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ALGORITMA CARIAN CUCKOO YANG DITINGKATKAN DENGAN
KOMPONEN METAHEURISTIK UNTUK MENGESTRAK

MAKSIMA KEFUNGSIAN AGIHAN ORIENTASI

ABSTRAK

The Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) atau Pengimejan Reso-
nan Magnetik yang Dipengaruhi Difusi adalah satu kaedah yang baik untuk pengkajian bukan-
invasif perkaitan anatomi dalam otak manusia. Data mentah yang diperolehi dari pengimbas
MRI mungkin tidak boleh digunakan secara langsung oleh pakar. Oleh itu, kaedah-kaedah
baru diperlukan untuk membuat perwakilan data yang wajar untuk mengestrak maklumat yang
diperlukan daripadanya.Perwakilan awal data MRI adalah kumpulan gentian yang terbesar.
Gentian-gentian ini mengandungi lintasan gentian dalam bentuk pukal, yang
menyambungkan kawasan-kawasan otak yang berfungsi sebagai satu jaringan komplek
saluran gentian neural. Pengimejan bebola-Q (QBI) adalah satu teknik Difusi MRI yang
terbukti berjaya dalam menyelesaikan orientasi gentian pelbagai intravoksel dalam MRI (i.e.,
lintasan gentian) berdasarkan komputasi piawai Kefungsian Agihan Orientasi atau
Orientation Distribution Function (ODF), iaitu satu fungsi bersfera 3- dimensi yang didapati
mampu mengesan orientasi gentian dominan dalam volum piksel sedia ada (voksel).Disertasi
ini membentangkan satu kaedah baru menyelesaikan masalah ODF melalui pen-gadaptasian
salah satu algoritma metaheuristik iaitu Cuckoo Search Algorithm (CSA) atauAlgoritma
Carian Cuckoo untuk ODF. Adaptasi tersebut melibatkan penyediaan data sintetik untuk

ujian. Keputusannya berada dalam julat kajian terdahulu dan lebih baik berbanding den-gan
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Algoritma Carian Cuckoo untuk ODF. Adaptasi tersebut melibatkan penyediaan data sintetik
untuk ujian. Keputusannya berada dalam julat kajian terdahulu dan lebih baik berbanding den-
gan algoritma-algoritma lain. Namun demikian, beberapa kekurangan dalam kadar pemusatan
dan eksploitasi tempatan ditentukan dan dkendalikan dengan cara mempertingkatkannya den-
gan komponen-komponen metaheuristik. Tiga versi peningkatan berturut-turut disarankan iaitu
penambahbaikan berperingkat melalui versi terdahulu: (i) Algoritma Carian Cuckoo yang telah
diubahsuai (MCSA); (ii) Menghibridkan MCSA dengan komponen algoritma bat (CSBA), dan
(iii) Menghibridkan CSBA dengan pendakian bukit(CSAHC). Eksperimen versi-versi ini ber-
jaya melepasi dua peringkat: Peringkat pertama, dibandingkan dengan 5 kaedah lain meng-
gunakan tigabelas fungsi penanda aras dari pelbagai kategori. Tujuannya ialah menguji setiap
versi sebelum menggunakannya untuk ODF. Peringkat kedua ialah membandingkannya den-
gan 5 kaedah lain menggunakan data sintetik. Tujuannya ialah untuk memilih versi terbaik
dalam usaha untuk mengaplikasikannya kepada data otak manusia. Keputusannya menun-
jukkan bahwa setiap versi telah bertambah baik selepas versi-versi terdahulu. CSAHC-ODF
adalah ODF yang dibina semula dengan lebih tajam dan lebih tepat dan mengestrak maksima

dalam kawasan pukal gentian yang bertemu, atau lebih tepat dpanggil.
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ENHANCED CUCKOO SEARCH ALGORITHM WITH
METAHEURISTIC COMPONENTS FOR EXTRACTING THE

MAXIMA OF THE ORIENTATION DISTRIBUTION FUNCTION

ABSTRACT

The Diffusion-Weighted Magnetic Resonance Imaging(DW-MRI) is a promising method
for non-invasive investigation of anatomical connectivity in the human brain. The raw data
acquired from the MRI scanner may not be directly usable by the specialists. Therefore, new
methods are required to make more reasonable representations of the data to extract the re-
quired information from them. The initial representation of the MRI data is the huge groups of
fibers. These fibers contain fiber crossing bundles, which link the functional brain areas all
together as a complex net-work of neural fiber tracts. Q-ball imaging (QBI) is a Diffusion MRI
reconstruction technique which has been proven very successful in resolving multiple
intravoxel fiber orientations in MRI (i.e., fiber crossing) based on the standard computation of
the Orientation Distribution Function (ODF), which is a 3- Dimension spherical function
founded to detect the dominant fiber orientations in the underlying volume of a pixel (voxel).
This dissertation presents a new method to solve ODF problem through adapting one of the
metaheuristic algorithms, namely, Cuckoo Search Algorithm (CSA) for the ODF. The adap-
tation involved preparing the synthetic data for testing. The results were within the range of
previous work and better comparing the other algorithms. However, some shortcomings in
the convergence rate and local exploitation were determined and addressed by enhancing with

known metaheuristic components. Three successive enhancement versions are proposed
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tions of various categories. This is to test each version before using it for the ODF. The second
step compares against five other methods using synthetic data. The ODFs reconstructed by
CSAHC-ODF are sharper and more accurate ODFs than the original image and extracts more

accurate maxima.
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CHAPTER 1

INTRODUCTION

1.1 Background

The brain is the most complex organ in the human body because it consists of about 100 billion
neurons and one million billion (10'%) interconnections (Azevedo et al., 2009). This organ is the
control for the sensorimotor such as walking and breathing, cognitive functions such as talking,
reasoning, memory and more complex functions such as emotions and feelings. The brain is
also a subject of many diseases that need surgery, which could result in either deterioration
of the cited functions or even in permanent disability. Medical imaging, especially Magnetic
Resonance Imaging (MRI), helps mapping the anatomical and functional aspects of the brain,
considered as the substratum of the different functions. In the first part of this section, a brief
overview of the diffusion MRI is presented, followed by an overview of the Cuckoo Search
Algorithm (CSA). The justifications for using the CSA to solve the ODF problem are given at

the end of this section.

1.1.1 Diffusion MRI

The central nervous system is made up of neurones. A neurone is constituted of two types
of tissue, namely the gray matter where cell bodies of neurons reside in the brain and spinal
cord, and the axone forming the white matter, which are extensions of neural cells as shown
in Figure [I.T] Integration of the neural processes in the human brain is realized through inter-
connections that exist between different neural centers (cortical centers). This connectivity is

altered by some pathologies or trauma, resulting in deterioration of sensorimotor and cognitive



capabilities. For this reason, it is of high importance to probe this connectivity and evaluate its

integrity.

Diffusion MRI measures the diffusion of water molecules along a set of directions (Le Bi-
han et al., |[1986). Diffusion MRI is a noninvasive method based on the Brownian (random)
motion of water molecules constrained by neuronal tissues in vivo. During the early 2000s, var-
ious research groups have been proposed to build structural connection matrices from diffusion
MRI fiber tracking through employing different diffusion acquisition techniques (Thottakara

et al., 2006} [Iturria-Medina et al.| 2007; Gong et al.| 2009).
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Figure 1.1: Structure of a typical neuron (Craig and Robynne, [2001)

The most commonly used diffusion MRI technique is diffusion weighted imaging (DWI)
(Taylor and Bushell,|1985};|Le Bihan and Breton, |1985)). DW1 is a non-invasive technique which
may useful for detecting and characterizing the pathological and non-pathological features of
living tissue. It is also very sensitive to water movements (molecular Brownian motion) (Yan,

2015). DWI is able to determine areas affected and healthy areas, but it can not provide details



about the fibers directions in the MRI diffusion (Gass et al., [2004).

Diffusion Tensor Imaging (DTI) is the answer to the limitations of DWI through using ten-
sors, which are mathematical tools capable of describing diffusion in different space directions,
because diffusion is in most of the cases anisotropic I (Basser et al.,[1994). DTI is a powerful
technique to evaluate the major white matter fibre bundles. It also has a positive impact on dis-
ease prognosis, neurosurgical resection, and the preservation of brain function (Romano et al.,
2009). Nevertheless, some challenges negatively affect the accuracy and validity of results of

this technique.

Therefore, High Angular Resolution Diffusion Imaging (HARDI) was introduced by [Tuch
et al.| (1999) to overcome the limitations of the DTI. HARDI requires a very large number
of DWI. So, it provides more diffusion information (Alaya et al.l [2017). Examples of the
HARDI, Diffusion Spectrum Imaging (DSI) is developed to image complex distributions of
intravoxel fibre orientation that is capable of mapping fibre architectures by imaging the 3D
spectra of water molecules’ displacement (Wedeen et al., [2000). Therefore, DSI is considered
a model-free method (i.e., It does not assume a particular diffusion model, such as tensor model
and multiple-tensor model) (Zucchelli et al., 2014; Sperl et al., 2017). However, the number
of collected points from the g-space ( g-space based techniques such as diffusion spectrum
imaging, q ball imaging, and their variations have been used extensively in research for their
desired capability to delineate complex neuronal architectures such as multiple fiber crossings
in each of the image voxels) of DSI is more than ten times greater than DTI, this leads to long
acquisition times and difficult to implement in a clinical application (Bilgic et al., |2012; [Young
et al., 2017). Thus, Q-Ball Imaging (QBI) was introduced by [Tuch! (2004a) to overcome the

drawbacks of the DTT in the intravoxel heterogeneities of fibre orientation and the DSI problem

! Anisotropic is highly structured and typically have different diffusion coefficients along different directions
(Tariq et al.| [2016).



in the acquisition time. QBI computes the Orientation Density Function (ODF) which is the
radial projection of the Probability Density Function (PDF) modeled as a spherical function

able to represent crossing fibres (Pontabry et al., 2013} |[Fan et al., 2016)).

Basically, the ODF is a criterion to determine the fibres’ directions within a certain voxel.
The fibre’s path can be extracted in some directions corresponding to the highest orientation
likelihood. In other words, an ODF may be considered as a deformed sphere whose radius
in a given direction is proportional to the sum of values of the diffusion PDF in that direction
(Hagmann et al., 2006). To further ease visualization, the surface of the ODF is colour coded
according to a diffusion direction, as shown in Figure[I.2] Where X, y, and z coordinates refer

to red, green, and blue, respectively (Topgaard, |2017).

Figure 1.2: Color-encoded of the ODF according to a diffusion direction (Vos et al., 2013)

There are different ways can deal with ODF to improve the fiber directions such as deter-
ministic methods, probabilistic methods, and optimization algorithms. This research is focused

on the optimization algorithms to deal with the ODF for many reasons. For example, optimiza-



tion algorithms seeking to find the best effective cost or achieving the highest possible level
of interest (maximizing or minimizing) by systematically choosing the values of decision vari-
ables from a feasible set while satisfying a given set of constraints (Rao and Patel, 2013).
Optimization algorithms proved its worth by achieving best results in different problems. For
example, large tourism companies use optimization models to schedule routes and places to
visit to achieve the maximum profit (Qiu et al., 2002). Shipping companies use optimization
models to determine the best ship speed to reach its destination with the lowest fuel cost (Man-
souri et al., [2015)). Routers use optimization models to select the best path to forward data

packets (Khedr et al.l 2015)).

1.1.2 Cuckoo Search Algorithm

The Cuckoo Search Algorithm (CSA) introduced by |Yang and Deb| (2009), it is inspired by the
behavior of cuckoo breeding. CSA is based on the obligate brood parasitic behavior found in
several cuckoo species combined with the Lévy flight behavior discovered in some birds and

fruit flies. This algorithm has attracted attention since 2009 (Sheikholeslami et al., 2015).

Yang and Deb used a specific and simple representation for implementing CSA with each
egg representing a solution. As each cuckoo lays only one egg, it also represents one solution.
This representation aims to increase the diversity of new and probably good cuckoos (solu-
tions) and to replace the unfit solutions. CSA can be complexed (i.e., representation) by using

multiple eggs in each nest to represent a set of solutions.

The breeding behavior of a cuckoo is aggressive in nature, which inspires the optimization
algorithms. Brood parasitism is a primary mechanism of a cuckoo, this bird lays eggs in the
host’s nest and carefully matches its eggs through mimicking the pattern and color (Rajabioun,

2011). In the case the host recognizes the cuckoo egg in its own nest, the host will either throw



the egg out or simply leave its nest and build a new one. Therefore, a cuckoo must be accurate
in its mimicry of the host eggs. By contrast, the host tries to improve its skills of determining

the parasitic egg, which is called the struggle for survival.

The CSA provides solutions in a reasonable computational time and cost (Feng et al., 2014;
Yang, 2014). This algorithm is more easily implemented compared to other population meta-
heuristic algorithms such as Harmony Search (HS) and Genetic Algorithm (GA) because it has
two parameters the probability of being discovered by the host bird P, and the population
n host nests. Therefore, CSA is one of the simplest algorithms and considered an effective
search approach for solving complex optimization problems (Shehab, Khader and Al-Betar,
2017) (Mehdinejad et al., 2017). CSA also has two main operations: a random search based
on the probability of the host bird to detect alien eggs and direct search based on Lévy flights
(Kamalakannan et al., 2014). In other words, CSA balances between the global exploration
and the deep exploitation in the search space. As such, CSA has been successfully applied to

solve a broad range of real-world optimization problems (Li and Yin, [2016).

1.1.3 Why CSA has been chosen to solve the ODF

Swarm-based algorithms are optimization algorithms containing some algorithms inspired by
nature such as artificial bee colony (ABC) (Karaboga, [2005), particle swarm optimization
(PSO) (James and Russell, [1993)), firefly algorithm (FA) (Yang and Algorithms, 2008), and
CSA. These algorithms have many advantages over conventional algorithms. They combine
rules and randomness to imitate some natural phenomena (Siddique and Adeli, 2015). In addi-
tion, they are efficient, highly adaptable, and tend to be flexible to implement. In other words,
the features of these algorithms make it possible to use them in a wide range of problems in

varied applications (Yang, 2015)).



Based on the above, can be used any swarm-based algorithm to solve the ODF problem.
However, during our research, we found that the CSA is the best choice to solve the ODF
problem. For instance, no derivation information is required in the initial search, the number of
parameters needed to be configured in the initial search is very little, and the inexperienced user
can easily interact with it. CSA has a common specification with local search algorithms in ex-
ploitation through random walk and with evolutionary algorithms in exploration through Lévy
flights. It is an efficient metaheuristic algorithm that balances between the local search strat-
egy (exploitation) and the whole space (exploration) (Roy and Chaudhuri, [2013)), deals with
multi-criteria optimization problem, and aims for convergence speed and easy implementation.
Furthermore, Precision in the mechanism of selection the solutions in the CSA is suitable for
mechanism of the ODF to select the optimal point. In the CSA, the search is based on the Lévy
flights, which moves between the solutions to determine a new solution and compares it with
the random solution. It also uses the abandon of the worst solution (i.e., probability Pa) (i.e.,
there are two stages of each solution should pass through them). Therefore, the chosen solu-
tion should have a high fitness value to exceed these conditions. On the other hand, the ODF
is obtained from diffusion weighted signals measured using the QBI. The spherical harmonics
have been used to represent the ODF where each point in the sphere is represented through
angle (0,¢). Detecting the maxima of the ODF requires navigating between these points and
extracting the maxima carefully. This process is available in the CSA in the selection solution.
Due to these reasons, the CSA was selected to detect the ODF maxima. Nevertheless, There is
no perfect algorithm 100 %. So, it’s necessary to add some enhancements to ensure not to fall

into the troubles. Such as low convergence, local traps, achieving weak results, etc.



1.2 Motivation and Problem Statement

The human brain is considered the center for neurons. As mentioned previously, this organ
is responsible for sensorimotor and cognitive functions which is behind all aspects of human
life. Brain pathologies or trauma lead most of the time to permanent disability and life quality

deterioration, which require taking all kind of precautions when intervening on this organ.

Fibre tracking is a non-invasive tool (Dyrby et al.,[2007) that is used to visualize and mea-
sure the pathways of white matter in the human brain initiated using the DTI (Wedeen et al.,
1995; Weiss et al.,[2015]). Nevertheless, some challenges negatively affect the accuracy and va-
lidity of the results of this technique. For example, in the areas of complex intravoxel, the DTI
technique fails to characterize the multiple fibre directions accurately in reconstructing cross-
ing or kissing fibres (Wedeen et al., 2008; Kuhnt et al.| 2013} |Descoteaux and Derichel 2015)).
Consequently, DTI fails to describe the diffusion process accurately, leads to influencing the

efficiency of the fiber tracking algorithms.

The limitations of DTI have been overcome by introducing the QBI technique, which it is
a variant of DWI that is sensitive to intravoxel heterogeneities in diffusion directions caused
by crossing fibre tracts. QBI is a HARDI technique which has been proven very successful in
resolving multiple fibre crossings and branchings in multiple intravoxel fibres using standard
computation of ODF by directly sampling the diffusion signal on a spherical shell in diffusion
space (Tomana et al.,2007). However, ODF still has a limitation in determining fiber directions

which may be corrupted by neighbor directions (Assemlal et al., 2009).

In other words, in each voxel, the ODF is estimated independently of the information pro-
vided in the spatial neighborhood (Goh et al., 2009). Deterministic methods have been used

by [Thomas et al.| (2014) to deal with such limitations. However, these methods suffer from



local noise-induced disturbances which are additively accumulated along the track propaga-
tion, and lack of connectivity information between regions of the brain (Jones and Pierpaoli,
2005). Therefore, probabilistic methods have been employed by |Vorburger| (2012)) to increase
the accuracy of the local estimation along the path, but it also suffers from very long process-
ing times, preventing their use in the clinical field (Parker, |2014). So, it is necessary to find

alternative ways to address these limitations.

The optimization algorithm is a procedure which is executed iteratively by comparing dif-
ferent solutions till a satisfactory or an optimum solution is found (Deb) 2012). Wherefore,
optimization will be conducted by employing the basic CSA (BCSA), which is considered a
novel population-based stochastic global search metaheuristic algorithm (Zhao et al., 2012).
According to the best knowledge available, BCSA efficiently handles the exploitation and ex-
ploration (Cuevas and Reyna-Orta, 2014)). However, existing works have not investigated the
BCSA in the context of the ODF in general. The focus of this dissertation is to adapt BCSA for
ODF to extract all the fibres directions, then determine the maxima as a subset of the stationary
points of the ODF with the possibility of controlling the convergence (balancing between slow
and premature convergence) with increasing the quality and the efficiency of fiber direction.

After that, enhancing its efficiency by combining components from metaheuristics.

1.3 Research Objectives

The main objectives of the research presented in this dissertation are as follows:

1. To propose a new method to extract the maxima of the orientation distribution function.

2. To enhance the proposed method by injecting heuristic-based techniques to improve the

quality of the solution.



1.4 Research Contributions

The key contributions of this dissertation to the literature are:

1. Adapting the BCSA for ODF and extracting the ODF maximum, henceforth called

Cuckoo Search Algorithm for Orientation Distribution Function (ACSA-ODF).

2. Introducing three versions of the BCSA with other metaheuristic components. These

new versions can be described as follows:

(a)

(b)

(c)

Modified Cuckoo Search Algorithm:

The Modified Cuckoo Search Algorithm (MCSA) is based on swapping the random
selection (original) with tournament selection (proposed). Thus, the probability
of better results is increased, through giving the solution that has the high fitness
value a chance to be selected. That leads to increasing the quality of the solutions,
increasing the diversity, and enhancing the convergence. MCSA is used to solve

the ODF problem, namely, MCSA-ODF.

Hybridization of modified cuckoo search algorithm with parts of the bat algo-
rithm components

Hybridization of MCSA and some components of BA, namely, CSBA. This ver-
sion starts with the MCSA to set up the population of host nests then looking for
a new solution through the components of the BA. In such a way, CSBA focuses
on the exploitation which leads to improving the convergence of the MCSA. The

proposed version is used to solve the ODF problem, namely, CSBA-ODF.

Hybridization of cuckoo search algorithm with Hill Climbing:
Hybridizing CSBA with local search -based algorithm (i.e., hill climbing (HC)),
namely, CSAHC. This version proposed to overcome the drawbacks of the CSBA.

In other words, the CSBA becomes more exploitative very fast and may stack at a
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local optimum. Thus, CSAHC used the mechanism of the HC as a new operator
to increase its ability to find the local optimal solution in the search space. This

version is used for solving the ODF problem which called CSAHC-ODF.

1.5 Scope of the Research

This research focuses on enhancing the performance of the BCSA to extract the ODF maxima,
namely, ACSA-ODF. Three versions of the ACSA-ODF are introduced to improve the solutions
and avoid the weaknesses: (i) MCSA-ODF, that replacing the current selection (i.e., random)
with another selection scheme (i.e., tournament). MCSA-ODF is used to improve the fineness
of the solutions by taking advantage of the features tournament selection scheme. (ii) CSBA-
ODF, that hybridized the MCSA-ODF with components of the BA. CSBA-ODF is used to
enhance the local search process (i.e, exploitation) that leads to avoiding the slow convergence.
(iii) CSAHC-ODF, that hybridized CSBA-ODF with HC. CSAHC-ODF is used to improve the
performance of CSBA-ODF through finding the local optimal solution with avoiding fall in the

local traps.

1.6 Overview of Methodology

This section provides a brief discussion on the methodology, described fully in Chapter ] to

achieve the research objectives.

In Figure [I.3] stage 1 shows that after preparing the data, a new ODF maxima search
approach using the BCSA has been proposed to extract all the ODF maxima (i.e., ACSA-ODF)
which achieve the first objective, the synthetic data is used to evaluate the ACSA-ODF. To
improve the performance of the ACSA-ODF, the approach is worthy of further research in

order to achieve the second objective.
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Figure 1.3: Research Methodology

Stage 2 shows the second objective which contains three techniques of effective compo-
nents from metaheuristics were incorporated into BCSA. The first enhancement is the selection
schemes concept from the tournament selection scheme used to enhance BCSA results by giv-
ing the opportunity for the best solution to be chosen (i.e., MCSA). The second enhancement
is the hybridization which combines MCSA and a part from the BA (i.e., CSBA). This leads to
focusing on the exploitation search which is characterized by BA thereby overcoming the slow
convergence suffered by the MCSA. The third enhancement is the local search-based algo-
rithm hybridization that combines CSBA and HC operator (i.e., CSAHC) to improve the local
exploitation of the CSBA. For evaluation each version of BCSA (without ODF; MCSA, CSBA,
and CSAHC) a set of benchmark functions are used, while the synthetic data is used to evaluate
the performance of each version of the ACSA-ODF (with ODF; MCSA-ODF, CSBA-ODF, and

CSAHC-ODF).

1.7 Overview of the Dissertation

This dissertation includes nine chapters organized as follows: Chapter 2] discusses the cuckoo

search algorithm in details; procedure, growth, and variants of CSA.
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Chapter 3| provides an overview of the diffusion MRI. It also surveys some previous meth-
ods that tackled the ODF problems. The methodology is proposed and described in details in

Chapter

Chapter [5] is divided into two main parts. The first part, introduces the steps of pre-
processing such as generate the synthetic data. The second part, describes the adaptive BCSA
to solve ODF (ACSA-ODF), then evaluate fiber detection success through using the synthetic

data.

Chapters [6| and [7]illustrate the Modification (MCSA-ODF) and two types of hybridization
(CSBA-ODF, CSAHC-ODF), consecutively. The experiments and results with detailed anal-
ysis of studying are presented at each chapter. It should be noted that the experiments were
done through two stages of evaluation. 1) Applied set of benchmark functions optimization,

followed by 2) Applied synthetic data.

Finally, in Chapter [§]a summary of claimed results and future possibilities are provided. It
is hoped that the reader will be challenged to prove or disprove the claims made throughout

this dissertation, and extend the research in new directions.

13



CHAPTER 2

CUCKOO SEARCH ALGORITHM

2.1 Introduction

Optimization problem exists in many domains, such as engineering, energy, economics, med-
ical, and computer science. It is mainly concerned with finding the optimal values for several
decision variables to form a solution to optimization problem. This solution is considered opti-
mal when the decision maker is satisfied with it. An optimization problem is the minimization
or maximization of a suitable decision-making algorithm normally adapted to the approxima-
tion methods. The principle of decision making entails choosing between several alternatives.

The result of this choice is the selection of the best decision from all choices.

Optimization algorithms developed based on nature-inspired ideas deal with selecting the
best alternative based on the given objective function. This chapter is limited to the metaheuris-
tic algorithm which it is a general solver template. Where, it can be adapted for various kinds
of optimization problems by properly tweaking its operators and configuring its parameters.
To elaborate, each optimization algorithm can be categorized into three classes: evolutionary
algorithms (EAs), swarm-based algorithms, and trajectory-based algorithms (Shehab, Khader
and Al-Betar, |2017). EAs mimic the evolutionary principle of survival of the fittest. It normally
begins with a set of individuals (i.e., a group of solutions) called population. At each gener-
ation, the EA algorithms recombine the preferable characteristics of the current population to
come up with a new population that will be selected based on the natural selection principle.

Examples of EAs include genetic algorithms (GAs) (Holland, |1975)), genetic programming
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(GP) (Koza, [1994)), differential evolution (DE) (Storn and Price) [1996)), and harmony search
algorithm (HSA) (Geem et al., 2001). On the other hand, swarm-based algorithms mimic the
behavior of a group of animals when searching for survival. At each iteration, the solutions
are normally constructed based on historical information gained by previous generations (Bo-
laji et al., 2016). Examples of swarm-based algorithms include artificial bee colony (ABC)
(Karaboga, [2005)), particle swarm optimization (PSO) (James and Russell, [1995), firefly algo-
rithm (FA) (Yang and Algorithms|, [2008)), and cuckoo search algorithm (CSA) (Yang and Deb,
2009). Trajectory-based algorithms start with a single provisional solution. At each iteration,
that solution will be moved to its neighboring solution, which resides in the same search space
region, using a specific neighborhood structure. Examples of trajectory-based algorithms in-
cludes tabu search (TS) (Glover, [1977)), simulated annealing (SA) (Kirkpatrick et al.| |1983)),

hill climbing (Koziel and Yang, 2011), and B-hill climbing (Al-Betar, 2016).

Bestfirst |/ A* search Genetic |/ Genetic '/ Differential

search Algorithm Prog. Evolution
4 4 A A ol Harmony
. + Search
'/ s
—»  Heuristic _,  Evolutionary _
algorithms .{ Bee
Colony
Optimizati ./ Particle
Sl ot | Swarm-based Swarm
Algorithm _.——- Meta-heuristic —» G <
) | | S Firefly
e ~ ™ Algorithm
o Trajectory-based e
~» Deterministic | > algorithms o SL;; r?:ﬁ
3 I I ‘r
v % v y Y Tabu
Brar:_ich Dynamic B -Hill Hill Simulated S€arch
Bgﬂnd Prog. Climbing ' Climbing Annealing

Figure 2.1: Optimization Algorithms

The main merits of the CSA over other optimization algorithms are as follows: it has fewer
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parameters, and one of the most powerful features of CSA is the use of Lévy flights to generate

new candidate solutions (Karthik et al., [2017) (Esapour et al., 2015). Owing to these merits,

the CSA has been successfully tailored to a wide variety of optimization problems, such as

constrained optimization (Ong and Kohshelan, 2016)), in medical field (Giveki et al., 2012}

and Fu|, 2014; [Stewart et al.} 2016)), clustering and data mining (Goel et al., 2011} [Amsaleka
land Latha,, 2014} Cobos et al.,2014)), image processing (Pare et al., 2016; Tiwari, 2012} Bhan-

dari, Singh, Kumar and Singh|, 2014}; Bhandari, Soni, Kumar and Singh|, 2014} [Agrawal et al.,

2013; Raja and Vishnupriya, 2016)), economic dispatch problems (Tran et al., 2015} Basu and
Chowdhuryl, 2013} [Vo et al.l 2013} [Pham et al., 2016} [Sekhar and Mohantyl, 2016)), engineer-

ing design (Gandomi, Talatahari, Yang and Deb, 2013 [Ahmed and Salam| 2014} Bhargava

et al.,2013; [Esfandiari, 20145 |Gandomi, Yang and Alavil [2013}; [Kaveh and Bakhshpoori, 2013|

2016), and power and energy (Ahmed and Salam, 2013} Buaklee and Hongesombut, 2013},

Devabalaji et al. 2016} [Elazim and Ali, 2016; [Femia et al.| 2005} Ma et al.,[2013; Machowski|
2011).

The CSA is also modified and hybridized for the convenience of some combinatorial op-

timization problems because of the complex nature of some optimization problems (Walton,

Hassan, Morgan and Brown| 2011} Giridhar et al., 2016} Babukartik and Dhavachelvan, 2012
Wang, Gandomi, Zhao and Chul, 2016} Lim et al., 2016; Layeb and Boussalial, 2012; [Shatnawi

and Nasrudin, 2011}, [Noghrehabadi et al.| 2011). The parameter setting of the CSA is also ad-

dressed by several researchers Tuba et al.| (2011);/Abdul Rani et al.| (2012); [Tawfik et al.|(2013));
L1 and Yin| (2016).

This chapter provides a comprehensive and exhaustive overview of the theoretical aspects
of CSA and presents the readers with sufficient materials for the previous adaptation, modifica-
tion, and hybridization of the CSA. It also focuses on the principles of CSA, its developments

and variants to the original CSA, and a detailed report of recent applications and associated
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developments attained during the last few years.

This chapter is organized as follows. Section [2.2]introduces the CSA by highlighting its
framework. Section[2.3]discusses the procedure of the basic CSA, then the variants of CSA are
shown in details in Section [2.4] followed by related works of hybridization BCSA in Section

2.6. Finally,The conclusion is presented in Section [2.6]

2.2 Cuckoo Search Algorithm Inspired from Nature

There are more than 1,000 species of birds in nature, and these birds share some approaches
with one another (Rajabioun, 2011)). For example, all mother birds lay eggs that have different
shapes of eggs from one another. Moreover, different nests are built by many birds in isolated

places to increase safety from predators (Davies, [1970).

Birds that resort to cunning approaches for reproduction, specifically in building nests,
are called "brood parasites". These kinds of birds do not build their own nests but rather lay
their eggs in the nest of another species, leaving the host to care for its young. The most
famous of the brood parasites is the cuckoo. It has a fantastic way in the art of deception. Its
strategy involves permeation by removing one egg laid by the host and laying her own. It then
carefully matches its egg through mimicking the pattern and color of the host’s eggs, a skill
that requires high accuracy to ensure its success. The timing of egg-laying is also an amazing
way of selecting the nest where the host bird just laid its own eggs (Khan and Sahail 2013).
This process will reap benefits after a while; the cuckoo egg will hatch before the host eggs,
and the first instinctive action of the host will be to evict its own eggs out of the nest by blind
propelling, thus increasing the care and food provided for the cuckoo’s chicks. Cunningness
is inherited by the chicks; this trait is shown when the chicks mimic the call of host chicks to

gain access to more feeding opportunity (Yang and Press, [2010).
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On the other hand, in case the host recognizes the cuckoo’s egg in its nest, they either
throw out the strange egg or simply leave their own nest and build a new one. The cuckoo
must therefore be more accurate in mimicking the host eggs, whereas the host must improve

its skills in determining the parasitic egg. Therein lies the so-called struggle for survival.

The use of CSA in the optimization context was proposed by Yang and Deb in 2009. To
date, work on this algorithm has significantly increased, and the CSA has succeeded in having
its rightful place among other optimization methodologies (Fister Jr et al.l[2014;|Yang and Deb),
2009). This algorithm is based on the obligate brood parasitic behavior found in some cuckoo
species, in combination with the Lévy flight , which it is a type of random walk which has a
power law step length distribution with a heavy tail. It is inspired from behavior discovered of
some birds and fruit flies. Also, it has been found (Brown et al., 2007} Pavlyukevich, [2007)
that Lévy flights is an oft-observed random walk in real life (Viswanathan et al., 1999, 2002).
The CSA is an efficient metaheuristic swarm-based algorithm that efficiently strikes a balance
between local nearby exploitation and global-wide exploration in the search space problem

(Roy and Chaudhuri}, 2013)).

The cuckoo has a specific way of laying its eggs to distinguish it from the rest of the birds
(Yang and Deb, 2014). The following three idealized rules clarify and describe the standard

cuckoo search:

* Each cuckoo lays one egg at a time and dumps it in a randomly chosen nest.

* The best nests with high-quality eggs will be carried over to the next generations.

* The number of available host nests is fixed, and the egg laid by a cuckoo is discovered
by the host bird with a probability Pa € (0, 1). In this case, the host bird can either get

rid of the egg or simply abandon the nest and build a completely new nest. In addition,
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probability Pa can be used by the n host nest to replace the new nests.

2.3 The procedure of basic cuckoo search algorithm

The basic CSA procedure is established by [Yang and Deb, (2009), the founders of CSA. Figure
[2.2] shows a flowchart of the CSA. Similar to other swarm-based algorithms, the CSA starts
with an initial population of n host nests. These initial host nests will be randomly attracted by
the cuckoos with eggs and also by random Lévy flights to lay the eggs. Thereafter, nest quality
will be evaluated and compared with another random host nest. In case the host nest is better, it
will replace the old host nests. This new solution has the egg laid by a cuckoo. If the host bird
discovers the egg with a probability Pa € (0, 1), the host either throws out the egg, or abandons
it and builds a new nest. This step is done by replacing the abundant solutions with the new

random solutions.

Yang and Deb used a certain and simple representation for the implementation, with each
egg representing a solution. As the cuckoo lays only one egg, it also represents one solution.
The purpose is to increase the diversity of new, and probably better, cuckoos (new solutions)
and replace them instead with the worst solutions. By contrast, the CSA can be more compli-

cated by using multiple eggs in each nest to represent a set of solutions.

The CSA, as a bat algorithm (Yang, 2010b) and an FA (Yang, 2010a), uses a balance
between exploration and exploitation. The CSA is equiponderant to the integration of a Lévy

flights. When generating new solutions x'*! for, say, a cuckoo i,a Lévy flight is performed

X =¥+ a @Le'vy(l) (2.1)
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new ones at new locations via Levy flights
v

Keep the current best

Stop condition
satisfied
v Yes

Find the best objective (best nest)

Figure 2.2: Flowchart of Cuckoo Search Algorithm (Abdul Rani et al.,|2012)

where o > 0 is the step size which should be related to the scales of the problem of interests.
In most cases, we can use & = 1. The x! in the equation represents the current location,
which is the only way to determine the next location x§+1. This is called the random walk and
the Markov chain. The product € means entrywise multiplications. This entrywise product
is similar to those used in PSO, but here the random walk via Lévy flight is more efficient in
exploring the search space as its step length is much longer in the long run. A global explorative

random walk by using Lévy flights can be expressed as follows:
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Levy~u=t"* 1<A<3 (2.2)

where A is a parameter which is the mean or expectation of the occurrence of the event
during a unit interval. Here the steps essentially form a random walk process with a power law
step-length distribution with a heavy tail. Some of the new solutions should be generated by
Lévy walk around the best solution obtained so far, this will speed up the local search. However,
a substantial fraction of the new solutions should be generated by far field randomization and
whose locations should be far enough from the current best solution, this will make sure the
system will not be trapped in a local optimum. Algorithm [I] shows the representation of the

CSA search process.

Algorithm 1 Basic Cuckoo Search algorithm

1: Objective function f(X),X = (x1,...xg)"
2: Generate initial population of n host nests Xi(i = 1,2,...,n)
3: while t < Max_iterations do

: (t < MaxGeneration) or (stop criterion)

4
5: Get a cuckoo randomly by Levy flights
6:  evaluate its quality fitnessF;
7: Choose o nest among n (say, j) randomly
8 if F; > F; then

9: replace j by the new solution;
10: end if

11: A fraction (Pa) of worse nests are abandoned and new ones are built;
12: Keep the best solutions (or nests with quality solutions);
13: Rank the solutions and find the current best

14: end while
15: Postprocess results and visualization

2.4 Cuckoo search algorithm variants

The CSA proposed in 2009 is a recent swarm-based algorithm in comparison with the firefly,
bee colony, PSO, and ant colony algorithms proposed in 2008, 2005, 1995, and 1992, respec-
tively. However, the CSA has been updated for several variants developed by researchers to
cope with the nature of the search space of the optimization problem. Most of these variants

will be extensively but not exhaustively described.

21



2.4.1 Binary Cuckoo Search Algorithm

Gherboudj et al.| (2012) proposed a discrete binary cuckoo search (BCS) algorithm for binary
optimization problems. The solutions are represented in the optimization problems either by
a set of real numbers (called continuous optimization) or by a set of integer numbers (called
discrete optimization). The discrete optimization problem class has some subclasses, such
as discrete binary optimization problems, and its solutions are represented by a set of bits,
including routing (Zhan and Zhang, 2009), job shop scheduling (Pongchairerks) [2009), and
flowshop scheduling problems (Liao et al., [2007). This BCS variation uses a sigmoid function

to create a bridge between the discrete/the continuous and the binary values.

As aforementioned, the CSA is based on Lévy flights. Therefore, the solutions present as a
set of real numbers working in a continuous search space. The solutions must be converted to
binary values to extend the CSA to discrete binary areas. The BCS is designed to contain two

basic modules:

* Main binary cuckoo dynamics: this module includes two operations:

— Lévy flights: it used to obtain a new cuckoo.

— Binary solution representation (BSR) to compute the flipping chances for each
cuckoo by using the sigmoid function. After that, the flipping chance of each

cuckoo to calculate the binary value is used.

* Objective function and the selection operator: the selection operator principles presented

here is the same as presented for genetic algorithms

To convert from the continuous area to the binary area, assume x; is a solution of continuous
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nature in the interval [0, 1] and x; is a BSR, the sigmoid function will convert the values as

follows:

(2.3)

where S(x;) is the flipping chance of bit x;. To obtain the binary solution x;, S(x;) is com-
pared to the result of the generated random number from the [0, 1] interval for each dimension

i of solution x as shown in following equation:

1 y< S(X,‘)

0 otherwise

where 7 is a random number between [0,1]. In case the flipping chance of bit x; is bigger

than the random number then the value is 1, otherwise the value is 0.

2.4.2 Discrete Cuckoo Search Algorithm

The TSP is a classical optimization problem used to evaluate any new development. The TSP
principle is that the salesman must visit each city once, starting and finishing from a certain one
with a minimum total length of the trip. |Ouaarab et al.|(2014) introduced a DCSA for the TSP.
The author improved and developed the CSA through rebuilding the population and proposing
a new category of cuckoos. Thus, DCSA efficiency was increased with less iterations. The
DSCA can also solve the continuous and combinatorial problems. It increases the protection of
local optima in the case of TSP from stagnation. This supports the DCSA to have more control

over the diversification and intensification with less parameters. The experimental analysis of
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the results showed that the performance of the proposed DCSA algorithm was highly effective
compared with genetic simulated annealing ant colony system with particle swarm optimization

techniques (GSA-ACS-PSOT) (Chen and Chien, [2011)) and discrete PSO (Shi et al., 2007).

In another study, DCSA was proposed to solve TSP by Jati et al.| (2012). The authors
proposed two phases and called them schemes. The first scheme proposed, discrete step size,
refers to the distance between the cuckoo and the best cuckoo in its generation. The second
scheme is where the cuckoos were updated using a step size ¢ and a random step length drawn
from the Lévy distribution called Lévy flight. The results proved the performance of DCSA
with simple TSP. However, it could not achieve the optimal solution for complex TSP. Gher-
boudj et al.|(2012) proposed a discrete binary CSA (DBCSA) to solve 0-1 knapsack problems.
The authors used a sigmoid function to obtain binary solutions, which are the same as those
used in binary PSO. This work has two objectives. The first objective copes with the binary
optimization problems, where the basic CSA solution consists of a set of real numbers. On
the other hand, the DBCSA solution consists of a set of bits by using a sigmoid function and a
probability model to generate binary values. The second objective proves the effectiveness of
the basic CSA dealing with binary combinatorial optimization problems. The experimental re-
sults on both the multidimensional knapsack problem instances showed the effectiveness of the
BDCSA and its ability to obtain good quality solutions compared with the quantum-inspired

CSA (QICSA), HS, and binary PSO (Kennedy and Eberhart, [1997).

2.4.3 Modified cuckoo search algorithm

Tuba et al.| (2011) proposed modified CSA (MCSA) for unconstrained optimization problems.
The authors modified the basic CSA by determining the step size from the sorted rather than
only the permuted fitness matrix. For example, if the similarity between the cuckoo’s egg

and the host’s eggs was very high, the likelihood of discovery was reduced; therefore, fitness
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