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PROFIL EKSPRESSI GEN DAN MODULASI LALUAN GENETIK 
DALAM LEUKEMIA MEILOID AKUT T(8;21) 

 

ABSTRAK 

Kebanyakan model in vivo dan in vitro telah digunakan secara meluas dalam 

penyelidikan  untuk mengkaji analisis laluan, sasaran dan penemuan gen. Lini sel 

seperti Kasumi-1 dan SKNO-1 digunakan untuk mengkaji mekanisme t(8;21) 

AML1/MTG8 dalam leukemia mieloid akut subjenis-2. Namun demikian, kadang 

kala keputusan yang diperoleh daripada kajian in vitro dan in vivo tidak sama atau 

tidak sah apabila diaplikasikan pada pesakit. 

Matlamat utama kajian ini adalah untuk mengkaji persamaan dan perbezaan yang 

terdapat pada profil ekspresi gen daripada sampel pesakit AML t(8;21) serta lini sel 

Kasumi-1 dan SKNO-1 dibandingkan dengan sel stem CD34 yang normal. 

Analisis permulaan menunjukkan bahawa 34,073 gen diekspresi secara berbeza pada 

pesakit dan lini sel apabila dibandingkan dengan kawalan. Pekali korelasi Spearman 

Rho yang diperoleh di adalah sebanyak 0.451. Terdapat 6,092 gen yang bertindan 

(3,297 upregulated) dan (2.795 downregulated) diantara pesakit dan lini sel. Pekali 

korelasi Spearman Rho yang diperoleh untuk pebandingan ini adalah  sebanyak 

0.826. 

 Oleh itu, gen bertindan dipilih untuk analisis selanjutnya. Analisis itu merangkumi 

pengklusteran berhierarki, ontologi gen, pengklusteran anotasi fungsian dan analisis 

laluan menggunakan dua perisian/sofwer yang berbeza (GeneSpring v11.5 dan 

DAVID v6.7). Tujuan analisis ini adalah untuk mengenal pasti fungsi gen tersebut 

dan laluan yang terlibat. 

Dua teknik pengesahan (GeXP dan RT-qPCR) digunakan untuk mengesahkan 

keputusan mikrosusunan. Kedua-dua teknik ini menunjukkan kesetujuan yang kuat. 
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Di samping itu, gen-gen yang bertindan dinilai dan beberapa contoh diberikan bagi 

sepuluh (10) hallmark kanser daripada cadangan Hanahan dan Weinberg, yang 

antaranya: kecukupan–diri dalam isyarat pertumbuhan, ketidakpekaan terhadap 

isyarat antipertumbuhan, pengelakan apoptosis, potensi replikasi yang terbatas, 

angiogenesis lestari, metastasis dan serangan / invasi tisu, laluan metabolik tidak 

normal, pengelakan sistem imum, inflamasi, dan ketidakstabilan kromosom dan 

mutasi. 

Berdasarkan keputusan mikrosusunan, analisis laluan dan teknologi RNAi (siRNA), 

tujuh (7) gen dalam dua (2) laluan yang berbeza, iaitu (MAPK1, MAP3K1, MAPK8 

dan MAPK14) dalam laluan pengisyaratan MAPKs, dan (BIRC2, RELA, dan 

IL1RAP) dalam laluan apoptosis dipilih untuk kajian lanjut melalui 

penekanan/supresi singlet (singlet suppression) dan dalam penekanan gabungan 

dengan gen AML1/MTG8 lakur dalam leukemia t(8;21) untuk mengkaji kesan 

terhadap proliferasi, taburan kitaran sel, apoptosis, dan pembezaannya. 

Secara amnya, semua gen – senyap (silenced gene) mengurangkan kadar proliferasi 

sel t(8;21) dan semua gabungan meningkatkan perencatan proliferasi. Penekanan 

AML1/MTG8 mengakibatkan pencegahan apoptosis, manakala penekanan singlet 

dan gabungan mengaruhkan proses apoptosis. Semua gen-senyap mengaruh 

pertumbuhan melalui penimgkatan fasa G0/G1 dan mencegah peralihan fasa G1/S. 

Semua gabungan penekanan kecuali IL1RAP dan AML1/MTG8 meningkatkan 

pertumbuhan. Walaupun penekanan AML1/MTG8 mengaruhkan proses pembezaan, 

didapati bahawa penekanan singlet daripada tujuh gen lain tidak menunjukkan kesan 

terhadap pembezaan aruhan, Sementara itu, semua penekanan gabungan 

merencatkan proses pembezaan, kecuali RELA dan IL1RAP. Gabungan  dengan 

penekanan AML1/MTG8  tidak mempunyai kesan. 
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Eksperimen mikrosusunan dilakukan sekali lagi bagi penekanan gabungan dan data 

mikrosusunan disahkan melalui RT-qPCR. Ontologi gen daripada data mikrosusunan 

termasuk setiap gabungan dilakukan untuk memahami gen yang terlibat dalam 

proses proliferasi, kitaran sel, apoptosis dan pembezaan. 

 Secara kesimpulan, data menunjukkan bahawa lini sel Kasumi-1 and SKNO-1 

adalah model yang sesuai untuk mengkaji leukemia mieloid akut subjenis-2 t(8;21). 

Tambahan pula, pengekspresian gen melampau MAPK1, MAP3K1, MAP3K1, 

MAPK14, BIRC2, RELA, IL1RAP, and AML1/MTG8 mengaruh pertumbuhan sel 

t(8;21) samada melalui  proliferasi atau menjadi rintang terhadap proses  apoptosis. 

Maka, gen-gen ini mungkin berpotensi untuk menjadi sasaran teraputik  untuk 

leukemia t(8;21) leukaemia seperti yang ditunjukkan dalam eksperimen siRNA. 
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GENE EXPRESSION PROFILE AND MODULATION OF GENETIC 
PATHWAYS IN ACUTE MYELOID LEUKAEMIA T(8;21) 

 

ABSTRACT 

Many in vivo and in vitro models have been widely used in experimental research in 

order to facilitate pathway analysis, gene targeting and further scientific discoveries. 

Cell lines, such as Kasumi-1 and SKNO-1, have been used to study the 

AML1/MTG8 mechanisms in acute myeloid leukaemia t(8;21). However, in some 

cases, results obtained from in vivo and in vitro studies are incompatible or not valid 

when applied on patients. 

Given the above, the primary aim of this study is to explore and identify the 

similarities and differences of gene expression profiles of AML t(8;21) patient 

samples and the corresponding cell lines (Kasumi-1 and SKNO-1) as compared to 

normal CD34 cells. 

The initial analysis revealed that there were 34,073 differentially expressed genes 

found in patient samples and the corresponding cell lines as compared to the control 

cells, with a Spearman Rho correlation coefficient of 0.451 between the patient 

samples and cell lines. However, the 6,092 overlapping differentially expressed 

genes (3,297 upregulated) and (2,795 downregulated) between patient samples and 

the corresponding cell lines had a Spearman Rho correlation coefficient of 0.826. 

These overlapping genes were then subjected to further analysis. The analysis 

comprised of hierarchical clustering, gene ontology and functional annotation 

clustering as well as pathway analysis using two different software packages 

(GeneSpring v11.5 and DAVID v6.7). The aim of the analysis was to identify the 

function of those genes and pathways implicated within.  
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Two validation techniques (GeXP and RT-qPCR) were performed to confirm 

microarray results and the findings yielded strong agreement. 

Furthermore, overlapping genes were evaluated and several examples for the ten 

hallmarks of cancer proposed by Hanahan and Weinberg were given, namely self-

sufficiency in growth signals, insensitivity to anti-growth signals, evasion of 

apoptosis, limitless replication potential, sustained angiogenesis, tissue invasion and 

metastasis, abnormal metabolic pathways, evading the immune system, 

inflammation, and chromosome instability and mutation. 

Based on the microarray results, pathway analysis and using RNAi technology 

(siRNA), seven genes in two different pathways—MAPK1, MAP3K1, MAPK8 and 

MAPK14 in MAPK signalling pathway, and BIRC2, RELA, and IL1RAP in apoptosis 

pathway—were selected for further examination by singlet suppression and in 

combination with the fusion gene AML1/MTG8 in t(8;21) leukaemia to study their 

effect on proliferation, cell cycle distribution, apoptosis, and differentiation. 

In general, all silenced genes resulted in reduced proliferation rate of t(8;21) cells, 

whereas all the combinations enhanced the proliferation inhibition. Despite the effect 

of AML1/MTG8 suppression on apoptosis prevention, singlet and combined 

suppression resulted in apoptosis induction. All silenced genes induced the growth 

arrest by increasing the G0/G1 phase and preventing the G1/S phase transition. 

Similarly, the combined suppression, with the exception of IL1RAP and 

AML1/MTG8, enhanced the growth arrest.  

Singlet suppression of the seven genes showed no effect on differentiation. However, 

all combined suppressions with the exception of RELA and AML1/MTG8 exhibited 

differentiation inhibition in spite of the fact that AML1/MTG8 promotes 

differentiation induction. 



xxxviii 
 

Microarray experiments were repeated for the combined suppression and the results 

were once again validated by RT-qPCR. Gene ontology of microarray data was 

included for every combination in order to yield better understanding of the genes 

implicated in the previously mentioned processes. 

In conclusion, previous data demonstrate that Kasumi-1 and SKNO-1 cell lines are 

good models for t(8;21) leukemic cells. Moreover, overexpression of MAPK1, 

MAP3K1, MAP3K1, MAPK14, BIRC2, RELA, IL1RAP, and AML1/MTG8 induce 

the growth of t(8;21) cells either by enhancing the proliferation or resistance to 

apoptosis, and might be potential therapeutic targets for t(8;21) leukaemia as shown 

in siRNAs targeting. 
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CHAPTER 1 

Introduction 

1.1 Background 

Due to their capability of continuous proliferation, continuous cell lines derived from 

human cancers have become indispensable experimental tool and their use has thus 

gained wide popularity in cancer research. 

Thus, before commencing this study, the following two questions should be 

highlighted:- 

First, do Kasumi-1 and SKNO-1 cell lines accurately reflect the true picture of gene 

expression profile of acute myeloid leukaemia (AML) patients with t(8;21)? 

Second, are deregulated pathways in Kasumi-1 and SKNO-1 parallel to those in 

AML patients with t(8;21)? 

Continuous or immortalized cell lines, compared to clinical specimens, in addition to 

consistency and reproducibility, are much easier to manipulate, and are thus a 

convenient option for cancer research. These advantages obligate researchers to first 

establish their work on cell cultures (in vitro) before moving to the next level (in 

vivo) (Mehta et al., 2007). 

To ensure the highest degree of result reproducibility, cell lines are cultured in flasks, 

in controlled environmental and nutritional conditions. Many researchers that 

published results of their recent leukaemia and cancer studies have focused on the 

gene expression profiles and their changes. In addition to the ease of maintenance 

and access, cell lines have offered a convenient platform for these studies, and are 

thus a realistic platform for overexpressing or knocking down desired genes (Mehta 

et al., 2010). 
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There are evident differences between patient samples and their corresponding cell 

line models because of the differences in environmental factors to which they have 

been exposed (Ross and Perou, 2001). Thus, in order for the results of such studies to 

be clinically relevant, these variations and differences need to be precisely 

determined. 

A comprehensive study on similarities and differences of cells obtained through 

different means is needed in order to establish the cell line suitability for each 

specific study, as only then accurate results are guaranteed and the study findings can 

pave the way for relevant discoveries. 

In leukaemia research, myeloid cell lines, such as Kasumi-1 and SKNO-1 derived 

from AML FAB subtype M2, have traditionally been used in studies focusing on 

investigation of the molecular abnormalities of t(8;21) in AML (Dunne et al, 2006). 

However, in order for the collected data to be correctly interpreted and corroborated, 

it is imperative for a cell line and its molecular features to resemble its corresponding 

clinical samples. The comparisons of patient samples and their equivalent cell lines 

can now be procured easily, in particular since the introduction of microarray 

technology into this field of study. 

The aim of the present study was to investigate and determine the degree of 

similarity and identify the key differences of gene expression profiles of t(8;21) 

AML patients and their equivalent cell lines (Kasumi-1 and SKNO-1). Moreover, the 

deregulated pathways in acute myeloid leukaemia were studied. 

Gene expression profile and signal transduction pathway studies in cancer research 

revealed the existence of several deregulated pathways that control the growth of 

leukaemic cells that enable their continuous proliferation, survival and apoptosis 

resistance (Majeti et al. 2009). 
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In t(8;21) leukaemia, AML1 gene fuses to ETO gene and generates the fusion gene 

AML1/ETO, which interferes with the hematopoietic transcription and thus affects 

several processes, including differentiation, survival, apoptosis, and proliferation 

(Nimer and Moore, 2004). 

Based on in vivo and in vitro comparison studies, several deregulated pathways were 

identified. Moreover, microarray experiments revealed the existence of many 

differentially overlapping expressed genes in patient samples and their corresponding 

cell lines when compared to their normal stem cells (CD34) compartments. 

Within these pathways, many genes implicated in mitogen activated protein kinase 

(MAPK), apoptosis, cell cycle, and AML pathways were found; thus, in addition to 

the fusion gene, seven genes were selected for further investigation.  
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1.2 Rationale of the study 

Worldwide, several studies have been conducted in the field of AML cell lines and 

patient research. However, the present study expands on the extant knowledge in this 

area in several ways, as summarized below. 

1- According to the literature review (PubMed), this is the first study to be conducted 

on AML with t(8;21), which will compare the gene expression profiles of t(8;21) 

AML patient samples and their equivalent t(8;21) cell lines (Kasumi-1 and SKNO-

1), as well as investigate the genes and pathways deregulated in t(8;21) leukaemia. 

2- During this project, the gene expression profile of AML (in both patients and the 

corresponding cell lines) will be studied and compared to control CD34 cells to 

identify novel and secondary therapeutic targets in t(8;21) leukaemia. 

3- Whilst the consequences of knocking down the fusion gene AML1/MTG8 have 

been well documented in t(8;21) leukaemia, this study will, for the first time 

(PubMed), be investigating the roles of MAPK and apoptosis pathways in 

leukaemogenesis induction by targeting several genes related to MAPK and 

apoptosis pathways using RNA interference (RNAi).  
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1.3 General objective 

The key objective of the present study is to study the gene expression profile of 

t(8;21) AML patients and their corresponding cell lines, as well as the deregulated 

pathways that initiate the leukaemogenesis.  

 

1.3.1 Specific objectives 

1- To study the gene expression profile of t(8;21) AML (in both patients and the 

corresponding cell lines) versus normal control cells (CD34) using oligonucleotide 

microarrays. 

2- To determine previously unidentified genes and pathways deregulated in t(8;21) 

AML compared to normal control cells (CD34). 

3- To assess and verify degree of similarity in gene expression profiles, expression 

levels and functional evaluation of genes and pathways deregulated in patient 

samples of t(8;21) AML and their corresponding cell lines (Kasumi-1 and SKNO-1). 

4- To study the effect of combination targeting of siRNAs-targeted AML1/MTG8 and 

MAPK genes (MAPK1, MAP3K1, MAPK8 and MAPK14), and assess its effect on 

proliferation, cell cycle distribution, apoptosis, and differentiation processes. 

5- To study the effect of combination targeting of siRNAs-targeted AML1/MTG8 and 

apoptosis genes (BIRC2, RELA and IL1RAP), and assess its effect on proliferation, 

cell cycle distribution, apoptosis, and differentiation processes. 
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1.4 Hypothesis 

In the present study, it is hypothesized that Kasumi-1 and SKNO-1 cell lines are 

good models for t(8;21) leukaemia. Moreover, in accordance to the effect of the 

fusion gene (AML1/MTG8) in promoting leukaemogenesis, it is also hypothesized 

that other secondary deregulated genes could also enhance the effect of the fusion 

gene through controlling cell proliferation, cell cycle progression, apoptosis and 

differentiation processes of t(8;21) leukaemic cells. 

 

1.5 Outcomes of the study 

1- Illustrating the gene expression profile of t(8;21) leukaemia patient samples and 

their corresponding cell lines (Kasumi-1 and SKNO-1). 

2- Determining the similarities and differences between gene expression profiles and 

deregulated pathways of t(8;21) leukaemia patients samples and their equivalent cell 

lines. 

3- Identifying secondary therapeutic targets that could be used in the treatment of 

t(8;21) leukaemia. 

4- Determining the roles of MAPKs genes (MAPK1, MAP3K1, MAPK8 and MAP14) 

in t(8;21) leukaemia and demonstrating their effect on cellular processes using RNAi 

in a combination with AML1/MTG8 knockdown.  

5- Establishing the roles of apoptosis genes (BIRC2, RELA and IL1RAP) in t(8;21) 

leukaemia and demonstrating their effect on cellular processes using RNAi in a 

combination with AML1/MTG8 knockdown. 
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CHAPTER 2 

Literature review 

 

Acute myeloid leukaemia (AML)—also known as acute non-lymphoid leukaemia 

(ANLL), acute myelogenous leukaemia, and acute myeloblastic leukaemia is a 

heterogeneous clonal disorder of progenitor cells (blasts), characterized by the loss of 

ability to normally differentiate and to respond to normal regulators of proliferation.  

The inhibition of myeloid differentiation results in accumulation of various stages of 

early myeloid differentiated cells within bone marrow, leading to replacement of 

normal marrow elements (leukocytes, erythrocytes, and platelets), and increased 

risks of fatal infection (cellulites, pneumonia, or septicaemia), excessive bleeding 

and organ infiltration. Other symptoms affected individuals report may include 

anaemia, shortness of breath, easy bruising, petechiae, and fatigue. The progression 

of AML is rapid, often with fatal outcomes, if no treatment is offered (Naeim et al., 

2008). 

 

2.1 Epidemiology 

AML is the most common variant of acute leukaemia that primarily affects adults, 

and accounts for approximately 25% of leukaemia cases. Its incidence increases with 

age and is particularly evident in the seventh decade of patient’s life (Deschler 

and Lübbert, 2006). Findings of previous studies in the United Kingdom indicate that 

approximately 42.8% of patients were older than 65 when diagnosed with this 

condition, while in the US in the 1975-2003 period revealed that the incidence was 

approximately 3.4 per 100,000 adults (Deschler and Lübbert, 2006). 
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Among 4498 cancer deaths recorded in 1998 in Malaysia, those due to leukaemia 

represented 311 or 6.9% (Lim, 2002). According to the latest report of Ministry of 

Health Malaysia, published in 2006, leukaemia was one of the ten most frequent 

cancers among males, with incidence rate of 3.6 % and 1.9% among females (MOH, 

2006). 

 

2.2 Aetiology 

The aetiology of AML is not clear; however, three major environmental factors have 

been reported to play significant roles in the development and incidence of AML, 

namely chemotherapeutic agents, exposure to chemicals, and ionizing radiation 

(Bowen, 2006; Warner et al., 2004)  

Ionizing radiation induces DNA damage in G1 and G2 cell cycle phases, leading to 

chromosomal breaks that may cause mutations, deletions, and translocations. Atomic 

bomb survivors had a greatly increased risk (20-fold or greater) of developing AML 

compared to unaffected population (Deschler and Lübbert, 2006). 

Chemical factors, such as topoisomerase type II inhibitors and alkylating agents, 

have been found to increase the incidence of AML. Alkylating agents have a medium 

latency period of three to six years and are usually associated with previous a 

myelodysplastic (MDS) phase. However, topoisomerase II inhibitors have a shorter 

latency period and are not associated with MDS phase (Naeim et al., 2008). 

Occupational exposure to petroleum products (such as benzene), insecticides, and 

other organic solvents, was also found to increase the risk of developing AML 

(Natelson, 2007). 

Increased risk of developing AML has also been noted in patients with ataxia 

telangiectasia, Bloom syndrome and Fanconi anaemia. Similarly, the 10-fold 
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increase in the incidence of AML in children with Down’s syndrome (Trisomy 21) 

was also observed compared to their healthy peers (Segel and Lichtman, 2004). 

Haematological abnormalities, such as MDS, can develop into AML. According to 

some authors, MDS represents the first step in the progression of the disease, with 

frequent detectable chromosomal aberrations, including +8, -7/del(7q) and -5/del(5q) 

eventually leading to AML (Naeim et al., 2008). 

AMLs associated with recurrent cytogenetic abnormalities, such as t(8;21)(q22;q22), 

t(15;17)(q11;q12), inv(16)(p13q22), and 11q23 have been reported. Each 

chromosomal abnormality results in a unique fusion gene product that plays a 

significant role in regulating and initiating leukaemia (Naeim et al., 2008).  

 

2.3 Classification 

At present, AML is classified according to the two most common systems—French 

American British (FAB) and World Health Organization (WHO). 

FAB classified AML into eight groups or subtypes, M0 through to M7, whereby each 

subtype is given its own characterization and morphology based on cell types and 

degree of maturity. 

M0 refers to AML with minimal evidence of myeloid differentiation, M1 

corresponds to AML without differentiation, M2 to AML with differentiation, M3 

refers to acute promyelocytic leukaemia (APL), M4 to acute myelomonocytic 

leukaemia, M5 corresponds to acute monoblastic (M5a) or monocytic (M5b) 

leukaemia, M6 to acute erythroid leukaemia, and M7 to acute megakaryoblastic 

leukaemia (Bennett et al., 1976). 

Based on biology, immunophenotyping, genetic and clinical features, WHO 

classified AML in the following four groups: AML with recurrent genetic 
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abnormalities; AML with multilineage dysplasia; AML and myelodysplastic 

syndrome, therapy related; and AML not otherwise categorized (Table 2.1) 

(Vardiman et al., 2002).  

Although there are many differences between adult and paediatric AML, neither 

FAB nor WHO have used age in their classification; however, WHO seems to be 

more clinically useful than FAB classification, as the system recommends using all 

available data (including biological, immunophenotypic, genetic, and clinical 

features) for a proper identification. 

The two significant differences between FAB and WHO classifications should be 

noted here. First, WHO lowered the percentage of blasts required for AML diagnosis 

to at least 20% compared to the FAB-recommendation 30%. Second, regardless of 

the blast percentage, patients with cytogenetic abnormalities such as 

t(8;21)(q22;q22), t(15;17)(q22;q12), t(16;16)(p13;q22), and inv(16)(p13q22) should 

be considered to have AML (Vardiman et al., 2002). 

In 2008, WHO updated the classification to incorporate new scientific and clinical 

information that became available over the preceding eight years. Thus, several 

changes that had been considered in leukaemia and different types of neoplasm were 

included in the revised classification. As in the case of AML, the major changes 

included translocation variants such as 11q23 (ZBTB16), 11q13 (NuMA), 5q35 

(NPM) or 17q11.2 (STAT5B), whereby WHO recommended that these should be 

appointed to a specific partner, as not all responded to all-trans retinoic acid (ATRA). 

As a result, two new categories—AML with mutated nucleophosmin (NPM1) and 

AML with mutated CCAAT/enhancer-binding protein alpha (CEBPA)—were 

included. Three new cytogenetic variants, namely AML with t(6;9)(p23;q34) that 

generates a fusion oncogene DEK/NUP214, AML with inv(3)(q21q26.2) or 
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t(3;3)(q21;q26.2) that generates a fusion oncogene RPN1/EVI1, and 

megakaryoblastic ALM with t(1;22) (p13;q13) that generates a fusion oncogene 

RBM15/MKL1, were also incorporated (Zerbini et al., 2011). 
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Table 2.1 WHO classification of AML. (Vardiman et al., 2002) 
 
1 AML with recurrent genetic abnormalities 

(a) AML with t(8;21)(q22;q22), (AML1/ETO) 

(b) AML with abnormal eosinophils and inv(16) or t(16;16) 

(c) APL with t(15;17) or variants 

(d) AML with 11q23 (MLL) abnormalities 

2 AML with multilineage dysplasia 

(a) Following myelodysplastic syndrome or myelodysplastic/ 

myeloproliferative disorder 

(b) Without antecedent MDS or MDS/MPD, but with dysplasia in at least 50% 

of cells in 2 or more myeloid lineages 

3 AML and myelodysplastic syndrome, therapy related 

(a) Alkylating agent/radiation–related type 

(b) Topoisomerase II inhibitor–related type (some may be lymphoid) 

(c) Other types 

4 AML not otherwise categorized 

(a) AML minimally differentiated 

(b) AML without maturation 

(c) AML with maturation 

(d) Acute myelomonocytic leukaemia 

(e) Acute monoblastic and monocytic leukaemia 

(f) Acute erythroid leukaemia (erythroid/myeloid and pure erythroleukaemia) 

(g) Acute megakaryoblastic leukaemia 

(h) Acute basophilic leukaemia 

(i) Acute panmyelosis with myelofibrosis 

(j) Myeloid sarcoma 

 

 
 

 

 



13 

 

2.3.1 AML with t(8;21) 

Following the identification of Philadelphia chromosome t(9;22) in chronic myeloid 

leukaemia (CML) in 1960, increased attention was given to the cytogenetic finding 

with chromosomal translocations and the subsequent effect of fusion genes (Nowell 

and Hungerford, 1960). 

The t(8;21)(q22;q22) translocation is present in 10-15% of all AML cases and 40% 

of AML-M2 (Miyoshi et al., 1993). The t(8;21) generates a chimeric gene that 

results in a fusion protein (AML1/MTG8 or AML1/ETO8 or RUNX1/RUNXT1), 

initiating the leukaemogenesis process. This translocation occurs as a result of 177 

amino acid of AML1 gene—also known as runt-related transcription factor-1 

(RUNX1) or core binding factor (CBF)—located on the long arm of chromosome 21 

(q22) fuses to 575 amino acid of MTG8 genes—also called eight twenty one (ETO) 

or runt-related transcription factor 1—translocated to 1 cyclin D-related (RUNXT1), 

located on the long arm of chromosome 8 (q22), therefore converting the transcript 

activator into transcript repressor (Nimer and Moore, 2004).  

AML1-ETO protein interferes with the function of AML1 required for normal 

hematopoiesis by recruiting repressor complex including nuclear receptor co-

repressor (NCoR), mammalian Sin3 (mSin3), and histone deacetylases (HDAC) that 

interact with ETO, thus negatively regulating AML1 gene and inhibiting myeloid 

differentiation, while in the absence of AML1-ETO protein, AML1 binds to its target 

genes and recruits co-activators. The histone acetyltransferase (HAT) activity of the 

co-activators causes an open chromatin structure and thereby induces AML1 target 

genes (Figure 2.1). This process also reduces apoptosis by activating the expression 

of the anti-apoptosis gene BCL-2 (Hildebrand et al., 2001; Steffen et al., 2005).  
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Figure 2.1 (A) Transcriptional activation of AML1. (B) Transcriptional repression of 
AML1/ETO. (Steffen et al., 2005) 
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2.3.1.1 Morphological changes and immunophenotyping 

The myeloblasts are large unipotent stem cells, often with irregular nuclear shape and 

basophilic cytoplasm. Auer rods are frequently seen characteristic feature of myeloid 

blast. Promyelocytes, myelocytes, metamyelocytes, bands, and segmented 

neutrophils are also present and often show dysplastic changes (Naeim et al., 2008). 

In a comparative study on morphological changes and cytochemistry tests between 

t(8;21) positive cells and t(8;21) negative cells, three main features were identified 

(Nakamura et al., 1997). First, homogeneous pink colour cytoplasm in mature 

neutrophils was identified in 90-100% of t(8;21) positive cells, while it was present 

in only 2% of t(8;21) negative cells. Second, pale colour cytoplasm with no 

granulation in mature neutrophils presented in 84% of t(8;21) negative cells, whereas 

none were identified in t(8;21) positive cells. Third, myloperoxidase (MPO) was 

observed in 34% in mature neutrophils of t(8;21) negative cells compared to only 

13% of t(8;21) positive cells (Nakamura et al., 1997). 

Flow cytometric studies revealed the expression of CD13, CD117, and CD33, 

suggesting that HLA-DR and CD34 are often positive, whereas CD11c and CD14 are 

usually negative, as a sign of losing differentiation (Heidenreich et al., 2003). 

Moreover, aberrant expressions of CD56 and CD19 were seen in t(8;21) cells (Zheng 

et al., 2008). 
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2.4 Genetic alterations in AML 

2.4.1 Alterations involving transcription factors 

2.4.1.1 Core Binding Factor (CBF) 

CBF complex is structurally altered in many AML translocations involving 

t(8;21)(q22;q22), inv(16)(p13;q22) and t(16;16)(p13;q22), which together constitute 

25% of AML cases (Mrózek and Bloomfield, 2008). 

CBF complex has two subunits, AML1 and CBFβ, whereby altered AML1 encoded 

on the long arm of chromosome 21 (q22) is mainly associated with AML-M2, and 

CBFβ—which is encoded on the long arm of chromosome 16 (q22)—is mainly 

associated with AML-M4. 

The t(8;21)(q22;q22) has been described previously; whereas another fusion gene 

has also been described, where CBFβ fuses to MYH11 located on the short arm of 

chromosome 16 (p13), also known as smooth muscle myosin heavy chain (SMMHC) 

gene (CBFβ-MYH11) that can be found in the other two CBF leukaemia types—

t(16;16)/ (p13;q22) and inv(16)/(p13;q22) (Engel and Hiebert, 2010).  

CBFβ-MYH11 or CBFβ-SMMHC results in fusion of the first 165 amino acids of 

CBFβ to the C-terminal of SMMHC, where they repress transcription in association 

with mSin3a and HDAC8 (Durst et al., 2003). 

 

2.4.1.2 t(15;17)(q22;q21)/PML-RARα 

One of the most elegant translocations, which is subject of many leukaemia research 

studies and is given a good prognosis, is t(15;17), associated with all cases of M3 or 

APL. 

Four types of translocations associated with APL have been recorded, of which 

t(15;17)(q22;q21) is the most common and results in chimeric protein PML-RARα 
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consisting of 5' portion encoded by the PML on the long arm of chromosome 15 

(q22) and 3' portion encoded by RARα on the long arm of chromosome 17 (q21). As 

a result of this translocation, a part of RARα fuses to PML (Grimwade et al., 2000). 

Several authors have suggested that this fusion is not a sole cause of APL; however, 

it is sufficient to alter myeloid development, block differentiation and arrest 

granulocytes maturation at the promyelocyte stage (Grisolano et al., 1997).  

Other fusion proteins have also been reported, albeit in very rare cases, including 

NuMA-RARa, PLZF-RARa, STAT5b-RARa and NPM-RARa (Zelent et al., 2001). 

Retinoic acid (RA) or all-trans RA (ATRA) has been shown to induce and accelerate 

complete remission (CR) in APL by encouraging promyelocytes to engage to the 

differentiation process and undergo apoptosis (Tallman et al., 1997). 

The wild type of RARa protein acts as a transcription factor upon binding to RA and 

results in transcription activation; however, in the absence of RA, RARa wild type 

binds to NCoR, SMRT, mSin3, and HDACs (co-repressor proteins), causing 

transcription repression (Schulman et al., 1996). 

 

2.4.1.3 Mixed Lineage Leukaemia (MLL): 11q23 translocation 

According to research findings, 11q23/MLL abnormalities are associated with 

approximately 4% of adult and 12-16% child AML cases (Mrózek et al., 2004). 

Over 30 different types of chromosomal abnormalities affecting the MLL gene have 

been discovered, mostly translocations with some deletions, insertions and inversions 

(Mrózek et al., 2001). 

The most common translocation affecting the MLL gene in AML is t(9;11)(p21;q23) 

that results in the AF9-MLL fusion gene; other translocations and fusion genes 
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include t(6;11)(q27;q23)/AF6-MLL, t(11;19)(q23;p13.1)/MLL-ELL, and t(11;19) 

(q23;p13.3)/MLL-MLLT1 (Braekeleer et al., 2010). 

Patients with MLL rearrangements seem to have intermediate to poor prognosis, 

while a good prognosis has been recorded in those with changes in t(9;11)(p22;q23). 

MLL is a highly conserved protein that controls home box gene expression through 

chromatin remodelling. MLL structure consists of several domains, whereby the N-

terminus contains AT hook region that serves as a DNA binding domain at the minor 

groove, allowing binding of regulatory transcription factors and inducing expression 

of HOX gene. In addition, it comprises two regions, SNL1 and SNL2, mediating 

protein subnuclear localization and a cysteine rich motif conserved DNA enzymes 

methyltransferase and methyl binding domain protein-1 that regulates transcription 

through methylation (Ayton and Cleary, 2001). 

MLL fusion proteins control the expression of HOX genes; this regulation appears in 

an incomplete manner and is responsible for immortalizing myeloid progenitor cells. 

Results of several microarray experimental studies supported this finding, whereby 

highly expressed HOXA9, HOXA5, and HOXA4 were found in many types of 

leukaemia associated with MLL translocations (Ferrando et al., 2003). 

 

2.4.1.4 C/EBPα 

CCAAT/Enhancer binding protein α (C/EBPα) is characterized by basic leucine 

zipper (bZIP) at the C terminal region that is used for dimerization and DNA 

binding, and activates transcription through binding via N-terminal transactivation 

domains (TADs) (Friedman and McKnight, 1990). 

Although C/EBPα mutations have been observed in nearly 10% of AML cases, they 

predominantly occur in AML M1 and M2 (Pabst et al., 2001).  
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Two types of C/EBPα mutation have been shown to block AML differentiation. The 

first mutation is found at the bZIP that disrupts DNA binding and results in complete 

loss of c/EBPα function (Preudhomme et al., 2002). The second mutation is found at 

the N-terminal region and results in synthesis and translation of 30-kDa isoform of 

C/EBPα only, rather than the entire 42-kDa isoform, leading to inhibition of normal 

C/EBPα function (Pabst et al., 2001). This type of mutation seems to have a more 

favourable prognosis compared to the first mutation (Fröhling et al., 2004). 

AML-ETO interacts with C/EBPα, leading to the inhibition of its function and thus 

inhibiting granulocyte differentiation (Pabst et al., 2001). The two additional C/EBPα 

functions are, (1) a tumour suppressor protein, whereby it inhibits cell proliferation 

through the activation of p21 gene (Wang et al., 2001b; Timchenko et al., 1996), and 

inhibits E2F pathway leading to c-Myc inhibition thus inhibits cell proliferation 

(Johansen et al., 2001), and (2) a negative regulator of cell cycle through binding and 

inhibiting the function of CDK2 and CDK4 (Wang et al., 2001b; Wang et al., 2003). 

 

2.4.1.5 PU.1 

PU.1 is encoded by the SPI1 gene. It encodes an ETS domain transcription factor 

that is required for both myeloid and lymphoid development. PU.1 mutations have 

been observed in nearly 7% of AML cases; however, the mechanism through which 

it contributes to leukaemogenesis is still not fully understood (Mueller et al., 2002). 

Homozygous mice with PU.1 deletion developed AML within six months 

(Rosenbauer et al., 2004), while deletion in one PU.1 allele and point mutation in the 

other allele was seen in radiation-induced murine AML (Cook et al., 2004). 
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PU.1 is also regulated by other transcription factors (CBF and C/EBPα), whereby it 

was suggested that inhibition of these transcription factors may contribute to AML 

by inhibiting PU.1 (Vangala et al., 2003). 

 

2.4.1.6 HOX genes 

Homeobox (HOX) genes—including A, B, C, and D clusters—encode transcription 

factors and play vital roles in regulating hematopoiesis. HOX genes control 

transcription activation through their DNA binding in cooperation with Pbx or Meis 

cofactors (Knoepfler et al., 2001). 

HOXA9 has been found highly expressed in progenitor cells, downregulated through 

the differentiation development, and absent in mature cells (Dorsam et al., 2004). 

The association between HOX genes and leukaemogenesis have already been 

discussed above in the section on MLL. 

 

2.4.1.7 WTl 

Wilms' tumour I (WTl) is a zinc finger protein, normally expressed in stem cells; 

however, its expression is reduced during differentiation and is absent in mature cells 

(Ellisen et al., 2001). 

WT1 has two domains, whereby C-terminus contains four zinc finger proteins and N-

terminus contains proline and glutamine that exhibit a regulatory function. 

Depending on DNA binding domains and promoter status, transcription can be 

activated or repressed (Reddy and Licht, 1996; Yang et al., 2007). 

Alternative splicing of WT1, with or without KTS tripeptide (Lys-Thr-Ser), in 

addition to mutations on exon 5, has been documented. Here, wild type (-Ex5/-KTS) 
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accelerates differentiation, while the mutant (+Ex5/+KTS) blocks the differentiation 

(Inoue et al., 1998; Loeb et al., 2003). 

The presence of the mutant type interferes with the function of wild type, causing 

dysfunctional behaviours through forming heterodimers at the N-terminal. 

Moreover,(+Ex5/+KTS) isomers have been reported to be highly expressed in the 

majority of AML cases and are typically associated with poor prognosis, while point 

mutation has been documented in 15% of AML patients (Inoue et al., 1994; 

Miyagawa et al., 1999). 

 

2.4.1.8 EVI-l 

Although its function is not yet clear, Ectopic Viral Integration 1 (EVI-1) has been 

shown to be expressed in normal stem cells, it has been also suggested that EVI-1 

might contribute to leukaemogenesis through interactions with SMAD3, leading to 

repression and inhibition of SMAD3 and TGFβ, thus reducing myeloid proliferation 

(Métais and Dunbar, 2008). 

EVI-1 has been observed highly expressed in nearly 10% of AML cases in the 

absence of chromosomal abnormalities and in 1-2% of AML in association with 

3q26, -7/7q- and 11q23 aberrations (Barjesteh van Waalwijk van Doom-Khosrovani 

et al., 2003). 

 

2.4.1.9 C-Myb 

C-Myb is a proto-oncogene protein containing N-terminus for DNA binding and C-

terminus for negative regulation function. It plays an important role in regulating 

hematopoiesis, where mice lacking C-Myb had been shown to suffer from reduction 

in blood elements (Mucenski et al., 1991), while its aberrant expression was 
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suggested to increase the proliferation of AML cells with poor prognosis (Ramsay 

and Gonda, 2008). 

 

2.4.2 Alteration of signal transduction 

Many articles as described below have demonstrated the presence of the association 

between deregulated signal transduction pathways and the initiation of 

leukaemogenesis process. Thus, in the present study the major pathways that 

contribute to leukaemogenesis are explored. 

 

2.4.2.1 FLT3 

FMS-like tyrosine kinase 3 (FLT3) is the most common mutated receptor tyrosine 

kinase (RTKs) that occurs in approximately 15-40% of AML instances, which makes 

it a favourite target for therapy. FLT3 is highly expressed on stem cells and plays 

highly significant roles in both proliferation and differentiation (Ozeki et al., 2004).  

Two types of mutation have been documented in AML, namely point mutation and 

internal tandem duplication (ITD). ITD occurs at exons 14 and 15 that encode 

juxtamembrane (JK) region and exon 20, encoding distal tyrosine kinase (TK) 

domain (Abu-Duhier et al., 2001). ITD mutations were seen in approximately 25-

30% of AML cases (Stirewalt and Radich, 2003), with low frequency in M2 and M6, 

and high frequency in M3 (Kainz et al., 2002; Schnittger et al., 2002). On the other 

hand, point mutations in JK (Codon 835- Asp835) were only seen in 5-10% of AML 

instances (Thiede et al., 2002). 

Other studies have showed that FLT3 ITD is not sufficient to cause AML, as FLT3 

ITD transfection into murine cell line led to myeloproliferative, but not leukaemia 

(Kelly et al., 2002). 
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Aberrant FLT3 mutations resulted in autophosphorylation and receptor constitutive 

activation, leading to the activation of several downstream targets (RAS, ERK, and 

STAT) (Choudhary et al., 2005; Hayakawa et al., 2000). 

Patients with FLT3 ITD usually have poor prognosis, low survival rate and increase 

relapse rate in association with leukocytosis and high blast count (Kottaridis et al., 

2001). The prognosis for patients affected by point mutation is also poor and is 

associated with leukocytosis and high blast count (Thiede et al., 2002). 

Several FLT3 inhibitors have been used to inhibit the FLT3 signalling, such as 

CEP701 and PKC412. CEP701 was seen to inhibit FLT3 with significant decrease in 

bone marrow and peripheral blood blasts. However, more studies are needed in order 

to fully understand the cytotoxicity of CEP701 (Knapper et al., 2006). 

 

2.4.2.2 c-Kit 

c-Kit is a proto-oncogene receptor that interacts with the stem cell factor (SCF) and 

plays a significant role in regulating hematopoiesis (Lennartsson et al., 2005). 

According to the findings of several studies, two c-Kit regions have been associated 

with mutations, namely the activation loop and juxtamembrane region that serves as 

a negative regulation region (Chan et al., 2003; Nagata et al., 1995). 

In line with in the discussion on FLT3, once the tyrosine kinase is phosphorylated, c-

Kit is induced upon binding to SCF and activates downstream signals (PI3K, ERK), 

leading to the AML proliferation. Different c-Kit mutations, deletions, and insertions 

have been observed in 5-10% of AML cases (Gari et al., 1999), in particular the 

codon 816 and N822 (Beghini et al., 2000, 2002). In another study, substitution of 

Asp816 was seen in 6 of 17 patients and was thought to be highly associated with 
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CBF leukaemia, whereas another mutation was reported in exon 8 with exclusive 

association with inv(16) and t(8;21) (Gari et al., 1999). 

 

2.4.2.3 RAS mutations 

The RAS mutations are reported to occur in nearly 15-25% of AML cases, with K-

RAS and N-RAS as the most two common RAS mutations found in haematological 

malignancies and a rare mutation of H-RAS (Byrne and Marshall, 1998). 

As a result of these mutations, the conversion of active form (RAS-GTP) to inactive 

form (RAS-GDP) is prevented, thus RAS protein is embedded in the "ON" status, 

which continues activating other downstream pathways, such as RAF/MEK/ERK 

(Chang et al., 2003). 

The clinical outcomes of leukaemic patients in whom RAS mutations have been 

identified are questionable, with some authors suggesting that AML patients with 

RAS mutations have improved survival rates (Neubauer et al., 1994; Neubauer et al., 

2008), while in other studies no correlation between the two was found (Meshinchi et 

al., 2003).  

 

2.4.2.4 Wnt pathway 

Wnt ligands are a family of secreted glycoproteins critical in normal development, 

with β-catenin acting as the downstream mediator of Wnt pathway. 

Upon the stimulation of Wnt pathway, β-catenin accumulates and moves forward to 

the nucleus, where acts together with the T-cell factor/lymphocyte enhancer-binding 

factor (TCF/LEF) complex to positively regulate transcript genes (c-Myc and cyclin 

D1) responsible for cell development and proliferation (Reya and Clevers, 2005). 
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