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7 Displacements of the node in the directions of the Cartesian # axes
¢ Local coordination in the directions of the Cartesian z axes

G Displacements of the node in the directions of the Cartesian { axes
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ASTM

CMOD

Cr

CrT

EN

Fr

FrT

ITZ

MS

OPC

Pr

PrT

SEM

LIST OF ABBREVIATIONS

American Society for Testing and Materials

Crack Mouth Opening Displacement

Concrete with replacement of sand volume by percentage of crumb
rubber

Hybrid concrete beams in case of casting the top layer of the beam by
rubberized concrete with percentage of crumb rubber

European Union standard

Concrete with replacement of sand volume by percentage of fine
crumb rubber

Hybrid concrete beams in case of casting the top layer of the beam by
rubberized concrete with percentage of fine crumb rubber

Interfacial Transition Zone

Malaysian Standard

Ordinary Portland Cement

Concrete with replacement of sand volume by percentage of rubber
powder

Hybrid concrete beams in case of casting the top layer of the beam by
rubberized concrete with percentage of rubber powder

Scanning Electron Microscopy
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KESAN PENAMBAHAN CEBISAN GETAH TERHADAP SIFAT RASUK

KONKRIT DI KENAKAN BEBAN HENTAMAN

ABSTRAK

Konkrit yang mengandungi cebisan getah di dalamnya telah diketahui umum
menambahbaik sifat keanjalannya serta kemampuan untuk menyerap tenaga. Walau
bagaimana pun, tenaga lentur sebenar di bawah beban hentaman masih dipertikai dan
diperdebatkan. Tambahan pula tingkah laku hibrid (getahan di atas-konkrit biasa
dibawah) struktur konkrit hibrid di bawah beban hentaman atau dalam keadaan
beban statik masih dikaji. Oleh itu dalam kajian ini, eksperimen dan analisis tak
linear dinamik konkrit dengan penambahan cebisan getah dikaji. Penambahan
cebisan getah (5%, 10% dan 20%) berasaskan isipadu pasir atau simer dilakukan
terhadap konkrit. Tiga saiz cebisan getah yang berbeza digunakan cebisan getah (1
mm), cebisan getah halus (0.4-0.9 mm) dan serbuk cebisan getah (0.15-0.6 mm).
Tiga jenis spesimen iaitu konkrit biasa, konkrit berlapis getah, dan konkrit lapisan
berganda disediakan dan dilakukan ujian hingga gagal menggunakan mesin
hentaman beban jatuh seberat 20 N dari ketinggian 300 mm, dan tiga lagi spesimen
yang sama telah digunakan untuk ujian beban statik. Dalam kedua-dua ujian, beban-
pesongan dan keretakan setiap spesimen telah dikaji. Simulasi unsur terhingga telah
juga dilakukan untuk mengkaji tingkah laku dinamik sampel dengan menggunakan
perisian LUSAS V.14. Rasuk dimodelkan sebagai elemen heksagon dan mempunyai
lapan nod. Bahan elastoplastik telah digunakan untuk memodelkan kedua-dua
struktur konkrit biasa dan konkrit bergetah tersebut. Skim dinamik tak tersirat telah
digunakan untuk menentukan peningkatan pesongan dengan masa. Secara umum

keputusan menunjukkan beban impak semakin meningkat dengan peningkatan dalam
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peratusan getah. Pemerhatian menunjukkan bahawa kesan ini adalah lebih ketara
untuk spesimen lapisan berganda. Secara umum, kekuatan dan tenaga keupayaan
menyerap konkrit berlapis getah adalah lebih baik di bawah pembebanan hentaman
daripada pembebanan statik. Beban simulasi terhadap tingkah laku pesongan semua

sampel telah disahkan oleh keputusan eksperimen.
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EFFECT OF CRUMB RUBBER INCORPORATION ON THE
BEHAVIOUR OF CONCRETE BEAM SUBJECTED TO IMPACT
LOAD

ABSTRACT

It is well known that concrete containing crumb rubber would enhance the elastic
properties of concrete as well as ability to absorb energy. However, the actual
flexural energy under impact load is still questionable and debatable. Moreover, the
behavior of hybrid (rubberized top-plain bottom) concrete structures under impact or
static load conditions are yet to be investigated. In this study, experimental and
nonlinear dynamic analysis of rubberized concrete under impact load was
investigated. Rubberized concrete samples were prepared by partial substitution (5%,
10% and 20 % replacements by volume) of sand or cement by two size of crumb or
powder rubber respectively, and tested under impact three-point bending load, as
well as static load. Three types of specimens namely, plain concrete, rubberized
concrete, and double layer concrete were loaded to failure in a drop-weight impact
machine by subjecting to 20N weight from a height of 300mm, and another three
similar specimens were used for the static load test. In both tests, the load-deflection
and fracture energy of each specimen were investigated. Finite-element simulations
were also performed to study the dynamic behaviours of the samples, by using
LUSAS V.14 software. The concrete beam was modeled to be built with eight node
hexahedron elements and elasto-plastic material was used to model both plain and
rubberized concrete structures. Explicit nonlinear dynamic scheme was used to
determine the deflection increments for each time step.In general the result was
noticed that, the impact loads increased with the increase in the percentage of rubber.
It was interesting to observe that these effects were more significant in the double

layer specimen. In general, the strength and energy absorbing capability of
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rubberized concrete was better under impact loading than under static loading. The
simulated load against deflection behaviours of all the samples were validated by the

experimental results.
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CHAPTER ONE

INTRODUCTION

1.1 General introduction

Concrete is the most commonly used construction material. In the context of the current
construction requirements, the properties of concrete in terms of its flexibility,
toughness, energy absorption and impact resistance needs further improvement (Topcu,
1995 and Wang et al., 2000). On the other hand disposal of waste rubber is a serious
environmental issue all around the globe, on account of its health hazard and difficulty
in land filling. The high cost of disposal and the requirement of large landfill area often
result in random and illegal dumping of waste rubber (Siddique and Naik, 2004) and
over 281 million scrap tires are generated in United States every year (Baker et al.,
2003). According to "Markets for Scrap Tires"1991 edition, published by the US
Environmental Protection Agency (EPA), only 7% of the tires are recycled into new
products and about 11% are converted into energy. Over 77.6%, or about 218 million
tires per year, are land filled, stockpiled, or illegally dumped and the remaining 5% are
exported. In Malaysia, a number of project involving a huge investment in waste rubber
recycling has been monitored. For instance, in 2002 a project totaling RM4.47 billion
was approved by Malaysian Industrial Development Authority (MIDA) to proceed with
the recycling project of scrap tires to manufacture synthetic rubber powder and
thermoplastic elastomer (TPE) (Awang, 2008).

Figure 1.1 shows one such dump yard in Thailand reflecting the gravity of the problem.

Figure 1.2 shows that the flow chart detailing the distribution of the scrap tire.



Landfilling of scrap tires in open piles causes a number of problems such as degradation
of the landscape, health diseases vectored by mosquito, and serious open tire fires which
is difficult and need long time to extinguish (See Figure 1.3). Moreover it has serious
impact on health and the environment due to dangers of air emissions via black and
carbon smoke and also contamination of water and soil due to the run-off water and
pyrolytic oil released from the burning tires (EPA, 1991 and Siddique and Naik, 2004).
Due to the high cost of disposal and the requirement of large landfill area for waste

rubber, the issue of random and illegal dumping is alarming (Siddique and Naik, 2004).

Fig. 1.1: Piling yard of abandoned tires in Thailand (Sukontasukkul and Chaikaew,
2006)
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Fig. 1.2: Flow chart of destination of scrap tires (EPA, 1991).

Fig. 1.3: Fire accident due to wasted tires in Stanislaus County, CA. (Sukontasukkul and

Chaikaew, 2006)




Driven by this situation, efforts are on, to identify alternative solutions to reuse the
waste rubber, and its use in concrete as partial substitutes for sand. This partial
replacement of rubber in cement has been proven to be one of the promising options.

1.2 Classification of scrap-rubber

According to Siddique and Naik (2004), scrap-rubber can be classified into four types
with regard to their particle size:

1.2.1 Slit tires

The tires are produced by separating the sidewalls from the thread of the tires or cutting
the tire into two halves. This process was carried out in large amount of scrap tires in the
factory (Siddique and Naik, 2004).

1.2.2 Shredded/chipped tires

It is produced by shredding tire into shreds or chips that vary from 300 to 460 mm long,
100 to 230 mm wide, and 100-150 mm length in the primary process. Production of tire
chips, usually sized from 76 to 13 mm requires both primary and secondary shredding to
achieve reduction of volume. Figure 1.4 shows the appearance of shred tire (Khaloo et

al., 2008).

-

15 mm

Fig. 1.4: Shredded/chipped tires (Khaloo et al., 2008)
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1.2.3 Ground rubber

The two process involved in ground rubber are magnetic separation and screening
process. Normally the size of ground rubber varies from 19 mm to 0.15 mm depending
on the size of reduction, equipment and envisioned usage. Figure 1.5 shows the

appearance of ground rubber (Khaloo et al., 2008).

Fig. 1.5: Ground rubber (Khaloo et al., 2008)

1.2.4 Crumb rubber

The typical process in making crumb as in Figure 1.6 involves three stages. First, the
scrap tire is reduced to particles ranging from 5 to 0.075 mm size shreds by reducing the
size of tire rubber. This is generally accomplished by passing the material between

rotating corrugated steel drums or the cracker mill process which tears it apart. Second,



the screen and gravity separators are used to remove metal. And finally, aspiration

equipment is used to remove fibers (Son et al., 2011).

Fig. 1.6: Crumb rubber (Son et al., 2011)

In this research three different sizes of crumb rubber which are crumb rubber of 1 mm
particle size, fine crumb rubber of particle size 0.4-0.9 mm and powder crumb rubber of
particle size 0.15-0.6 mm will be added to concrete. The mechanical properties of the

concrete will then be investigated.



1.3 Cement and concrete history

Cement is defined as adhesive and cohesive material having capability to bond fragment
or masses of solid material (Lea and Hewlett, 1998). The use of cementing materials can
be dated back to very ancient times. The ancient Egyptians used lime mortar in the
pyramid construction. The Greeks and Etruscans also used cement limestone. The first
concrete in history was developed by Romans who improved the mortar properties by
adding sand and crushed stone or brick and broken tiles to lime and water (Neville,

1995). One of the most remarkable examples of the concrete works is the Pantheon

dome as seen in Figure 1.7 (Wilkins, 2004).
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Fig. 1.7: Romans Pantheon dome (Wilkins, 2004)
The Romans discovered that lime mortar does not harden under water, so they milled

lime and volcanic ash or finally ground burnt clay tiles to produce pozzolanic cement
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referring to village of Pozzuoli, near Vesuvius. Modern concrete technology took shape
in the late 18th century. In 1756, it was discovered that the best mortar could be
produced by mixing limestone with pozzolana which contains high production of clayey
material. It was only in 1824, Joseph Aspdin discovered the Portland cement. This
cement is formed by heating finely divided clay with ground limestone in a furnace until
CO; has been driven off. Isaac Johnson in 1845 discovers the prototype of modern
cement by burning its raw materials to clinkering temperatures in order to satisfy the

reaction necessary for creating strong cementing compounds (Neville, 1995).

1.4 Rubberized concrete and impact load

Recently many researchers have carried out investigations on the ability of tire rubber in
concrete as a replacement for sand or aggregates to improve the properties of concrete
and to reduce the waste material dumping problems by utilizing these waste materials as
raw material.

The ability to reuse rubber as partial replacement in concrete was studied by Eldin and
Senouci (1993), in which they used two groups of rubberized mixes. In the first group,
part of sand was substituted by crumb rubber in the range of 25, 50, 75 and 100
percentages. In the second group, a portion of coarse aggregate was substituted by chip
rubber in similar percentage as in the first group. The result observed using 100% of
crumb rubber as sand replacement leads to losses of up to 65% of the compressive stress
and up to 50% of the tensile stress in the first group. However the study also concludes
that the ductility of concrete was improved which makes rubberized concrete suitable

for structure subjected to dynamic or impact loading. Topcu (1995) also demonstrated


file:///C:/Users/User/AppData/Roaming/Microsoft/Word/CHAPTER%20ONE,TWO.docx%23_ENREF_44
file:///C:/Users/User/AppData/Roaming/Microsoft/Word/CHAPTER%20ONE,TWO.docx%23_ENREF_17
file:///C:/Users/User/AppData/Roaming/Microsoft/Word/CHAPTER%20ONE,TWO.docx%23_ENREF_17
file:///C:/Users/User/AppData/Roaming/Microsoft/Word/CHAPTER%20ONE,TWO.docx%23_ENREF_62

that using waste tire in concrete improves the toughness value and the plastic energy
capacities. He concluded that high ductility of rubberized concrete leads to high strains
under static and impact load.

The impact resistance of rubberized concrete was studied by Topcu and Avcular (1997)
for highway barriers. They determined that the presence of rubber tire particles yields
significant enhancement in the impact resistance. Similarly,Taha et al. (2008) observed
enhancement in the impact resistance of concrete beams by adding crumb or chipped
tire rubber particles. Nevertheless, almost all the previous studies investigated the
impact resistance of rubberized concrete qualitatively by counting the numbers of blows
that result in cracking or failure of the structure. However, this method was improved by
Banthia (1985) method which is not followed by Taha et al (2008) to measure the load,

deflection and acceleration of concrete beam under impact energy.

1.5 Finite element analysis

There are several difficulties in analyzing normal or rubberized concrete structures
under dynamic load because of the nonlinear behaviour of structure and the nonlinear
dynamic load with time. New approaches of nonlinear structural analysis have been
introduced in the recent times owing to the development of powerful computers, where
the structural response can be investigated in terms of the total loading range. The finite
element approach is one of such important method which solves the numerical equations
that govern the problems found in nature. The finite element method improved in the
field of structural engineering where dimensional element to analyzed the stresses in

continuous bars and beams was developed. Then the shape functions defined over


file:///C:/Users/User/AppData/Roaming/Microsoft/Word/CHAPTER%20ONE,TWO.docx%23_ENREF_61
file:///C:/Users/User/AppData/Roaming/Microsoft/Word/CHAPTER%20ONE,TWO.docx%23_ENREF_57

triangular regions in the applied mathematics was developed. Then treatment of two-
dimensional elements was developed by derived the stiffness matrix for triangular and
rectangular elements in plane stress. After that matrix structural analysis was driven
from the stiffness matrix of a plane stress rectangular panel. The formulations of
element stiffness matrices by early investigators were not based on the field equations of
the entire elastic continuum (Huebner et al. 2008).

In 1967 Zienkiewicz published the first book describing applications of the method in
the analysis of material behaviour. After that the finite element method became one of
the most important methods used in the engineering analysis and design. And it has
become indispensable to analyzing structural problems with complex material

behaviours and complicated boundary conditions (Ofate, 2009).

1.6 Problem statement

Disposal of waste rubber is a serious environmental issue all around the globe, on
account of its health hazard and difficulty in land filling. The high cost of disposal and
the requirement of large landfill area often result in random and illegal dumping of
waste rubber (Siddique and Naik, 2004). This serious environmental and health issues
associated with rubber demands urgent attention to develop alternative solutions for
their reuse in other applications. In Malaysia, a number of projects involving a huge
investment in waste rubber recycling have been observing. For instance, in 2002 a
project total RM 4.47 billion was approved by Malaysian Industrial Development
Authority to proceed with the recycling project of scrap tires to manufacture synthetic

rubber powder and thermoplastic elastomer (Awang, 2008). On the other hand, normal
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concrete exhibits limited properties such as small resistance to cracking, low ductility,
and low impact energy absorption (Wang et al., 2000). However, it was established that
adding the waste tire to concrete would enhance its ability of crack resistance ductility
and energy absorption (Topcu 1995).

According to the literature, no study has been reported on the static fracture toughness
of concrete with assessment of crack resistance for rubberized concrete using crack
mouth opening displacement (CMOD).

However, only Reda-Taha et al. (2008) investigated the effect of crumb and fine crumb
rubber in the bending impact resistance to a rectangular beam. In this work, the impact
energy was reported qualitatively by calculating the impact energy from a number of
drops until failure. It was noted that there is no instrumented impact test using load cell
and accelerometer to investigate the accurate impact load causing the failure or
deformation of the rubberized concrete beams. Furthermore, previous investigations did
not measure the actual fracture energy of the rubberized concrete beam under impact
bending load.

Moreover, the nonlinear finite element dynamic analysis of rubberized concrete
structures which is a promising contribution to facilitate realistic predictions the
behaviour of rubberized concretes beams. Also, investigations into the behaviour of
hybrid (rubberized top-plain bottom) concrete structures under impact or static load
conditions are yet to be accomplished by any researcher. Thus, there are several gaps in
the previous research, which needs to be addressed to arrive at a mix of concrete having

best possible impact properties of concrete.
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1.7 Objectives

The overall objective of the project is to investigate the feasibility of improving the

impact resistance of concrete bream. This research will investigate the feasibility of used

of waste rubber tire in concrete subjected to impact load and to investigate its properties

of energy absorption and ductility.

Thus the main objectives of this work are:

To study the suitable size of rubber, its mixed proportion and material
properties of rubberized concrete.

To determine the static fracture toughness of rubberized concrete with
assessment of crack resistance using crack mouth opening displacement
(CMOD).

To investigate the effect of crumb rubber incorporation on the impact tup,
inertial load and bending load of rubberized concrete and hybrid beam
experimentally.

To analyze the impact energy and behaviour of rubberized concrete and
hybrid structure beam subjected to impact load.

To verify finite element model for simulating the behaviour of rubberized

and hybrid concrete beams based on the measured data.

12



1.8 Scope of work

In the present work, the impact load and displacement, and dynamic fracture energy are
investigated for concrete beams containing fine crumb rubber, crumb rubber and powder
rubber. The crumb rubber particle size 1 mm and fine crumb rubber particle size 0.4-0.9
mm are used in replacement ratio of 5%, 10%, and 20% by volume of sand and the same
proportions of powder rubber 0.15-0.6 mm is added to the concrete with proportional
decrease in the volume of cement.

Alongside this, double layer beam with rubberized top and plain bottom (hybrid
structure), are tested under impact three-point bending load to investigate its impact
behaviour and to improve its ability to absorb the impact energy. Numerical simulations
are carried out to study the dynamic behaviour of all the samples. LUSAS V.14 tool is
used to simulate the behaviour of rubberized concrete beams under impact load. In order
to determine the properties of rubberized concrete, experiments has been carried out to
study the material behaviour under compressive and tensile loadings. The concrete beam
is assumed to be made of eight node hexahedron elements. And to substantiate the
present finite element model, the predicted impact behaviour is compared with the
experimental results.

In order to further accomplish the objectives of the present study, the fracture properties
such as stress intensity factor (Kic), Young’s modulus (E), critical energy release rate
(Gic), and crack resistance using crack mouth opening displacement (CMOD) are

investigated as preliminary test for the three group of rubberized concrete.
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1.9 Thesis Outline

The present thesis is organized into five chapters. A brief outline of each chapter is

given hereunder:

e Chapter one presents general information about the problems due to waste tire
rubber, concrete, rubberized concrete and effect of rubber on the impact behaviour of
the concrete. And also general finite element history is presented. This chapter also

focuses on the problem statement, objectives, and the scope of work.

e The review of literature is presented in chapter two. This review focuses on the
previous study that has been carried out on the rubberized concrete and discusses its
properties. It also presents the most relevant studies with respect to the impact

loading and its effect on the concrete behaviour.

e Chapter three is divided into two main parts. Part one covers the methodology for
experimental works and describes the materials and laboratory investigations that are
carried out to fulfill the objectives of the research. Part two describes the finite
element formulation model of material and scheme of analysis for plain, rubberized

and hybrid concrete beams subjected to bending impact load.

e Chapter four presents the analysis and discussion on the results obtained from the
experimental tests. Comparisons between three types of rubberized concrete, between
rubberized and hybrid structure and also between static and dynamic results were

studied.

14



e Chapter five nonlinear analysis model of concrete subjected to impact load by using
finite element method. Comparison is carried out between experimental and

computational results.

e Chapter six provides the conclusions drawn from the result of both experimental
work and finite element model. Finally the recommendations for the future work are

also presented in this chapter.
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CHAPTER TWO

LITERATURE SURVEY

2.1 Introduction

Cement consumption is increasing day by day owing to its wide use as construction
material. The increased use of cement poses an environmental challenge because 5% to
8% of the global anthropogenic CO, emissions originate from cement production
(Scrivener and Kirkpatrick, 2008). Another major problem haunting environmentalist is
the increased generation of waste rubber all over the world. For example, in the United
States alone, every year more than 281 million scrap-tires are produced, out of which
over 77%, are landfilled, stockpiled, or illegally dumped (Baker et al., 2003). In
Malaysia, a number of projects involving a huge investment in waste rubber recycling
have been observing. For instance, in 2002 a project total RM4.47 billion was approved
by Malaysian Industrial Development Authority to proceed with the recycling project of
scrap tires to manufacture synthetic rubber powder and thermoplastic elastomer
(Awang, 2008). The problem with this indiscriminate accumulation of waste tires is that
it is dangerous and hazardous on account of its potential fire risks which generally
demands longer time to extinguish. These fires are major source of the air, soil, and
water pollution and have direct bearing on the surrounding communities (Sukontasukkul
and Chaikaew, 2006).

This serious environmental and health issues associated with rubber demands urgent
attention to develop alternative solutions for their reuse in other applications, and in this

regard concrete has been identified as one of the feasible options.
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2.2 Rubberized concrete

Recently many researchers have carried out experimental studies to identify the best
suitable application of recycled rubber in the field of concrete technology. The primary
objective of their study was to reduce the waste material dumping problems by utilizing
these materials as raw material in concrete mixes and thereby improve their properties.
In this chapter the works related to utilization of waste tire rubber in concrete is

reviewed.

2.2.1 Properties of fresh rubberized concrete

2.2.1.1 Concrete Density

Concrete density is one of the important properties of concrete. The fresh and hardened
dry unit weight of aerated cement composites containing shredded rubber waste was
determined by Benazzouk et al. (2006). Aerated cement composites mixes were
prepared with replacements of cement volume in the range of 0% to 50% using shredded
waste rubber. The absolute density of the shredded waste rubber is approximately 430
kg/m®. They found that addition of shredded waste rubber will cause significant
reduction in the fresh and hardened dry unit weight of the mixtures. In a similar work
carried by Khaloo et al. (2008), they investigated the effect of replacing coarse
aggregate and sand with chips and crumb rubber on the properties of concrete. They
found that addition of waste tire in concrete significantly reduced the density of the
concrete (see Figure 2.1).

The effect of addition of waste automobile tires on the unit weight of concrete was

experimentally investigated by Topcu and Saridemir (2008). They also employed the
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artificial neural networkand fuzzy logic techniques ability to predict the unit weight of
the concrete under study. In their study concrete without rubber and having15, 30 and
45% rubberized concrete were developed. The results showed that unit weight of

concrete decreased with the increasing crumb rubber content.
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Fig. 2.1: Effect of tire content on the unit weight of the concrete (Khaloo et al., 2008)

Similarly, Pelisser et al. (2010) investigated the effect of replacing sand with recycled
tire rubber on the density of concrete mix. The recycled rubber with maximum particles
size of 4.8 mm was washed with sodium hydroxide ( NaOH) to increase the
hydrophilicity of the rubber particle surface. Further, silica fume (microsilica) was
added (15% mass fraction) to the recycled rubber as a surface modifier.

The combination of the rubber treatment by sodium hydroxide followed by the addition
of silica fume was favorable for the porosity reduction in the interface of these
aggregates. This contributed to the recovery of the concrete strength and a lower

permeability.
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2.2.1.2 Air content

The effect of chipped and crumbed tire rubber particles as replacement of coarse and
fine aggregates on the air content of concrete mix have also been studied Taha et al.
(2008). They found that increase in the content of tire waste rubber increased the air
content of the concrete mix (Figure 2.2). Several other researchers have also
demonstrated that using waste tire in concrete increases the level of air content in the

mix (Benazzouk et al., 2003; Khatib and Bayomy, 1999).
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Fig. 2.2: Effect of aggregate replacement ratio on air content of rubberized concrete

(Taha et al., 2008)
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2.2.1.3 Workability

In order to study the workability of rubberized concrete, chipped and crumbed tire
rubber particles as replacement of coarse and fine aggregates were used in the study by
Khatib and Bayomy (1999). The result (see Figure 2.3) showed that the presence of
crumb or chipped tire rubber particles decreased the workability of the concrete.
Whereas, for the concrete mix with sand replacement, the slump increased with increase
in rubber percentage and reached a maximum value when the rubber percentage was

15%, which on subsequent increase in rubber percentage the slump decreases.
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Fig. 2.3: Effect of rubber content on the workability of concrete (Khatib and Bayomy,

1999)

In a similar work carried out by Raghavan et al. (1998), the effect of adding shredded
automobile and truck tires on the workability of mortar was investigated. The result
showed that addition of rubber shreds improves the workability of the mortar. In another
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work by Albano et al. (2005), they observed that the values of slump decreased from a
value of 8 cm for the controlled concrete mix to a value of 1 cm (88% slump reduction)
for the scrap rubber concrete having 5 wt% rubber with 0.29 and 0.59 mm particle sizes.
The value for 10 wt% rubber with 0.29 and 0.59 mm particle sizes was 0.5 cm (94%
slump reduction). This reduction is due to the decrease on blend flow, because of the
presence of a high portion of rubber particles, which have a very low density, hence

greater volume.

2.2.2 Properties of hardened rubberized concrete

2.2.2.1 Compressive and tensile stress

The compressive and splitting-tensile stress in terms of different particle size and
amount of rubber in concrete mixture was studied byTopcu (1995). Two particle
sizes of rubber 0-1 mm (fine) and 1-4 mm (coarse) were added to concrete mixes in
varying percentages of 15, 30 and 45 %. As shown in Figure 2.4, the compression
stress decreased approximately by 36, 43, and 56% when fine aggregate was replaced
with fine rubber aggregate of 15, 30, and 45% volume, respectively. Whereas, for the
case of using chipped tire rubber particles to replace the same percentage of aggregate
the reduction in compressive stress was 50, 69, and 80%, respectively for similar
volumetric additions.

For the splitting-tensile test, the plain concrete yielded at 3.21MPa, and it reduced to
32, 52, and 65% when replaced with fine aggregates having 15, 30 and 45 % of fine

rubber and, 53, 67, and 74% when replaced with the coarse rubber chips.
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Fig. 2.4: Effect of fine (0-1mm) and coarse (1-4mm) rubber content on the compressive
stress (Topcu, 1995)

Crumb rubber of particle size 0.15-4.75 mm was used by Batayneh et al. (2008) as
partially replacement of sand in various percentages of 20%, 40%, 60%, 80%, and
100% to investigate the effect of rubber in the performance of concrete. The results
indicate that the compressive stress for different rubber contents reduced from 10%
to 75% of the control specimen, while the tensile stress decreased from 8% to 65%
of the control specimen.

The mechanical properties of concrete containing high volume of tire rubber was
investigated by Khaloo et al. (2008). Chipped, crumbed, and a combination of tire
rubber particles were used to replace coarse and fine aggregate with different volume
replacement levels. Natural sand and coarse aggregate were substituted by fine rubber

and coarse rubber with 25, 50, 75 and 100%, respectively. The result showed that
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compression stress decreased by approximately 80% when sand was replaced with 25 %
whereas, the ultimate stress for coarse replacement was slightly higher than that of sand
replacement for rubber concentrations lower than 25%. This higher stress was attributed
to the existence of fibers in coarse tire—rubber particles. Ultimate stresses of combined
specimens appeared somewhere in between the ultimate stress of concrete with sand and
coarse aggregate replacement, but it was found closer to concrete with sand
replacement. They suggested replacement ratio not exceeding 25% of aggregate by tire
rubber.

A new approach to predict the effect of tire rubber on the stress of concrete using a
mathematical model was introduced by Vieira et al. (2010). Design of the model
depends on study of the composition stress of concrete in a multivariate form using a
completely random experimental design. The variables of model were grouped into two
groups of variables, mixture variables (the properties of the mixture constituents such as
aggregates, water and cement) and process variables (Tire rubber percentage and size in
the concrete). In this study three different particle sizes of truck tires rubber (from 1.2 to
2.4 mm, from 2.4 to 4.8 mm, and greater than 4.8 mm) were used with the weight
fraction of rubber 2.5-5.0-7.5%. The truck tires rubber was added to concrete mixes as
a substitute for fine aggregate. The results show that by adding 2.5% rubber substitute
having fine aggregate with 2.4 mm particle size, can account for the optimum stress of
the concrete. Moreover, the result showed that a concrete having a compressive stress
above 20 MPa for 28 days can be obtained. This indicates that these mixtures can be
used in structures as well as pavements, dividers and other applications in civil

engineering.
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Another study by Ganjian et al. (2009), investigated the stress of concrete mixtures by
incorporating 5%, 7.5% and 10% of discarded tire rubber as aggregate and cement
replacements. Figure 2.5 shows that there is no major change in the compressive stress
with 5% replacement of aggregate or cement by rubber. The significant reduction in
compressive stress was with respect to 7.5-10% replacement by aggregates and cement
leading to reduction of stress by about 10-23% and 20-40% in case of cement
replacement.

Moreover, tensile stress of concrete was reduced with the increase in the percentage of
rubber replacement in concrete as shown in Figure 2.6. It was also found that the
reduction in the tensile stress of concrete containing powdered rubber was lower than
that of concrete containing chipped rubber.
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Fig. 2.5: Effect of chipped and ground rubber content on the compressive stress
(Ganjian et al., 2009)
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