coding region and various restriction sites to facilitate the insertion of 

promoter while creating promoter reporter construct. 
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6.2.5 Transient transfection of promoter-reporter constructs in HepG2 cell 

lines 

To examine the activity of promoter reporter constructs, they were transiently 

transfected together with empty pGL3 basic vector (used as control) in HepG2 cell 

lines known to internally express PPARγ (Han C. et al., 2002).  For cell culture and 

passage please refer to section 3.4.3 of chapter 3.  Cell seeding was done one day 

before transfection. 500 µl of 2 X 10
4
 cells/ml were seeded in 6 welled plate. On the 

day of transfection, cells were at 60% confluence. Before proceeding with 

transfection all required solutions were prepared. First 2 µl of Lipofectin transfection 

reagent (Invitrogen) was mixed with 100 µl of OptiMEM Serum Free Medium 

(GIBCO) and incubated for 45 minutes at room temperature. Another solution was 

prepeared consisting of 1 µg of each promoter reporter construct and 0.1µg of pRL-

TK plasmids in 25 µl of Sereum Free Medium. pRL-TK works as internal control in 

the experiment. Both the solutions were mixed and kept at room temperature for 20 

minutes to allow the formation of DNA-lipofectin complex. Lipofectin facilitates the 

transfer of DNA inside the cells. 200 µl of Serum Free Medium was later on added 

to the mixture. 

 Growth medium was discarded from the cells grown in 6 well plates. Cells 

were washed twice with pre warmed 1XPBS. Subsequently 2 ml of transfection 

mixture was layed over these cells for 3 hours. The transfection mix was discarded 

and cells were washed again. Complete MEM was mixed with 10% fetal calf serum 

and added to the cells. Cells were then incubated overnight before the luciferase 

assay.  
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6.2.6 Co-transfection of HepG2 cell lines with promoter reporter construct 

and pSVsport-PPARγ vector 

 To further confirm the PPARγ mediated transcriptional regulation of COX-1 

promoter the promoter reporter construct along with pRL-TK plasmids was co-

transfected with pSVsport-PPARγ vector into the HepG2 cells using the same 

method which was mentioned in section 6.2.5 of this chapter. 

 

6.2.7 Luciferase assay 

Before measuring the luciferase activity, cells were lysed. Briefly, complete 

MEM medium was removed from the cells and they were washed with 1x PBS 

twice. 500 µl of 1X passive lysis buffer was then added to the cells. Cells were 

gently shaken on the orbital shaker for 15 minutes to facilitate lysis. The lysate was 

transferred in a microcentrifuge tube and centrifuged at 1000g for 30 seconds at 4˚C.  

Lysate was then transferred in the fresh tube.  

20 µl of the lysate was added to a 100 µl of Luciferase Assay Buffer  II  

(LARII)  (Promega). This mixture was subjected to the first luminescence reading by 

placing it in TD-20/20 Turner Designs luminometer (Turner  Designs USA). The 

first luminescence reading was taken to measure the activity of internal control 

Renilla luciferase. After which 100 µl of Stop and Glo® Reagent  (Promega) was 

added to the transfection mixture and the second reading were taken for the firefly 

luciferase activity. Readings obtained from firefly luciferase activity were 
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normalized against the reading of Renilla luciferase. The experiments were 

performed in triplicate. 

 Table 6.1 Primers to generate deletion construct of COX-1 promoter.  

Forward primers (F) and reverse primer (R) used for PCR amplification of zebrafish 

COX-1 promoter fragments. Letters in bold represent the restriction sites 

incorporated in the primers   (AAGCTT for HindIII and AGATCT for BglII )   

Name Sequence 5’-3’ 

 

A (+134) R 

 

CATAAGCTTGCTCACCTCTCATTGTAGTTTTGAA 

A1 (-428/+134)F CATAGATCTAGACCAAACGCACTTACAAA 

A2 (-1067/+134)F CATAGATCTTGCACTCGAATTGATATGTTGG 

A3 (-1369/+134)F CATAGATCTCCAAAGTCCACAAACAAACACA 

A4 (-1952/+134)F CATAGATCTCATTTTTCCCAGCAAGCATT 

A5 (-2573/+134)F CATAGATCTGATTAGGGTTGTAAAGAAGGTTGTGTTC 

 

6.2.8 Extraction of nuclear protein from zebrafish ovary and synthesis of 

probes 

Nuclear protein was extracted from zebrafish ovary using NE-PER Nuclear 

and Cytoplasmic Extraction Reagent Kit (Pierce Biotechnology) following 

manufacturer’s specifications. Protein was immediately stored in -80˚C till further 

use. Concentration of protein was determined as described in 4.2.6. 
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25 bases of Oligonucleotide sequence containing PPRE site was deduced 

from the zebrafish COX-1 promoter. The forward 

(5’ATAGGGTGGGGGAGCGGTCAGAG 3’) and its reverse complement oligo 

(5’CTCTGACCGCTCCCCCACCCTAT3’) were subjected to biotin labeling and 

used as probes for EMSA. Biotin labeling of these probe was done using Biotin 3’-

End DNA Labeling Kit (Pierce Biotechnology). To generate a double stranded biotin 

labeled probe both forward and reverse oligos were mixed in equal volume and 

heated at 90° C for 1 minute and cooled down at room temperature for 30 minutes. 

Double stranded biotin labeled probe was kept in -20 C until further use. Similarly 

double stranded unlabeled probe was also prepared. 

6.2.9  Electrophoretic Mobility Shift Assay (EMSA) 

 In order to exhibit the functionality of PPRE site, binding ability of the 

PPARγ present in nuclear protein of zebrafish ovary with probes containing PPRE 

from zebrafish COX-1 promoter was tested.  Three separate reactions were set using 

Light Shift Chemiluminescent EMSA Kit (Thermo Scientific, USA). 

 To facilitate the binding of biotin labeled probes with the protein present in 

nuclear extract, 20 µg of nuclear protein, together with 1µM of probe was mixed 

with 2µl of 10x binding buffer and 1 µl of each of 50% (v/v) glycerol, 1% (v/v) NP-

40, 1 µg/µl poly (dI-dC), 100 mM  MgCl2, 1 M KCl, 200 mM  EDTA.  Binding 

buffer and all other reagents were provided with the kit. The reaction was incubated 

for 20 minutes on room temperature. 

 To ascertain the specificity of DNA protein complex 50µM excess of 

unlabeled probe was mixed in the above mentioned binding reaction and reaction 
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was incubated for 20 minutes. This process is known as cold competition and causes 

the fading or disappearance of specific DNA-protein complex. 

 To confirm the identity of the DNA Protein binding complex, supershift 

assay was performed, in which 5 µl of PPARγ antibody was mixed in the binding 

reaction. The mix was incubated for 30 minutes at room temperature. After 

incubation, 5 µl of 1X loading buffer was added in all the reaction mixes mentioned 

above and the mixes were subjected to gel electrophoresis. 

6.2.9.1 Gel electrophoresis of binding complexes  

 DNA-protein complexes were separated on 6% non denaturing 

polyacrylamide gel which was prepared using 40% 29:1 Acrylamide/bisacrylamide 

in 5x TBE buffer.  Electrophoresis was performed at 4˚C in PROTEAN II Slab 

Electrophoresis Cell (Bio-Rad, USA) at 100V for 1 hour. 

6.2.9.2 Transfer of DNA-protein complex on membrane by blotting 

 A Hybond-N+ membrane (Amersham, USA) was soaked in 0.5% TBE 

buffer. The transfer of DNA-protein complex was carried out exactly as described in 

section 5.2.5 of chapter 5. 

6.2.9.3 UV cross-linking of DNA-protein complex on the membrane 

 To permanently fix the DNA-protein complexes on the membrane UV cross-

linking was done.  Membrane was taken out from the transfer apparatus and dried on 

a paper towel. It was placed in the UV-light cross-linker instrument (Hoefer, USA) 

making sure that the DNA-protein complex transferred side of the membrane is 

facing upwards.  The cross-linking was done at 120 mJ/cm for 1 min.  
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6.2.9.4 Chemiluminescent detection of DNA –protein complex 

 Membrane was blocked in blocking buffer for 1 hour with gentle agitation 

and incubated in Streptavidin Horseradish Peroxidase Conjugate (1:300 dilutions in 

blocking buffer) for 30 minutes. Membrane was washed 4 times for 10 minutes with 

1x washing buffer.  Membrane was then incubated in Substrate Equilibration Buffer 

for 30 minutes. Membrane was then subjected to Chemiluminescent Substrate 

Working Solution for 5 minutes without any agitation. X-ray development of 

membrane was done to detect the DNA-protein complexes. All the reagents 

mentioned above were provided with Light Shift EMSA Kit (Pierce). 

 

6.3 Results 

6.3.1 Expression of PPARγ in vitellogenic and mature oocyte 

 In order to find out the possibility of inverse relationship between the 

expression pattern of PPARγ and COX, mRNA expression of PPARγ in EMV, LV 

and M oocytes was obtained through semi-quantitative real time PCR. The 

expression of PPARγ was then compared with the expression of COX-1 and COX-2 

in EMV, LV and M oocytes attained in the chapter 4 of this study. First 153 bp 

region of PPARγ was PCR amplified. It separated as sharp band on 1.5% agarose 

gel.  The amplified fragment sequence exhibited its identity with published zebrafish 

PPARγ sequence (Figure 6.2 A and B).   

Real time PCR analysis showed very low mRNA expression of PPARγ in 

EMV and LV oocytes (Figure 6.3).  Significant reduction in mRNA expression was 

observed from LV to mature oocytes. Comparison of PPARγ expression with COX-
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1 mRNA expression in EMV, LV and M oocytes showed an inverse relationship. 

While COX-1 expression was upregulated from full grown to mature oocytes, 

PPARγ demonstrated strong suppression from full gown to mature oocytes.  

Collectively these results indicate that since an inverse expression pattern is 

observed between PPARγ and COX-1, a possibility of PPAR mediated 

downregulation of COX-1 cannot be denied. However to confirm it further, it is 

necessary to explore the promoter of COX-1 for the presence of PPRE the specific 

sequence on which PPARγ binds to directly regulate the transcription of a gene. 

COX-2 demonstrated reduced expression throughout the samples and was further 

suppressed during maturation, hence it did not demonstrate inverse relationship with 

PPARγ. However to confirm further if COX-2 is also directly regulated by PPARγ, 

zebrafish COX-2 promoter should be explored for the presence of PPRE. 
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Figure 6.2  Amplification and sequencing of PPARγ. 153bp amplicon of 

PPARγ resolved on 1.5% w/v agarose gel (A). BLAST alignment of PPARγ 

amplicon sequence. Query represents PPARγ amplicon and subject represents 

published zebrafish sequence (B). 
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  100bp 
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Figure 6.3 mRNA Expression of PPARγ in oocytes  mRNA expression of 

PPARγ in early and mid-vitellogenic (EMV), Full grown (LV) and matured (M) 

zebrafish follicles. Mean values with different letters are significantly different 

(P<0.05). 

 

6.3.2 In silico detection of PPRE sequence on COX-1 and COX-2 promoter of 

zebrafish 

Previously in chapter 4, chapter 5 and section 6.3.1 of this chapter, it was 

established that COX-1 was necessary for oocyte maturation and it shared an inverse 

mRNA expression pattern with the known cyclooxygenase regulator PPARγ. 

Collectively these findings indicated the possibility of PPARγ mediated 

transcriptional regulation of COX-1 during oogenesis. If the possible transcriptional 

control is a direct transcriptional control then the PPAR specific binding site, PPRE, 

has to be present on the promoter of COX-1. In order to confirm the possibility of 

EMV                              LV                                   M
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direct transcriptional regulation, firstly presence of PPRE was checked with the help 

of in silico analysis.  

 A putative PPRE “GGGGGAgCGGTCA” at position -2470 to -2458 (Figure 

6.4) was detected during in silico analysis of 3 kb COX-1 promoter, suggesting the 

direct possible transcriptional control of COX-1 by PPARγ . However in vivo 

confirmation of PPARγ mediated transcription of COX-1 is required along with 

COX-1 promoter cloning and sequencing, in order to verify the presence and 

function of this site. At the same time 3 kb COX-2 promoter was also scanned for 

the detection of PPRE site, but there was no site located. Based on previous COX-2 

related results and this analysis, the involvement of COX-2 was ruled out from the 

current scope of this study at this point.  

 

 

Figure 6.4 Position of PPRE on COX-1 A5 promoter sequence A5 sequence 

was aligned with zebrafish genomic DNA, it showed the sequence similarity with 5’ 

flanking region of zebrafish COX-1 present on chromosome 5. PPRE site was found 

at position -2470 to -2458 denoted by red letters in the sequence. The query 

represent sequence of A5 and the sbjct represents zebrafish genomic DNA. 
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6.3.3 The role of PPARγ in regulating the transcriptional activity of zebrafish 

COX-1 promoter 

In order to directly confirm PPARγ mediated transcriptional regulation of 

COX-1, a detailed analysis of COX-1 promoter activity in vivo, in the presence of 

PPARγ protein was carried out.  To achieve this target, five 5’ deletion fragments, 

A1 (-428/+134), A2 (-1067/+134), A3 (-1369/+134), A4 (-1952/+134) and A5 (-

2573/+134) of COX-1 promoter were generated using PCR amplification strategy. 

Details about the size and position of these fragments are provided in table 6.2.  

The amplification of these fragments was confirmed by resolving them on 

0.7% agarose gel, where they exhibited size based separation in the form of sharp 

bands (Figure 6.5). All the five fragments were cloned in pGL3 basic vector to 

generate promoter reporter constructs. The sequence verification was done by 

performing a BLAST search using the sequences of these fragments. The fragment 

sequences confirmed their identity with the 5’ flanking region of COX-1 in zebrafish 

genomic DNA at chromosome number 5. Sequencing of A5 revealed the presence of 

sequence GGGGGAgCGGTCA” at position -2470 to -2458 (Figure 6.4) which was 

claimed as putative PPRE site by in silico analysis done in section 6.3.2. 
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Table 6.2 Position and sizes of five deletion constructs derived from 

zebrafish COX-1 promoter. First base of start codon is numbered as +1, bases 

upstream to start codon are numbered as minus (-) and downstream are numbered as 

plus (+) 

Name of deletion construct Position on Zebrafish COX-1 

promoter 

Size in base pairs (bp) 

A1 -428 /+134 562 

A2  -1067 /+134 1201 

A3 -1369 / +134 1503 

A4 -1952/+134 2086 

A5 -2573/+134 2707 
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Figure 6.5 Amplification of COX-1 promoter constructs.  Deletion 

constructs A1 (-428/+134), A2 (-1067/+134), A3 (-1369/+134), A4 (-1952/+134) 

and A5 (2573/+134) resolved on 0.7% agarose gel. 

 

The promoter reporter constructs were transfected in HepG2 cell lines and 

their promoter activities were examined in the presence of endogenously expressed 

PPARγ (Figure 6.6).  HepG2 cell lines were selected as in vivo model system, 

because they are known to express PPARγ endogenously.   

Luciferase activity of deletion construct A5 was drastically inhibited 

compared to other deletion constructs. It exhibited 10 folds suppression from the 

luciferase activity of A1 which was maximum out of the five deletion constructs. 

Luciferase activity of promoter fragment A4 was 7 fold higher than A5 in HepG2 

cell lines. Between A5 and A4 there was a loss of -2573 and -1951 bp region where 
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according to in-silico and sequence analysis a PPRE site lies, specifically at position 

-2470 to -2458. Significantly enhanced activity of A4 confirmed that in the absence 

of PPRE binding site, endogenous PPARγ protein was unable find a suitable binding 

space on A4. Hence the transcriptional suppression of COX-1 promoter by PPARγ 

which was seen in A5 did not occurred in A4. This observation also exhibited that 

inhibition in the activity of A5 is because of the direct transcriptional control of 

PPARγ happening due to the presence of specific PPRE on it. The strength of 

transcriptional inhibitory control exerted by PPARγ on COX-1 promoter can be 

realized by the 7 fold activation in promoter activity of A4 compared to A5. 

 Luciferase activity of A3 was approximately a fold higher than A4. However 

Deletion construct A2 exhibited two fold suppression in activity when compared 

with the activity of A3. This indicated presence of binding sites corresponding to the 

suppression of promoter activity between -1369 and -1067 bp length of promoter 

that was lost between the two deletion constructs. However the suppression was not 

as significant as the suppression which was seen in the activity of A5 construct, 

again proving that PPARγ puts forth a very strong direct inhibitory transcriptional 

control on COX-1 promoter activity. Promoter activity of A1 deletion construct was 

maximum of all the promoter constructs, which signifies that -428/+134 base pair 

region is the maximum promoter length, for the highest promoter activity.  
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Figure 6.6 Transfection of COX-1 promoter reporter constructs in HepG2 

cells. Graphical representation of luciferase activities of zebrafish COX-1 promoter 

reporter constructs A1, A2, A3, A4 and A5 transfected in HepG2 cells with the 

empty pGL3 vector.  Mean values with different letters are significantly different 

(P<0.05) and presented as percentage of induction as compared to empty pGL3 

basic vector as control (100%).  

To confirm the specificity of PPARγ mediated direct transcriptional control 

of COX-1, deletion construct A5 which has PPRE site was cotransfected in HepG2 

cell lines with pSVsport-PPARγ vector which expresses PPARγ protein. The 

intention of cotransfection was to examine the activity of A5 when pSVsport-PPARγ 

vector starts overexpressing PPARγ in HepG2 cell lines causing increase in PPARγ 

amount in the cells. As expected, activity of A5 co-transfected with pSVsport-

PPARγ vector was further significantly suppressed due to the over expression of 
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PPARγ protein. Compared to the A5 transfected without pSVsport-PPARγ vector, 

there was a 2.5 fold decrease in the activity of A5 due to the PPARγ overexpression 

(Figure 6.7).  

Collectively, the findings of these experiments suggested that PPARγ 

downregulates the expression of COX-1 by controlling its transcription. Deletion 

construct analysis also demonstrated that the inhibitory control of PPARγ does not 

take place when the PPRE site present at position -2470 to -2458 was deleted, 

approving the requirement of this site for PPARγ protein binding to happen on COX-

1 promoter. To examine the binding capability of putative PPRE site further EMSA 

was performed. 

 

Figure 6.7 Co-transfection of A5 in HepG2 cells with pSVsport PPAR 

expression plasmid. Graphical representation of the activity of A5 promoter 

reporter construct of zebrafish COX-1 promoter, when transfected alone in HepG2 

cells and when co-transfected with pSVsport PPAR expression plasmid. Mean 

values with different letters are significantly different (P<0.05).   
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 6.3.4 PPARγ protein from zebrafish ovary binds to the putative PPRE site of 

COX-1 promoter 

To examine the functionality of PPRE like cis-element found on zebrafish 

COX-1 promoter at position -2470 to -2458 (6.3), EMSA was performed by 

incubating nuclear extract proteins taken out from zebrafish ovary and synthetic 

oligo probes containing putative PPRE sequence derived from COX-1 promoter. 

DNA-protein complexes obtained by EMSA were assessed in the form of band on x-

ray film (Figure 6.8) 

Incubation of nuclear extract with labeled probes derived from COX-1 

promoter containing PPRE site, resulted into the formation of two DNA-protein 

complexes C1 and C2 (Figure 6.8 lane 3 ) indicating the binding of PPRE site 

containing probe with nuclear protein of zebrafish. Cold competition with 50x molar 

excess of unlabeled probes resulted in the fading of both the complexes (Figure 6.8 

lane 2). Cold competition assay establishes that the complexes seen in lane 3 are 

formed due to the specific binding of probe and nuclear protein. Incubation of 

PPARγ specific antibody with the zebrafish nuclear protein and probe resulted into 

bulkier partly shifted complex due to the antibody protein and DNA interaction, 

showing that PPARγ specific antibody binds to the DNA protein complexes (Figure 

6.8 lane 3). This shows that the protein present in DNA Protein complex is PPARγ. 

Taken together these findings ascertain that PPRE site, present on probe derived 

from COX-1 promoter, is functional and binds to PPARγ protein present in nuclear 

extract. 
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Figure 6.8 Functional verification of putative PPRE present on COX-1 

promoter. Biotin labeled PPRE incubated with zebrafish ovary nuclear extract 

showed two DNA-protein complexes, C1 and C2 (lane 3). Binding specificity was 

confirmed by cold oligo competition using 50x molar excess of unlabeled probe 

(lane 2) and super shift assay (lane 4). 
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6.4 Discussion 

Based on the literature review done in chapter 2, it can be derived that 

PPARγ controls various aspects of female fertility largely by regulating the genes 

involved in the pathways of oogenesis. As mentioned in section 6.1, existing 

literatures support the transcriptional regulation of COX by PPARγ. In this study the 

similar possibility was explored from zebrafish oogenesis point of view. 

In this chapter it was demonstrated that mRNA expression pattern of PPARγ 

is in contrast to COX- 1 during vitellogenesis and maturation. PPARγ mRNA 

expression was lowest during oocyte maturation, while COX-1 was highest, assuring 

the inverse relationship between PPARγ and COX-1 expression. This finding was in 

agreement with the fact that other PPARγ targeted genes are also in inverse 

expression relationship with PPARγ during oogenesis (Keller et al., 1995; Komar & 

Curry, 2003; Yee et al., 1997).  

Further, the suppression of COX-1 promoter activity by endogenously 

expressed PPARγ in HepG2 cell line was established in this chapter. The reporter 

construct that contained PPRE binding site, showed the strong inhibition of promoter 

activity which was not seen in other constructs where the putative PPRE site was 

deleted. It was also observed that over-expression of PPARγ caused by the 

introduction of external PPARγ expressing plasmid vector in HepG2 cells, resulted 

in additional significant inhibition of COX-1 promoter activity.  The potential PPRE 

site sequence exhibited in vitro binding affinity with PPARγ protein ensuring its 

functional binding properties. All together these findings corroborate strong direct 

transcriptional regulation of zebrafish COX-1 by PPARγ. 
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Previously the presence of PPRE has been reported on human COX-2 

promoter and there is a report of transcriptional control of PPARγ on COX-2 in 

human epeithelial cell line (Meade et al., 1999). However mRNA expression of 

COX-2 was also very low during zebrafish oocyte maturation and there was no 

inverse relationship seen in case of COX-2 and PPARγ expression patterns in 

oocytes.  Even the in-silico analysis did not reveal any PPRE on COX-2 promoter. If 

there is any possibility of regulation of COX-2 by PPARγ during zebrafish oogenesis 

it needs a great deal of exploration. Also COX-2 is induced during ovulation, hence 

its role and regulation during ovulation needs to be investigated separately. 

To our knowledge, this is the first report showing the transcriptional 

regulation of COX-1 isoform by PPARγ binding.  Several studies have reported the 

downregulation of PPARγ mRNA levels at the advent of LH surge in granulosa cells 

that marks maturation. ( Banerjee and Komar, 2006;  Minge et al., 2006).  Increment 

in production of prostaglandins in ovarian cells is also reported with LH surge. As 

this study shows a direct transcriptional regulation of COX-1 by PPARγ, it is 

possible that LH maintains low level of  PPARγ  and the regulatory relationship 

between COX-1 and PPARγ in turn causes the rise in COX-1 activity to allow the 

production of prostaglandins during vitellogenesis and maturation. 
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CHAPTER 7 

CONCLUSION AND FUTURE STUDIES 

7.1 Conclusion 

 COX-1 and COX-2 are the two isoforms of COX present in zebrafish, both 

isoforms are required in oogenesis. While COX-2 is  induced during ovulation, 

specific distinct role of these isoforms has not been examined during oocyte growth 

and maturation before. Objective of this study was to establish the functional role of 

COX during oocyte growth and maturation and to determine its regulation by 

PPARγ. In present study, using zebrafish as model system, it was established that out 

of the two isoforms of cycloooxygenase, COX-1 is more likely to be responsible for 

the oocyte development and maturation. This study also demonstrates, that the 

presence of COX-1 is critical for the successful maturation of the oocytes and it’s 

transcription is regulated by master regulator of female fertility, PPARγ. 

 In chapter 4, real time analysis of COX-1 and COX-2 in vitellogenic and 

mature oocytes, established the importance of COX-1 over COX-2. In chapter 5 the 

knockdown of COX-1 caused maturation failure, while oocytes injected with 

mismatch morpholino matured normally. By combining the observations of chapter 

4 and chapter 5 the functional importance of COX-1 was demonstrated during 

vertebrate oocyte maturation. 

Based on the literature review done for this study, strong possibilities were 

seen regarding the transcriptional regulation of COX by PPARγ during oogenesis. 

As PPARγ and its targeted genes tend to have an inverse expression mRNA pattern, 
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in chapter 6 the possibility of the similar connection was explored. mRNA 

expression of PPARγ was obtained in vitellogenic and mature oocytes by  real time 

PCR.  PPARγ expression was drastically reduced during maturation, confirming its 

inverse expression pattern with COX-1. The finding indicated the possibility of 

PPARγ mediated downregulation of COX-1 during oogenesis. At the same time, 

COX-2 expression did not show such correlation. 

PPARγ binds to the target gene on the specific sequence present on the 

promoter of the gene known as PPAR response element (PPRE) and controls its 

transcription. Presence of PPRE on a gene promoter strongly indicates its direct 

transcriptional regulation by PPARγ. In-silico analysis of 3 kilobase promoter region 

of COX-1 and COX-2 revealed the presence of PPRE on COX-1 promoter at 

position -2470 to -2458 bp; which was further confirmed by cloning and sequencing 

of COX-1 promoter fragment. This PPRE was shown to be functional, as the probes 

containing the PPRE of COX-1, bind with the PPARγ of nuclear protein of zebrafish 

ovary. 

Five deletions constructs from 2.7 bp COX-1 promoter were prepared and 

transiently transfected in HepG2 cell line. The construct with the PPRE binding site 

showed very strong suppression in response to the internal PPARγ protein present in 

HepG2 cell lines. Further confirmation of suppression of COX-1 activity came by co 

transfecting PPARγ expression vector with this construct. PPARγ expression vector 

caused the over expression of PPARγ protein in HepG2 cell lines. Further stronger 

suppression of COX-1 promoter was observed in this condition. Taken together, 

findings of chapter 6 establish that PPARγ transcriptionally downregulates COX-1 

expression by binding on putative functional PPRE site present on COX-1 promoter. 

Based on the literature survey, this is the first study, which demonstrates the 
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functional role of COX-1 during vertebrate oocyte maturation and regulation of the 

COX-1 isoform by PPARγ binding. 

 

7.2 Future direction 

By establishing the role of COX-1 in vertebrate oocyte development, this 

study opens up a possibility to explore the involvement of this isoform in various 

other biological processes. To date, studies have reported the induction of COX-2 

during ovulation. However there are no reports available to prove the direct 

involvement of COX-1 in vertebrate oocyte maturation before this study. The study 

performed here is done on zebrafish; similar studies can be done in various other 

model systems to confirm if involvement of COX-1 in maturation of oocytes is a fish 

specific process or it is conserved across various species.  Requirement of COX-1 

homologue in drosophila oocyte maturation and presence of COX-1 in human 

oocytes provide support to this hypothesis. 

Contrary to COX-1, COX-2 was either absent or present at a very low level, 

during vitellogenesis and maturation of oocytes. It was induced during ovulation in 

zebrafish. It points out the possibility of transition between the COX isoforms at 

ovulation. However existence of the transition and its regulation requires further 

exploration. Similarly, in order to learn more about the cyclooxygenase isoform 

preference in biological processes, conditions and factors that influence the COX 

preferences need to be examined.  

It has been previously shown that COX-2 knocked down zebrafish embryos 

were able to survive. It can be perceived, that COX-1 derived prostaglandin was able 
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to rescue the COX-2 deficiency. The knock down of COX-1 in this study resulted in 

oocyte maturation arrest. Since COX-2 is expressed at very low level in zebrafish 

oocytes and the COX-1 is knocked down, the rescue doesn’t seem to be possible.  

Further research is required to confirm the possibility of prostaglandin derived from 

one cyclooxygenase isoform being able to rescue the absence of other isoform. 

The classic question which is being asked over and over again is; why there 

is a requirement of  two isoforms of COX required for production of prostaglandins?  

Both COX-1 and COX-2 produce PGs. There is no difference in their substrate or 

the product. They work through the similar reaction mechanism. Scientists are 

looking into the origin of cyclooxygenases to find out the answers, but a concrete 

answer of this question is yet come. 

This study shows direct downregulation of COX-1 by PPARγ. Similar 

studies can be conducted in humans and other complex vertebrate systems in order to 

confirm if this regulation is fish specific or conserved in other vertebrates as well. In 

human, PPARγ binding site is found on COX-2 promoter, which was not seen in 

zebrafish COX-2 promoter. Still, the indirect regulation of COX-2 by PPARγ in 

zebrafish cannot be denied and needs further investigation.  

It was also discussed that during maturation, at the advent of LH surge, 

PPARγ gets downregulated and prostaglandin production gets upregulated in 

granulose cell. In this study it was demonstrated that PPARγ trascriptionally 

downregulates COX-1, but there is a likelihood of LH being the upstream regulator 

of the entire process during maturation, which needs investigation. 

PPARγ and its ligands are considered to use in cancer therapy and 

Alzheimer’s. Role of PPARγ is well known in tumor suppression. It has been now 
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identified that COX-1 is upregulated in various forms of cancer. COX-1 is the only 

isoform of COX expressed in ovarian cancer. As direct down regulation of COX-1 

by PPARγ in zebrafish oogenesis is shown in this study, similar possibility can be 

explored in ovarian cancer studies as well. COX-1 is also expressed in Alzheimer’s 

affected human brain.  An investigation of direct or indirect regulation of COX-1 by 

PPARγ in higher vertebrates in such diseases can have medically important 

outcomes. 

PPARγ exerted control on COX-1 expression only covers a part of COX-1 

transcriptional regulation, other transcription factors and their effect on COX-1 

transcription requires further study. At the same time full characterization of 

zebrafish COX-1 promoter also needs to be done. This study and some other recent 

studies demonstrate that COX-1 can be as crucial as COX-2 in vertebrates. However 

the full potential of this isoform requires further investigation.  
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