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NANOPARTIKEL LIPID PEPEJAL SEBAGAI PEMBAWA DRUG UNTUK 
ATOVAQUONE 

 

ABSTRAK 

 

Nanopartikel lipid pepejal untuk atovaquone (ATQ-SLNs) telah disediakan 

menggunakan kaedah penyeragaman ricih tinggi dengan tripalmitin, trilaurin dan 

Compritol 888 ATO sebagai matriks lipid dan lesitin soya terhidrogen, Tween 80 dan 

poloxamer 188 sebagai surfaktan. Pengoptimuman formulasi telah dijalankan 

menggunakan 6 set kajian bentuk faktorial 24 berdasarkan empat pembolehubah tidak 

bersandar iaitu kitar penyeragaman, kepekatan lipid, kepekatan surfaktan utama, dan 

kepekatan surfaktan bersama. Pembolehubah bersandar adalah saiz partikel dan 

indeks polisebaran. Kesan keempat-empat pembolehubah tidak bersandar terhadap 

kedua-dua respon telah dianalisa menggunakan ANOVA dan plot permukaan respon. 

Akhirnya, formulasi terbaik yang menunjukkan efisiensi pemerangkapan tertinggi 

telah dipilih daripada setiap sistem lipid iaitu TPT 8 and TLT 16 untuk sistem 

tripalmitin dan trilaurin, masing-masing. Compritol 888 ATO pula telah dikecualikan 

untuk kajian seterusnya. Proses pengeringan dengan menggunakan trehalose sebagai 

agen pelindung krio telah dijalankan untuk memperbaiki kestabilan kedua-dua 

formulasi. Inkorporasi trehalose semasa proses penyeragaman menunjukkan 

penambahbaikan dalam saiz partikel dan efisiensi pemerangkapan apabila 

dibandingkan dengan inkorporasi selepas penyeragaman dalam kedua-dua formulasi. 

TLT 16 DH telah dipilih sebagai formulasi terakhir dengan  diameter purata 

sebanyak 84.63 ± 1.51nm sebelum dan 217.9 ± 8.42nm selepas pengeringan, dan 

efisiensi pemerangkapan sebanyak 93.57 ± 3.07% sebelum dan 66.04 ± 1.74% 

selepas proses pengeringan. TLT 16 DH menunjukkan penambahbaikan dalam 



 xxii 

kelarutan ATQ dalam kedua-dua medium bendalir simulasi gastrik (SGF) dan 

bendalir simulasi usus (SIF) dalam kajian in vitro beserta ciri-ciri pelepasan pantas di 

mana pelepasan sebanyak 100% telah dicapai dalam masa 5min. Kajian kestabilan 

menunjukkan TLT 16 DH adalah stabil dalam keadaan penyimpanan 4oC selama 6 

bulan. Di samping itu, dua kaedah HPLC-UV telah dibangunkan dan divalidasi 

secara berasingan untuk kuantifikasi ATQ dalam medium pelepasan dan plasma 

arnab. Kajian farmakokinetik dalam arnab mendedahkan penambahbaikan Cmax dan 

AUC0-24h sebanyak 4.61-kali dan 4.55-kali, masing-masing, dalam ATQ-SLNs 

apabila dibandingkan dengan drug bebas. t1/2 ATQ-SLNs juga diturunkan sebanyak 

3.19-kali apabila dibandingkan dengan drug bebas tanpa formulasi. Kesimpulannya, 

satu formulasi SLNs untuk ATQ telah disediakan dengan jayanya dan boleh menjadi 

alternatif yang menjanjikan penyerapan yang lebih baik dan penurunan dos 

terapeutik untuk ATQ. 
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SOLID LIPID NANOPARTICLES AS DRUG CARRIERS FOR 
ATOVAQUONE 

 

ABSTRACT 

 

Solid lipid nanoparticles of atovaquone (ATQ-SLNs) were prepared by high shear 

homogenization method using tripalmitin, trilaurin, and Compritol 888 ATO as the 

lipid matrix and hydrogenated soy lecithin, Tween 80 and, poloxamer 188 as the 

surfactants. Optimization of the formulations was conducted using 6 sets of 24 

factorial design study based on four independent variables which were homogenizing 

cycle, concentration of lipid, concentration of main surfactant, and concentration of 

co-surfactant. The dependent variables were particle size and polydistribution index. 

The effect of the four independent variables towards the responses was analyzed 

using ANOVA and response surface plots. Finally, the best formulations with the 

highest entrapment efficiency were chosen from each lipid system which were TPT 8 

and TLT 16 for tripalmitin and trilaurin system, respectively, while Compritol 888 

ATO was excluded for further study. Lyophilization process                                                                                        

by using trehalose as the cryoprotectant was done to improve stability of both 

formulations. Incorporation of trehalose during homogenization process showed an 

improvement in the particle size and entrapment effi ciency when compared to the 

incorporation after homogenization in both formulations. TLT 16 DH was selected as 

the final formulation with an average diameter of 84.63 ± 1.51nm before and 217.9 ± 

8.42nm after lyophilization, and entrapment efficiency of 93.57 ± 3.07% before and 

66.04 ± 1.74% after lyophilization process. TLT 16 DH showed an improvement in 

the solubility of ATQ in both simulated gastric fluid (SGF) and simulated intestinal 

fluid (SIF) medium in the in vitro study with a fast release property where 100% 
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release was achieved within 5min. A stability study showed that TLT 16 DH was 

stable in 4oC storage condition for 6 months. In addition, two HPLC-UV methods 

were developed and validated separately for the quantification of ATQ in the 

dissolution medium and rabbit’s plasma. The in vivo pharmacokinetic study in 

rabbits revealed an improvement in the Cmax and AUC0-24h by 4.61-fold and 4.55-

fold, respectively, in ATQ-SLNs when compared to the free drug. The t1/2 of ATQ-

SLNs was also reduced by 3.19-fold when compared to the non-formulated free 

drug. In conclusion, an SLNs formulation of ATQ was successfully prepared and can 

be a promising alternative for better absorption and therapeutic dose reduction for 

ATQ.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Malaria 

1.1.1 What is malaria? 

Malaria is a vector-borne disease which spread without boundaries worldwide. This 

endemic disease affects all parts of the world especially in lower income countries 

including Africa, Asia, Latin America, the Middle East and Europe with most cases 

and deaths in sub-Saharan Africa. Triggering factors such as wet weather, flood or 

the movements of mass population driven by conflict add up the risk of spreading the 

disease. According to World Health Organization (WHO), malaria has recorded 247 

million cases in 2006 and causing mortality of around 880,000; and consequently 

increased the health costs for the prevention and treatment of malaria for up to 40% 

of the public health expenditures in some of the heavy-burden countries (WHO, 

2009). In Malaysia, the implementation of Malaria Eradication Programme in 1967 

had successfully reduced the malarial cases from 150,000 cases in 1967 to 5,000 

cases over the year of 2003 to 2005 (MOHM, 2006).  

 

Malaria is caused by Plasmodium parasite which is transferred to human by 

Anopheles mosquitoes. Five Plasmodium species have been known to cause malaria 

in human which are P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi 

(Greenwood et al., 2008). Of all species, P. falciparum has a distinguished ability to 

cause majority of deaths from malaria. It can bind to endothelium during blood stage 

of the infection and sequester organs including brain.  
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Invasion of Plasmodium parasites in human body involves the life cycle of the 

parasites itself (Fig. 1.1). The cycle starts when the sporozoites are injected into the 

blood vessels in the skin during the vector’s blood meal on human. Then the 

sporozoites will further undergo exoerythrocytic and intraerythrocytic cycle 

(Greenwood et al., 2008, Jones and Good, 2006). The liver stage infection will be 

initiated when the sporozoites migrate to liver cells (hepatocytes). This stage is also 

known as exoerythrocytic phase which produces merozoites within 1 week. The 

infected hepatocytes will rupture and cause the release of merozoites in aggregated 

form known as merosomes which will then evade antibodies and invade erythrocyte. 

These intraerythrocytic or asexual forms of the parasite are susceptible to immune 

responses and have been related to both protection and disease. The disease might be 

prevented by antibodies that block binding of falciparum-infected eryhthrocytes or 

may cause presentation of diverse sequelae affecting different organ systems. 

Finally, a mosquito will ingest the circulated sexual stages (gametocytes) to complete 

the cycle.  Apart from migrating through blood vessels, some sporozoites will enter 

the lymphatic system and penetrate lymph vascular endothelial cells in lymph nodes 

(Amino et al., 2006). This lymph node form does not contribute to the life cycle as 

most of them are degraded but some may be important in modulating immune 

response.  
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Fig 1.1: Life cycle of Plasmodium sp. in malaria infection 

 

1.1.2 Drug therapy in malaria 

Many tools and method have been implemented for the prevention and treatment of 

malaria worldwide. The World Health Assembly in 2005 has set a coverage target of 

80% or more for their four key interventions which includes pharmacological and 

non-pharmacological approaches, namely insecticide-treated nets (ITNs), appropriate 

antimalarial drugs for probable of confirmed malarial cases, indoor residual spraying 

(IRS), and intermittent preventive treatment in pregnancy (WHO, 2009). As non-

pharmacological approaches stress more on preventive measures, pharmacological 

approach remains crucial for both prophylaxis and treatment means. Each 

antimalarial drugs acts on different processes or metabolic pathways in different 

subcellular organelles (Table 1.1). 
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Table 1.1: Targets for antimalarial chemotherapy (Fidock et al., 2004). 

Target location Pathway/mechanism Existing therapies 
Cytosol  Folate metabolism 

 
 
Unknown  

Pyrimethamine, proguanil, 
sulphadoxine, dapsone 
 
Artemisinin  

Parasite membrane Membrane transport Quinolines  
Food vacuole Haem polymerization 

 
Free radical generation 

Chloroquine 
 
Artemisinin  

Mitochondrion  Electron transport Atovaquone  
Apicoplast  Protein synthesis 

 
DNA synthesis 
 
Transcription  

Tetracycline, clindamycin 
 
Quinolones 
 
Rifampin 

 

Chloroquine which acts at hemozoin will be concentrated inside the acidic food 

vacuole and further bind to β-hematin. This will cause build up of toxic free haem. 

On the other hand, antibiotics including tetracycline and clindamycin act inside the 

apicoplast to inhibit protein translation. The inhibition will cause the death of the 

progeny (delayed-death phenotype). Meanwhile, antifolates such as pyrimethamine 

and proguanil interrupt with de novo biosynthesis of folate while atovaquone inhibit 

the electron transport in the mitochondrion. 

 

Combination therapy of antimalarial is recommended since the emergence of 

resistance strains towards monotherapy in all classes of antimalarials including 

artemisinin derivatives (Dhanawat et al., 2009, WHO, 2010). Combinations of drugs 

with different mechanisms of action can prevent or delay the onset of resistance by 

increasing the efficacy. This will lead to shorter duration of treatment that will 

further increase the compliance and reduce the risk of resistant parasites (Kremsner 

and Krishna, 2004). Thus, WHO suggested drug combination for all types of malaria 
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infections which can be divided into artemisinin-based combination therapy (ACT) 

and non-artemisinin based combination therapy (WHO, 2010). 

 

1.2 Atovaquone 

1.2.1 Physicochemical properties 

Atovaquone (566C80) is a yellow crystalline solid which belongs to the class of 

naphthalenes with chemical name of trans-2-[4-(4-chlorophenyl) cyclohexyl]-3-

hydroxy-1, 4-naphthalenedione (GlaxoSmithKline, 2008). It is a structural analogue 

of protozoan ubiquinone (Fig 1.1), a mitochondrial protein involved in electron 

transport or known as coenzyme Q (Baggish and Hill, 2002). The molecular formula 

for atovaquone is C22H19ClO3 with a molecular weight of 366.84. It has a melting 

point of 216-219°C. A hydroxyl group in the molecule acts as a weak acid with a 

calculated pKa ≈ 5.0 (Lindegårdh and Bergqvist, 2000) 

 

 

Fig 1.2: Chemical structure of atovaquone 

According to United States Pharmacopeia (USP 28, 2005), atovaquone is practically 

insoluble in water (Table 1.2). Its hydrophobicity renders its solubility in many 

organic solvents including tetrahydrofuran and chloroform.  
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Table 1.2: Atovaquone solubility (USP 28, 2005)  

 

1.2.2 Pharmacology of atovaquone 

Atovaquone acts in the mitochondrion by inhibiting the electron transport in such 

organelles. It has a broad-spectrum antiparasitic activity towards causing organisms 

of pneumocystis pneumonia (Hughes et al., 1993, Hughes et al., 1998), 

toxoplasmosis (Djurković-Djaković et al., 2002) and malaria (Mulenga et al., 1999). 

In Plasmodium species, atovaquone inhibits the binding of coenzyme Q-complex III 

at Qo cytochrome domain (Baggish and Hill, 2002). The inhibition will further cause 

collapse of the mitochondrial membrane potential. As several metabolic enzymes 

depend on this mitochondrial transport chain involving ubiquinone, atovaquone will 

cause indirect inhibition of these enzymes. Consequently, the synthesis of nucleic 

acid and adenosine triphosphate (ATP) will be blocked and causing the parasite 

death (GlaxoSmithKline, 2008).  

 

Atovaquone is effective as a single antimalarial agent. However, its single usage 

have been associated with recurrence, reduction of susceptibility during following 

Solubility Solvent 

Freely soluble N-methyl-2-pyrrolidone, tetrahydrofuran (THF) 

Soluble  Chloroform  

Sparingly soluble Acetone, di-n-butyl adipate, dimethylsufoxide (DMSO), 

polyethylene glycol (PEG) 400 

Slightly soluble  Alcohol, 1,3-butanediol, ethyl acetate, glycerine, octanol, 

PEG 200 

Very slightly soluble 0.1N NaOH 

Insoluble  Water  
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treatment (Baggish and Hill, 2002), and rapid resistance due to gene mutation 

(Dhanawat et al., 2009). Therefore, atovaquone has been formulated in synergistic 

combination with proguanil (Canfield et al., 1995), an antifolate biguanide drug 

which inhibits plasmodial dihydrofolate reductase enzyme (DHFR). The combination 

has been favoured because of the high efficacy and tolerability compared to other 

antimalarial agents such as chloroquine and pyrimethamine/sulphamethoxazole 

(Mustafa and Agrawal, 2008). Their activity covers multi-drug resistance P. 

falciparum and P. ovale which did not response to other first line agents. 

 

1.2.3 Pharmacokinetic of atovaquone 

Despite of its potent antiparasitic activity, atovaquone’s usage is hindered by its poor 

bioavailability. The bioavailability of ATQ depends on formulation and diet. The 

suspension formulation (Mepron®) increases the bioavailability by approximately 2-

fold compared to the tablet formulation (Malarone®) which is from 23 ± 11% to 47 ± 

15% (GlaxoSmithKline, 2008). Administration of atovaquone with food enhances its 

solubility in gastrointestinal tract hence improves the absorption (Schmidt and 

Dalhoff, 2002).  

 

The volume of distribution at steady state (Vdss) is 0.60 ± 0.17 L/kg and it is highly 

bound to plasma proteins (99.9%) over the concentration range of 1 to 90 mcg/ml 

(GlaxoSmithKline, 2008). It has a long plasma half life of 2 to 3 days which is 

thought to be due to enterohepatic cycling. More than 94% of the administered dose 

was excreted unchanged in feces over 21 days with less than 0.6% excretion in the 

urine (Sweetman, 2005).  
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1.3 Solid Lipid Nanoparticles (SLNs) 

Solid lipid nanoparticles (SLNs) are particles prepared from solid lipid or blends of 

solid lipid by replacing oil from o/w emulsion with a mean photon correlation 

spectroscopy (PCS) diameter of ~50-1000nm (Müller et al., 2000). For the past 

decade, studies have been done and promising results were shown for administration 

of SLNs by oral, parenteral, topical, rectal and ophthalmic route (Üner and Yener, 

2007). It is getting an increasing attention because of its ability to increase lipophilic 

drug bioavailability with some data for controlled-release delivery (Li et al., 2009, 

Kumar et al., 2007). Moreover, it avoids toxicity problems by using physiological 

lipids and surfactants which are generally recognized as safe (GRAS) (Wissing et al., 

2004) including lipids such as triglycerides and surfactants such as soy lecithin and 

poloxamer 188. Solvent avoidance is possible by using the production method of 

high pressure homogenization which also enables a simple and cost-efficient large 

scale production. This SLNs system is also capable of protecting incorporated labile 

drugs inside the solid matrix from degradation in storage and physiological 

conditions. 

 

1.3.1 General compositions 

1.3.1 (a) Lipid 

Lipids can be defined as biological material which occurring naturally or derivation 

of those occurring naturally. It is water insoluble but soluble in organic solvents such 

as alcohol. The degree of fatty acid chain unsaturation, chain length, and 

homogeneity determines the physical form of the lipids in room temperature (Cannon 

and Long, 2008). As derived from the name, lipids which are solid at room 

temperature were used in the production of SLNs. Among the commonly used lipids 
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are monoglycerides such as glyceryl monostearate (Varia et al., 2008, Hou et al., 

2003), triglycerides such as tripalmitin (Venkateswarlu and Manjunath, 2004, Kumar 

et al., 2007), and mixture of mono-, di-, and triglycerides such as Compritol 888 

ATO (Kuo and Chen, 2009, zur Muhlen et al., 1998). 

 

1.3.1 (b) Surfactant 

Surfactants are important in preparing a formulation containing aqueous and lipid 

phase. Non-ionic surfactants with low hydrophile-lipophile balance (HLB) values (1-

9) are more lipophilic and are commonly used in preparing water-in-oil emulsion 

whereas surfactants with high HLB value (>10) are more hydrophilic in nature and 

are useful in facilitating the formation of oil-in-water emulsion (Cannon and Long, 

2008). Since SLNs involves in the initial formation of oil-in-water emulsion, non-

ionic surfactants with high HLB values are used such as Poloxamers (Kumar et al., 

2007, Venkateswarlu and Manjunath, 2004), and polysorbates (Hou et al., 2003, Kuo 

and Chen, 2009). Apart from that, natural emulsifiers such as soy lecithin and bile 

acids (Bunjes et al., 2001) were also being used in combination with the non-ionic 

emulsifiers. 

 

1.3.2 Methods of production 

Various techniques have been explored to produce SLNs including high shear 

homogenization, high pressure homogenization, microemulsion method, solvent 

emulsification method, solvent injection/nanoprecipitation method and membrane 

contractor method (Date et al., 2007). However, only four methods will be discussed 

as they are the most widely used method in the production of the SLNs. 
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1.3.2 (a) High shear homogenization (HSH) and ultrasonication 

HSH and ultrasonication are the initially used technique in producing SLNs. HSH 

was being favoured due to its widespread availability, feasibility and the ease of 

handling. This method is usually combined with ultrasonication to further reduce the 

particle size (Abdelbary and Fahmy, 2009, Hou et al., 2003). However, as HPH is 

normally used to produce microemulsion, the quality of the nanodispersion will be 

compromised with the presence of microparticles. Furthermore, an extra caution 

should be taken with the use of ultrasonication as it can cause metal contamination 

from the probe into the preparation. 

 

1.3.2 (b) High pressure homogenization (HPH) 

HPH has been formerly used in formulating nanoemulsions for parenteral nutrition. 

Therefore, scaling up of the production from laboratory to industrial scale is feasible. 

Production of nanoemulsion involves high pressure (100-200bar) which pushes the 

liquid through a narrow gap and further causes acceleration of the fluid in a very 

short distance with high velocities (Mäder, 2006). Therefore, SLNs dispersions with  

narrow size distribution and higher particle content are possible without the presence 

of solvents (Üner and Yener, 2007). There are two general approaches in high 

pressure homogenization technique; namely hot homogenization and cold 

homogenization. 

 

Hot homogenization involves melting of the lipid matrix at 5-10°C above the melting 

point. Simultaneously, an aqueous phase containing surfactant is heated at the same 

temperature and mix with the lipid melt to form preemulsion. The formed 

preemulsion is further homogenized in HPH at optimized pressure and cycles (Yang 
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et al., 1999, Varia et al., 2008) as further increment of the parameters will only cause 

an increment in kinetic energy of particle and thus causing the particle size to 

increase due to particle coalescence (Mäder, 2006).  Finally, cooling down the 

preparation at or below room temperature will cause crystallization of the lipid to 

form SLNs. 

 

In cold homogenization technique, avoidance of high temperature offers an 

advantage for thermolabile drugs. This method is also suitable for hydrophilic drug 

as it avoids the distribution of the drug into the aqueous phase which can occurs 

during hot homogenization and it can also bypass the complexity of crystallization 

step which sometimes lead to modification of the lipid structure or formation of 

supercooled melts (Mehnert and Mäder, 2001). Initially, the drug is solubilised in the 

lipid melt. The subsequent step involves rapid cooling of the melts to cause 

homogenous distribution of drug within lipid matrix. The cooled preparation is 

milled into microparticle sizes (50-100µm) which is then further suspended in chilled 

emulsifier solution. Finally, the presuspension is subjected to high pressure 

homogenization. In this technique, the production temperature has to be controlled to 

be at or below room temperature to ensure the solid state of the lipid (zur Muhlen et 

al., 1998).  

 

1.3.2 (c) Microemulsion method 

Microemulsion method involves the addition of an aqueous phase containing 

surfactant into the dispersion of drug in lipid melt under mild stirring. Both phases 

are maintained to be above the melting temperature of the lipid. Then, an aliquot of 

the microemulsion was diluted in a cold aqueous medium (2-3°C) under mild stirring 
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(Kuo and Chen, 2009). The speed of mixing is important so that the small size of the 

particles is due to precipitation and not mechanically induced by stirring process 

(Müller et al., 2000).   

 

1.3.2 (d) Solvent emulsification 

Solvent emulsification or solvent evaporation method has been commonly used in 

the production of polymeric microparticle and nanoparticles. In this method, water 

immiscible organic solvent such as chloroform and dicloromethane is used to 

dissolve the solid lipid prior to emulsification with aqueous phase which contains 

emulsifier. Subsequently, the oil droplets in the emulsion are formed into 

nanoparticles dispersion in the aqueous phase during the evaporation of solvent (Li et 

al., 2009, Luo et al., 2006). However, mean particle size depends on the 

concentration of lipid as high lipid concentration increases the viscosity of 

preparation. High viscosity will reduce the efficacy of homogenization thus increase 

the particle size (Mäder, 2006). 

 

1.4 Literature review 

Nanoparticulate drug delivery in medicine can be viewed as nanometer scale system 

ranging from 10-1000nm (De Jong and Borm, 2008). It is widely explored to 

improve drug targeting and delivery to ensure optimum therapeutic effects while 

reducing drug toxicity. Thus, it can lead to greater safety and biocompatibility and 

faster development of new safe medicines. SLNs is a relatively new nanoparticulate 

system when compared to other systems such as liposomes and polymeric 

nanoparticles. This drug carrier is particles made of solid lipids with a mean diameter 

of ~50-1000nm.  
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SLNs offers a prominent advantage over other nanoparticulate systems as it uses 

physiological lipids and surfactants which are widely being used in pharmaceutical 

formulations and generally recognized as safe (GRAS). In addition, the possibility of 

solvent avoidance by using high pressure homogenization can helps to avoid 

biotoxicity problem of carriers in human (Müller et al., 2000, Wissing et al., 2004). 

SLNs involve the formation of relatively rigid core consisting of lipids which are 

solid at room temperature. This solid carrier provides protection for the drug from 

gastric and intestinal degradation after oral administration (Üner and Yener, 2007). 

In one study, incorporation of quercetin in solid lipid nanoparticle has shown 

controlled-released of the drug in the in vitro study for more than 48 hours and an 

extension of the half-life when given intraduodenally to the rats (Li et al., 2009). The 

same finding was also reported by Kumar et. al (2007) when nitrendipine was 

formulated into SLNs. Both studies suggest a slow release of the drugs from the solid 

matrix over time which can ensure prolong circulation of the drug in the systemic 

circulation. Furthermore, the protection by the lipid can also help to improve stability 

of the incorporated drug (Faraji and Wipf, 2009).  

 

Oral bioavailability of certain drugs can be improved using this delivery system as it 

has the possibility for uptake and transport through intestinal mucosa into blood and 

lymphatic circulation. An efficient uptake in intestine involves lymphatic uptake of 

particles with size between 20-500nm (Yuan et al., 2007). Lymphatic uptake of the 

SLNs can help bypassing the hepatic metabolism especially for the drug with high 

first-pass metabolism. Although the lymphatic uptake has been associated with small 

size of the particles, the advantage of SLNs in this case is the lipid (i.e. triglycerides) 

content in the formulation which may also influence the activation of this 
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transportation although chain length of the fatty acid may affect the uptake (Porter 

and Charman, 2001). This unique property of the SLNs has attracted researchers to 

explore the system for targeted-delivery of drug, particularly in cancer 

chemotherapy. A superior bioavailability of methotrexate, an anticancer drug, via the 

lymphatic uptake when formulated in the SLNs has been shown when compared to 

the plain solution of the drug. The increase in the bioavailability will offer a 

possibility of the effective dose reduction while reducing the dose-dependent toxicity 

(Paliwal et al., 2009). Moreover, the low distribution of the SLNs formulation into 

certain organs may be an advantage to reduce organ-related toxicity of idarubicin 

(Zara et al., 2001). Apart from this, surfactant content in the preparation will also 

help to improve the bioavailability of drug by increasing the membrane permeability 

and promotes bioadhesion of the drug in the intestinal membrane (Manjunath and 

Vankateswarlu, 2005).  

 

To date, a wide range of research has been conducted by manipulating the SLNs 

system to be administered via several routes including oral, parenteral, topical, rectal, 

and ophthalmic (Üner and Yener, 2007). Therefore, a wide range of drugs can be 

potentially incorporated into the SLNs as a potential delivery system. Among the 

drugs, absorption of biopharmaceutics classification system (BCS) class II drugs may 

be improved using this delivery system. This class of drug exhibit a low aqueous 

solubility due to the hydrophobic nature but high membrane permeability. Thus 

dissolution of the drug in the intestinal medium is the rate-limiting step of the 

absorption. An antimalarial drug, atovaquone, falls into this category with poor 

bioavailability and exhibit a dependency of its bioavailability with food 

administration. As a compound with poor solubility in water, any modification which 
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can improve solubility and dissolution rate in the luminal tract will enhance the 

absorption (Fleisher et al., 1999). Therefore, co-administration of the drug with food 

has been shown to increase the bioavailability of ATQ in both tablet and suspension 

form (Rolan et al., 1994, Dixon et al., 1996). The presence of food may increase the 

solubility of ATQ in the intestinal lumen and stimulate the biliary secretion which is 

important in the digestion and absorption of fats in the small intestines, including the 

lipophilic drug. However, the extent of absorption was affected by the fat content of 

the meal where a high fat meal showed further increase in the absorption when 

compared to the low fat meal (Rolan et al., 1994). This variation may necessitate a 

proper monitoring of the patient’s meal if an optimum absorption is to be achieved. 

Moreover, administration of the drug alone in fasting condition may cause sub-

therapeutic plasma concentration and affect the therapy. Thus, a formulation which 

can diminish the food-dependent effect such as SLNs may be an attractive solution to 

this problem. 

 

1.5 Statement of the problem 

Formulation of ATQ in the conventional tablet form showed a low bioavailability 

which led to the administration of the drug in a large dose. The absorption of the 

drug was highly dependent on the food intake of the patient even in the micro-

suspension formulation. This will cause variation in the pharmacokinetic profiles 

between patients and complicate the treatment. Therefore, incorporation of ATQ into 

the SLNs formulation may be a promising solution to increase the bioavailability of 

ATQ and further reduce the administration dose. 
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1.6 Objectives of present study 

The development of ATQ-SLNs was carried out in various stages with following 

objectives; 

i. To optimize ATQ-SLNs formulations using different lipids and surfactants in 

24 factorial design study. 

ii.  To improve the stability of the selected SLNs by lyophilization of the 

formulations using trehalose as a cryoprotectant. 

iii.  To develop and validate two HPLC-UV methods for the quantification of 

ATQ in the release medium for the in vitro release study and for the 

quantification of ATQ in rabbit plasma in the in vivo pharmacokinetic study. 

iv. To evaluate the in vivo pharmacokinetic parameters of ATQ-SLNs after oral 

administration in comparison to ATQ-free drug using rabbits. 
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CHAPTER 2 

DEVELOPMENT AND VALIDATION OF HPLC-UV METHOD FOR THE 

DETERMINATION OF ATQ IN THE DISSOLUTION MEDIA 

 

2.1 Introduction 

Analysis of active pharmaceutical ingredients (API) in formulations is very crucial in 

the development of pharmaceutical dosage form. Other than determining the API’s 

content, analysis also need to be done to evaluate the release of the drug in the in 

vitro release study. Therefore, a method of analysis has to be developed to meet the 

purposes. 

 

UV spectrophotometer is one of the analytical methods which are widely being used 

for the detection of API because of its simplicity and fast analysis. Even though ATQ 

can be detected by UV; the method is not specific as other excipients can interrupt 

the signal of the analyte at the maximum wavelength. Therefore, visible light range 

can be used since ATQ is a coloured substance and other excipients are less likely to 

interfere the signal. One method using visible light detection was reported for the 

determination of ATQ in Malarone® tablet containing ATQ and proguanil using 

flow-through dissolution apparatus (Butler and Bateman, 1998). Nonetheless, visible 

light has its limitation of low sensitivity compared to UV light.  

 

HPLC method is a more preferable analytical tool because of its high sensitivity, 

specificity and reproducibility. Detection of ATQ using HPLC has been conducted 

by a group of researchers to quantify the loading and encapsulation of ATQ in 

liposome (Cauchetier et al., 1999) and nanocapsules (Cauchetier et al., 2003). Thus, 
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a sensitive and specific method of HPLC-UV was developed and validated for the 

determination of ATQ for the quantification of ATQ in release medium during in 

vitro release study. 

 

2.2 Materials  

Atovaquone was purchased from Hallochem Pharmaceutical Co. Ltd. (Chongqing, 

China) and acetonitrile (HPLC grade) was purchased from J.T. Baker (Phillipsburg, 

USA). Ammonium acetate was bought from Bendosen Laboratory Chemicals (UK) 

and glacial acetic acid was bought from QRëC (Selangor, Malaysia).  

 

2.3 Methods 

2.3.1 Instrumentation  

Analysis was performed using a Shimadzu liquid chromatographic system (Kyoto, 

Japan) with CBM-20A system controller, LC-20AD solvent delivery pump, SPD-

20A UV-VIS detector, SIL-20A autosampler, and CTO-10ASvp oven system. Data 

acquisition and analysis was performed using Shimadzu LCsolution software (Kyoto, 

Japan). 

 

2.3.2 Chromatographic condition 

Chromatographic separation was performed at 45°C using a C18 column 

(Phenomenex, 150 x 4.60 mm i.d, 5 µm particle size) fitted with a universal guard 

cartridge (Thermoscientific, 4 x 4.6 mm i.d.). Samples of 20µl were injected into the 

HPLC system and the detection wavelength was set at 254nm. The mobile phase 

contained a mixture of 20mM ammonium acetate buffer (adjusted to pH3 with 

glacial acetic acid) and acetonitrile (ACN) in the ratio of 15:85 (v/v). System flow 
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rate was maintained at 1.0ml/min. The mobile phase was filtered under vacuum 

through 0.45µm nylon membrane filter (Whatman, England) and degassed for 10 

min prior to use. 

 

2.3.3 Preparation of standard and quality control solutions 

A primary standard stock solution of atovaquone (400µg/ml) was prepared in 

methanol-dimethylformamide (99:1 v/v). The stock solution was further diluted with 

mobile phase to obtain a working standard solution of 40µg/ml. Solutions for 

calibration were prepared by diluting working standard solution with mobile phase to 

give concentration in the range of 40 to 4000ng/ml. Three concentrations for quality 

control (QC) were prepared at low, medium, and high concentration of 120, 1500, 

and 3500ng/ml, respectively. These solutions were stored at 4°C prior to use. 

 

2.3.4 Method validation 

2.3.4 (a) System suitability 

System suitability test was performed to ensure well performance of the 

chromatographic system. The involved parameters were capacity factor (k’), tailing 

factor (T), theoretical plate number (N) and precision/injection repeatability. This 

test was conducted using atovaquone solution at a concentration of 1500ng/ml in five 

injection replicates. 

 

Capacity factor (k’) is used to measure relative elution time of the analyte compare to 

void volume using following equation 

k’ = (tR – tm)/tm                                      (Eq. 2.1) 
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where tR is the retention time of the analyte and tm is the retention time of the non-

retained component. Commonly, the value of k’ is more than 2 (USFDA, 1994). 

 

Tailing factor (T) is an important parameter to measure symmetry of the peak. 

Quantitation will be affected as increasing in peak tailing reduces the accuracy. It is 

calculated using following equation 

     T = W0.05/2f      (Eq. 2.2) 

where W0.05 is the width of the peak at 5% height and f is the distance between 

maximum and the leading edge of the peak. T value of ≤ 2 is recommended by 

USFDA (USFDA, 1994). 

 

Theoretical plate number (N) is a parameter of column efficiency which is the 

amount of peaks located per unit run-time of the chromatogram using the following 

equation 

     N = 16 (t/W)      (Eq. 2.3) 

where t is the retention time of the analyte and W is the width of peak measured by 

extrapolating the relative straight line to the baseline. Generally, theoretical plate 

number should be more than 2000 although it depends on elution times. 

 

Injection precision is expressed as relative standard deviation (RSD) which indicates 

the performance of the chromatography at the sample analyzing time. The 

recommended RSD is ≤ 1% for n ≥ 5 (USFDA, 1994). 
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2.3.4 (b) Specificity 

Specificity of the method should portray the absence of interference from other 

substances at the retention time of the analyte and the analyte is well-resolved from 

other peaks. For the evaluation, blank-SLN was prepared containing all excipients 

except ATQ. The blank-SLNs was treated the same as ATQ-SLNs in the simulated 

gastric fluid (SGF) and simulated intestinal fluid (SIF) to be analyzed in six 

replicates. 

 

2.3.4 (c) Linearity 

The linearity of the method was evaluated using five calibration curves prepared on 

five consecutive days in the concentration range of 40 to 4000 ng/ml of ATQ. The 

curves were plotted using peak area of ATQ against corresponding concentration 

using linear regression analysis. 

 

2.3.4 (d) Limit of detection and limit of quantification 

Limit of detection (LOD) determination was carried out by injecting samples at 

subsequent low concentration of ATQ. The limit was determined at a signal to noise 

ratio of 3:1. Limit of quantification (LOQ) was defined as the lowest concentration 

of analyte in the calibration curve that can be determined with acceptable precision 

and accuracy under the stated experimental condition. 

 

2.3.4 (e) Precision and accuracy 

Precision is defined as percentage of relative standard deviation (%RSD) of the 

calculated concentration while accuracy is expressed as relative percentage error 

(%RE) using following equations 
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Precision (%RSD) = Standard deviation x 100%    (Eq. 2.4) 
      Mean value 

Accuracy (%RE) = (Calculated concentration-Cstd) x 100%    (Eq 2.5) 
    Cstd 

where Cstd is the nominal concentration of the standard solution in ng/ml. 

 

Accuracy and precision for each point in the calibration curve were analyzed from 

the previously prepared five curves. For inter-day and intra-day precision and 

accuracy, QC samples at low, medium, and high concentration of 120, 1500 and 

3500ng/ml were injected in five replicates. For intra-day variation, the replicates 

were analyzed on the same day while for inter-day variation; five replicates of three 

QC levels were analyzed on three consecutive days. 

 

2.3.4 (f) Robustness 

Robustness is the ability of the method to remain unaffected by deliberate variations 

in method parameters. The robustness was determined by analysis of samples with 

same concentration under several conditions including small change in pH (± 0.2), 

percentage of acetonitrile in mobile phase (± 1%), flow rate of the mobile phase       

(± 0.1ml/min) and detector wavelength (± 2nm). 

 

2.3.4 (g) Solution stability 

Stability study was performed using LQC, MQC and HQC samples to evaluate the 

stability of ATQ in the mobile phase under different conditions, namely, bench top 

stability (6 hr at room temperature), post-preparative stability (24 hr in the 

autosampler), and short term stability (14 days at 4°C). 
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2.3.5 Statistical analysis 

The results in robustness test were analyzed for the difference using one-way 

analysis of variance (ANOVA), using SPSS version 16.0 software. The difference 

was statistically significant when p < 0.05. For a significant difference, a post hoc 

Tukey’s HSD (honestly significant difference) test was conducted. 

 

2.4 Results and Discussion 

2.4.1 Method development and optimization 

The chromatographic conditions were adjusted in order to provide a good 

performance of the assay. Selection of the detection wavelength is imperative to 

achieve maximum absorbance. Thus, a UV spectrophotometer scan was conducted in 

the range of 200 to 450nm (Figure 2.1) and the maximum absorbance was detected at 

254nm. Therefore, 254nm was set as the detection wavelength for the study.  

 
 
Fig. 2.1: UV absorption spectrum of ATQ from 200 to 450nm.  
 

As for the mobile phase, several compositions of buffer to organic solvent (ACN) 

were tested at ratios of 10:90, 15:85, and 20:80 (v/v). Increasing the percentage of 

ACN increased hydrophobicity of the mobile phase. Therefore, elution of highly 

254 nm 
279 nm 

344 nm 
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hydrophobic compound such as ATQ became faster. A composition of 15:85 was 

chosen as it gave sufficient retention time (~5min) and a peak with high area and 

good shape. 

 

pH of ammonium acetate buffer was varied from pH 5 to pH 3. As the pH decreased, 

retention time of ATQ was shortened and the peak area was increased. Tailing factor 

were also improved indicating symmetricity of the peak. For a weak acid substance 

such as ATQ, pH above the pKa value will cause the acidic analyte to carry a 

negative charge and behaves as an extremely polar molecule. Thus, delaying the 

elution of analyte in hydrophobic mobile phase. Since pKa of ATQ is ≈5.0 

(Lindegårdh and Bergqvist, 2000), pH lower than pH 5 will cause elution of ATQ to 

be faster. Therefore, pH 3 was chosen as it gave sufficient retention time, highest 

peak area and good peak shape. 

 

At first the temperature of the column was set at 25°C. However, it did not give a 

stable baseline. Thus, a higher temperature of 45°C was used instead as it gave stable 

baseline, faster elution of ATQ with a better peak shape. Finally, the mobile phase 

containing a mixture of 20mM ammonium acetate buffer (pH 3) and ACN (15:85, 

v/v) was chosen for the analysis at a flow rate 1.0ml/min and column temperature of 

45°C. The wavelength of detection was set at 254nm. 

 

 

 

 

 


