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REKABENTUK DRUG BERBANTU KOMPUTER UNTUK PERENCAT
NEURAMINIDASE YANG BERPOTENSI DARI EKSTRAK TUMBUHAN

ABSTRAK

Neuraminidase (NA) dari virus influenza bertanggungjawab dalam proliferasi dan

jangkitan virus, menyebabkan beberapa usaha untuk menemui dan mengoptimumkan

perencat baru neuraminidase digiatkan. Tujuan kajian ini adalah untuk menemukan

perencat baru NA melalui penggabungan kaedah berbantu komputer (model

farmakofor dan pendokkan molekular) dan kaedah pemencilan berpandu bioassai

dari sumber produk semulajadi.

Dua model Hypogen telah digunakan sebagai model sievers dalam pengskrinan maya

(ROC AUC =0.91 and 0.80; ଻଴ݎ
ଶ = 0.92 and 0.90). Model ini telah disepadukan

dengan pendokan molekular untuk menyaring 3000 sebatian dari pangkalan data

NADI.

Keputusan penyaringan virtual telah menunjukkan bahawa sebatian zanton dari G.

mangostana (manggis) adalah hit utama diperolehi, menjadikan pokok ini terpilih

untuk selanjutnya dilakukan pemencilan sebatian.

Tujuh sebatian diperolehi daripada manggis memberikan perencatan lebih dari 80%

melalui kaedah pemencilan sebatian berpandukan bioassai. Potensi kesan perencatan

neuraminidase (NA) (C. perfringens-NA dan H1N1-NA) dalam kajian ini adalah

seperti berikut: garsinona D> -mangostin> -mangostin> garsinona C> 3-

isomangostin> gartanin> 8-deoksigartanin. Tujuh sebatian ini menunjukkan

pendokkan berkesan terhadap kawasan pengikat aktif NA.

Selepas itu, G. atroviridis dan G. celebica telah dipilih bagi mengukuhkan hipotesis
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bahawa Garcinia sp memberikan aktiviti rencatan neuraminidase. Asid garsinia dan

naringenin yang diperolehi dari buah dan daun G. atroviridis juga memberikan

perencatan neuraminidase tetapi kurang aktif berbanding G. mangostana.

Friedelina, katekin and dua terbitan lanastona (metil-3α, 23-dihidroksi-17,14-

friedolanstan-8,14,24-trien-26-oat dan 24E-3a,9,23-trihidroksi-17,14-friedolanostan-

14,24-dien-26-oat) telah diperolehi dari daun G. celebica melalui kaedah pemencilan

berpandukan bioassai. Katekin dan dua terbitan lanastona menunjukkan perencatan

yang kurang aktif, sedangkan friedelina tidak aktif.

Hanya lima sebatian (garsinona C, garsinona D, asid garcinia, naringenin, dan

katekin) menepati ciri-ciri “drug-like’ melalui kaedah peraturan lima. Sebatian yang

paling aktif didapati adalah garsinona D (IC50 = 6.7 μM)  



xx

COMPUTER-AIDED DRUG DESIGN OF POTENTIAL NEURAMINIDASE
INHIBITORS FROM PLANT EXTRACTS

ABSTRACT

Neuraminidase (NA) of influenza virus is responsible for the proliferation and

infections of the virus progeny, prompting several efforts to discover and optimize

new neuraminidase inhibitors. The main aim of this study is to discover new

potential neuraminidase inhibitor from the natural product source using computer-

aided (pharmacophore modelling-molecular docking) drug design method combined

with bioassay-guided isolation. Two Hypogen models were selected as screening

sievers (ROC AUC =0.91 and 0.80; ଻଴ݎ
ଶ = 0.92 and 0.90). These models were

integrated with molecular docking to screen 3000 compounds from NADI database.

Virtual screening results showed that xanthone derivatives from G. mangostana

(mangosteen) were the top hits, thus provide rationale to select this plant for further

isolation. Seven compounds obtained from mangosteen showed inhibition more than

80 % by bioassay-guided isolation. The potency of neuraminidase (NA) (C.

perfringens-NA and H1N1-NA) inhibitory effect in this study is as follows:

garcinone D > -mangostin > -mangostin > garcinone C > 3-isomangostin >

gartanin > 8-deoxygartanin. These seven compounds were favourably docked to the

binding site of NA.

Subsequently, G. atroviridis and G. celebica were chosen to further prove the

hypothesis that Garcinia sp gave neuraminidase inhibition activity. Garcinia acid

and naringenin were obtained from G. atroviridis fruits and leaves and showed

potent against neuraminidase but less active compared to compounds from G.
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mangostana.

Friedeline, catechin and two lanastone derivatives (methyl-3α, 23-dihydroxy-17,14-

friedolanstan-8,14,24-trien-26-oat and 24E-3a,9,23-trihydroxy-17,14-friedolanostan-

14,24-dien-26-oate) were obtained from G. celebica leaves by bioassay-guided

isolation method. Catechin and two lanastone derivatives were less active while

friedeline was inactive.

Only five compounds (garcinone C, garcinone D, garcinia acid, naringenin, and

catechin) fullfill as drug-like according to “rule of five”. The most active compound

of garcinone D showed the most potent activity against NA with IC50=6.70 µM.
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CHAPTER ONE

INTRODUCTION

1.1. Statement of the Problem

World Health Organisation (WHO) reported that influenza virus affected nearly 10-

20% of the world population, causing millions of people to be hospitalized and

resulted in a quarter to a half a million deaths per year (De Filette et al., 2005).

Influenza virus can be subdivided into three types A, B and C, but type C virus is less

pathogenic than A and B viruses. Avian and swine influenza are variants of type A

virus; with avian influenza represented the most pathogenic virus (Varghese, 1999,

Webster et al., 1997). Indonesia appeared to have the highest fatality rate caused by

avian flu in the world, with 160 deaths from 192 infected cases as of February 2013

(WHO, 2013). Cases of avian flu in China, Indonesia and several other Asian

countries in 2005 have led to awareness on the pandemic threat and prompted efforts

to control this disease. In June 2009, the swine flu outbreak (SIV) has alerted WHO

to classify it as a pandemic (level 6) (WHO, 2009) indicating widespread community

transmission. The pandemic was declared to be over in August 2010 and Malaysia

being also affected by this infection has reported 15,520 cases and 92 deaths up to

August 2010 (Bernama, 2010).

In general, influenza A virus consists of a membrane-enveloped, segmented,

negative-strand RNA with hemagglutinin (HA) and neuraminidase (NA) located on

the surface. HA and NA play a major role in viral replication. HA is responsible for

the attachment on the surface of the cell receptors that are connected with terminal

sialic acid (Colman, 1994), whereas NA is responsible for the proliferation and
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infections of the virus. In contrast to HA, NA has highly conserved amino acid

residues in its protein sequence. For this reason, the design of anti-influenza drug is

more attractive to the inhibition of NA. Existing NA inhibitors designed using

structure based drug design (SBDD) method such as oseltamivir (OTV) and

zanamivir (ZANA) are potent in treating influenza in human but suffer problem due

to resistance. Whereas peramivir (Sidwell and Smee, 2002) showed significantly

weak inhibition towards virus due to physiological effect (Bantia et al., 2006).

Therefore, the discovery of new active compounds that are potent against NA and

not susceptible to its resistances has become an important goal of drug discovery in

anti-influenza drug and this has also been the goal of this project.

To date, new NA inhibitors have been developed from synthetic chemicals, whereas

the use of bioactive compounds from natural product as starting materials is still

relevant. Synthesis of oseltamivir for example, utilise shikimic acid, which cannot be

obtained economically by synthesis but can be efficiently isolated from Chinese star

anise (Anderson, 2008). This project thus aims to leverage both Malaysia and

Indonesia’s rich natural resources to identify natural products that can be used as

drug components or the starting materials for drugs and drug products, especially in

the case of anti influenza drug.

1.2. Swine Influenza Virus (SIV)

In 1918, Spanish flu was first documented as a global pandemic that killed 50 million

people around the world with an estimated 550.000 people died in the US. Spanish

flu is an epizootic disease which has many clinical and pathologic similarities to

human influenza that appeared among pigs in the north-central, U.S. In 1930, Smith
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first reported that swine flu was caused by a virus. SIV belongs to the viral family of

Orthomyxoviridae of type A with H1N1 subtype. They are RNA viruses with a

segmented genome that comprise eight negative-sense, single-stranded RNA

segments (Webster et al., 1992). Two others pandemics appeared in 1957 and 1968

are known within the history of the 20th century (Webster et al., 1997). The viruses

that appeared in 1957 (Asian, H2N2) and 1968 (Hong Kong, H3N2) pandemics were

the products of gene reassortment between human and avian viruses, when avian

hemagglutinin and basic polymerase 1 (PB1) genes were brought to the human

population (Desenclos, 1996). There is evidence that the swine-origin influenza 

(H1N1) virus is more pathogenic than seasonal influenza A virus (Desenclos, 1996, 

Calore et al., 2011).

H1N1 influenza A virus was first detected in California USA in April 2009 and

subsequently referred to as swine-origin influenza A virus (Reid and Taubenberger,

2003b, Fanning et al., 2002). The virus was found in swine where H3 and N2, (HA

and NA, respectively) segments circulating concurrently in humans to replace the

avian-like H1N1 by reassortment (Castrucci et al., 1993, Claas et al., 1998, Reid and

Taubenberger, 2003a). This virus is not epidemic in pigs but is easily transmitted

between humans as found in Mexico (Fanning et al., 2002, Michaelis et al., 2009).

The arrangement of the genome into segments allows reassortment resulting a

diverse strains (Reid and Taubenberger, 2003b). The latest H1N1 is a descendent of

1918 pandemic strain which obtained new H2, N2, and PB1 genes through

reassortment with an avian influenza A virus (Kawaoka et al., 1989).

There are three types of SIV (H1N1, H2N2 and H3N2) found in pig and human

(Scholtissek, 1994). The cells of the swine respiratory tract contain
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sialyloligosaccharides receptor possessing both α-2,3-galactose and α-2,6-galactose 

of N-acetylneuraminic acid. α-2,3-galactose-N-acetylneuraminic acid is the favoured 

receptor for avian influenza viruses, whereas α-2,6-galactose-N-acetylneuraminic is 

the preferred receptor for mammalian influenza viruses (Ma et al., 2008, Scholtissek,

1994). This provides supportive evidence for the “mixing vessel” theory. In this

evolutionary process, swine might play an important role as a “mixing vessel” (Ma et

al., 2008), because swine are susceptible to infection with both avian and human

influenza viruses. Genetic reassortment between human and avian influenza viruses

occurs when these viruses co-infect an individual pig (Scholtissek, 1994, Scholtissek,

1990).

1.3. Avian Influenza Virus (AIV)

H5N1 avian influenza virus (AIV) is pathogenic for poultry and human (Liu et al.,

2005). Highly pathogenic avian influenza (HPAI) began distributing in Hong Kong

in 1997 (Subbarao et al., 1998). It circulated rapidly in Asia, Europe, and Africa

since 2003 and claimed at least 53 human lives (Asmara, 2006). In February 2007,

83 people reported to have been infected by avian influenza that led to the deaths of

63 people. WHO reported that the highest number of cases came from Egypt (29

cases), followed by Indonesia (9), Vietnam (7), China (2) and Cambodia (1) in 2010

(WHO, 2010b). Previously, these countries have also reported human cases of AIV

in 2009 (WHO, 2010a). In addition to the poultry, avian influenza virus could also

infect mammalian thus experts feared the possible emergence of a new subtype of

influenza virus that is able to transmit from human to human now that H5N1 virus is

proven to have been able to spread from birds to human.
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To date only viruses of H5 and H7 subtypes (and sometimes H9 subtype) have been

proven to cause HPAI. Amino acid composition of HA, NA, NS and PB2 proteins

contribute to the antigenic properties, virulence, and host specificity of the viruses

(Alexander, 2007). AIV has the ability to perform reassortment and genetic mutation

allowing the virus to change antigenic properties, pathogenicity, and host specificity.

One of the factors that play a role in AIV infection is the match between the viruses

with receptors on the surface of host cells. For the occurrence of infection, the AIV

binds to the cell surface glycoprotein and glycolipid containing sialyl-galactosyl

moieties [Neu5Ac(2-3 )Gal ] o r [Neu5Ac(2-6 )Gal ) ] . AIV isolated from

chickens binds with [Neu5Ac (2-3) Gal] while the human virus isolated has

specificity against with [Neu5Ac (2-6)-Gal] (Connor et al., 1994, Matrosovich et

al., 2000, Thompson et al., 2006, Matrosovich et al., 1992), thus AIV from chickens

could not easily infect to human (Matrosovich et al., 2004).

Research on the biomolecular aspect showed that in addition to sialic acid receptors

-2.6, which is the majority, human also has a network tracheobronchial ciliated

cells containing receptors with functional -2,6 bond-sialic acid and -2,3-sialic acid

in low proportion. -2,3 sialic acid receptors can be found on pneumosit in the lower

respiratory tract (Thompson et al., 2006). The existence of this receptor is probably

the main entry of avian viruses to human.

1.4. The Structure of Influenza Virus

Influenza virus belongs to the Orthomyxoviridae family. It is subdivided into

A, B, and C based on the antigenic differences of nucleoprotein (NP) and matrix

(M1) protein. Avian virus is the type A virus (Figure 1.1) and it causes epidemic and
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Neuraminidase is an enzyme that prevents aggregation of the virions within the host

cell and facilitates the cell-to-cell spread by cleavage of glycosidic linkages to sialic

acid. The protein M1 controls the assembly of virion proteins and is situated in the

envelope lipid bilayer. The M2 protein which is an ion channel bridges the inside and

outside of the virus. In the viral envelope is a transcription complex required for viral

replication. It consists of RNA nucleoprotein (NP) and, polymerase PA, PB1, and

PB2 (Bardiya and Bae, 2005, Webster et al., 1992).

NA is a tetrameric glycoprotein which composed of four identical subunits (Colman

and Ward, 1985) and acts as a glycohydrolase that eradicates α-ketosidically at N-

terminal which is connected by acetylneuraminic acid residues from glycoconjugates

(Colman and Ward, 1985). Serologic and genetic analysis showed that virus avian

Influenza consists of 16 HA and 9 NA (WHO, 1980, Lee et al., 2005, Zhang et al.,

2009). N1 is currently the most common pathogenic NA in circulation. A detailed

structure of NA is explained below.

1.5. Neuraminidase (NA)

Neuraminidase (NA) is responsible in cleaving sialic acid in terminal receptors,

releasing new viruses from infected cells. NA is found particularly in diverse virus

families and bacteria, as well as in protozoa, some invertebrates and mammalian

(Schwerdtfeger and Melzig, 2010, Sander-Wewer et al., 1982). They have

differences in binding affinity or substrate preference, but they have conserved

domains and structural similarities (Schwerdtfeger and Melzig, 2010). NA plays a

vital role in influenza virus replication, and has a conserved active site residues thus

inhibition of NA can delay the release of virus progeny from infected cells. This will
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reduce the virus population and will give time for the immunity of the host cell in the

body to eliminate the virus (Garman and Laver, 2004). NA hydrolyze α-2,3-sialic 

acid from sugar (galactose), and is also involved in hydrolysis at α-2,6-sialic acid-

galactocyl, but this is less efficient especially if it is weak aglycon (sialic acid).

There are nine subtypes of neuraminidase from influenza A viruses (N1-N9) (Liu et

al., 1995). Type A influenza neuraminidases form two genetically distinct groups:

Group 1 consists of subtypes N1, N4, N5 and N8 while group-2 consists of N2, N3,

N6, N7 and N9. Group-1 has a 150-loop cavity adjacent to the active site that serves

as a gateway for the ligand to interact with NA (Russell et al., 2006). The cavity is

suitable for the active site in the development of new anti-influenza drugs (Rudrawar

et al., 2010).

1.6. The Active Site of Neuraminidase

The active site of NA has highly conserved active residues which are very specific to

the sialic acid as the natural ligand. NA active site contains 18 residues (6 basic, 7

acidic, 3 polar, and 2 hydrophobic) (Colman, 1994). Based on the chemical bonding

and interaction, NA active site can be divided into sub-pockets (Figure 1.2). Subsite

1 (S1) consists of triarginyl cluster (Arg118, Arg292, and Arg371), which has a

pocket of positive charge; thus it will interact with the carboxylic groups of the

ligand (Itzstein et al., 1996). S1 is called basic pocket which is important for

designing lead compound for NA inhibitors (Taylor, 2009). S2 subsite is negatively

charged and is composed of Glu 119 and Glu 227, and it interacts with the amine

group on the acetamido of sialic acid. S3 consists of Trp178 and Ileu222 and has

hydrophobic properties. The two residues are adjacent to Arg152 that binds to the
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water molecules. S4 consists of Ala246 and Arg224, which are adjacent to the

Ileu222 pocket and it is unoccupied by the functional groups of sialic acid (Stoll et

al., 2003). The pocket accommodates a methyl group from SA and Neu5Ac2en

(DANA) (Taylor, 2009). S4 is a new target for the development of new NA

inhibitors. S5 has a unique pocket with mixed polarity environment depending on the

incoming ligand. This site consists of carboxylate of Glu276 (trans-conformation)

and methyl of Ala 246. During enzymatic reaction, Glu276 and Glu277 form

hydrogen bonds with Tyr406 to stabilize the oxocarbonium ion with sialic acid.

Glu276 interacts with O8-O9 in glycerol (SA) (Taylor and Itzstein, 1994). In

addition to these amino acid residues, Asp151 has also an important role but not

defined on the S1-S5 sites. This carboxylic residue does not make direct contact

with DANA, but is believed to play an important role in catalysis by polarizing the

bond α-2,3-sialic acid-glycosidic. Asp115 with Glu119 and Glu227 are also involved 

in sialic acid hydrolysis through the involvement of water molecules (Taylor and

Itzstein, 1994).

Figure 1.2. The interaction of DANA inside a neuraminidase active site in (a) 2D
and (b) 3D representative (taken from PDB ID : 1NNB) (from Stoll et
al., 2003).
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The availability of three-dimensional of structure of NA has played an important role

in the discovery of new inhibitor of neuraminidase. Varghese et al. (1983)

determined the first three-dimensional of NA (N2 subtype structure) using X-ray

crystallography at 2.9 Å resolution (Varghese et al., 1983).They also solved the first

complex structure of NA-sialic acid in 1992 (PDB id; 2bat) (Varghese et al., 1992a).

To date, there have been many crystal structures of neuraminidase available in

Protein Data Bank (PDB). Of the 109 neuraminidase proteins (155 from viruses, 52

from bacteria, and 39 from eukaryota) stored in PDB, only 141 protein

neuraminidase were derived from influenza virus. They represent three subtypes of

neuraminidase and which12 neuraminidase belonging to N1 subtype were found as

shown in Table 1.1.
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Table 1.1. List of some influenza A of neuraminidase structures of influenza A
virus in Protein Data Bank (www.rscb.org).

PDB
code

sub-
type

Strain Ligand
Resolution

[Å]
Reference

3T16 N1 B/BEIJING/1/87 Apo 2.5 (Russell et al., 2006)

2HTY N1 B/BEIJING/1/87 Apo 2.5 (Russell et al., 2006)

2HUO N1 B/BEIJING/1/87 OTV 2.95 ibid

2HU4 N1 B/LEE/40 OTV 2.5 ibid

3BEQ N1 A/BrevigMission/1/1918 H1N1 Apo 1.64 (Xu et al., 2008)

3CYE N1 H1N1 1918 Apo 1.65 ibid

3B7E N1 A/BrevigMission/1/1918 OTV 1.45 ibid(Xu et al., 2008)

3CKZ N1 H5N1 ZANA 1.9 (Collins et al., 2008)

3CL0 N1 H5N1 OTV 2.2 ibid

3CL2 N1 H5N1 OTV 2.54 ibid

3NSS N1 A/California/04/2009/H1N1 Apo 1.9 (Li et al., 2010)

4B7J N1 H1N1 2009: Resistance I223R OTV 2.42 (van der Vries et al., 2012)

1ING N2 A/TOKYO/3/67 BANA51 2.4 (Singh et al., 1995)

1INH N2 A/TOKYO/3/67 BANA62 2.4 ibid

1INW N2 A/TOKYO/3/67 AXP3 2.4 ibid

1INX N2 A/TOKYO/3/67 EQP4 2.4 ibid

1IVC N2 A/TOKYO/3/67 BANA25 2.4 (Jedrzejas et al., 1995)

1IVD N2 A/TOKYO/3/67 BANA16 1.8 ibid

1IVE N2 A/TOKYO/3/67 BANA37 2.4 ibid

1IVF N2 A/TOKYO/3/67 DANA 2.4 ibid

2BAT N2 A/TOKYO/3/67 Sialic
acid

2 (Varghese et al., 1992b)

1NNB N9 A/TERN/AUSTRALIA/G70C/75 DANA 2.8 (Bossart-Whitaker et al.,
1993)

1NNC N9 A/TERN/AUSTRALIA/G70C/75 ZANA 1.8 ibid

1INY N9 A/TERN/AUSTRALIA/G70C/75 EQP 2.4 (White et al., 1995)

1MWE N9 A/TERN/AUSTRALIA/G70C/75 Sialic
acid

1.7 (Varghese et al., 1997)

2QWI N9 A/TERN/AUSTRALIA/G70C/75 G208 2 (Varghese et al., 1998)

2QWJ N9 A/TERN/AUSTRALIA/G70C/75 G289 2 ibid

2QWK N9 A/TERN/AUSTRALIA/G70C/7 G3910 1.8 ibid

1BJI N9 A/TERN/AUSTRALIA/G70C/75 DPC11 2 (Taylor et al., 1998)

1F8D N9 A/TERN/AUSTRALIA/G70C/75 9-amino-
DANA

1.4 (Smith et al., 2001)

1F8E N9 A/TERN/AUSTRALIA/G70C/75
4,9-

amino-
DANA

1.4 ibid

1BANA5; 4-(acetylamino)-3-[(hydroxyacetyl)amino]benzoic acid
2BANA6; 4-(acetylamino)-3-[(aminoacetyl)amino]benzoic acid
3AXP; 4-acetamido-2,4-didexoy-d-glycero-β-d- galacto-octopyranosylphosphonic acid (an axial phosphonate) 
4EQP; 4-acetamido-2,4-dideoxy-d-glycero--d-galacto-1-octopyranosyl)phosphonic acid
5BANA2; 4-(acetylamino)-5-amino-3-hydroxybenzoic acid
6BANA1; 4-(acetylamino)-5-amino-3-hydroxybenzoic acid
7BANA3; 4-(acetylamino)-3-amino benzoic acid
8G20; 4-acetyl-4-guanidino-6-methyl(propyl)carboxamide- 4,5-dihydro-2h-pyran-2-carboxylic acid
9G28; 5-n-acetyl-4-amino-6-diethylcarboxamide-4,5-dihydro-2h-pyran-2-carboxylic acid
10G39; (3R,4R,5S)-4-(acetylamino)-5-amino-3-(pentan- 3-yloxy)cyclohex-1-ene-1-carboxylic acid
11DPC; 5-acetylamino-4-amino-6-(phenethyl-propyl-carbamoyl)-5,6-dihydro-4h-pyran-2-carboxylic acid
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1.7. Computer-Aided Drug Design (CADD)

The use of computational techniques has been shown to further increase the

efficiency of drug discovery and development (Zhang, 2011, Marshall, 1987).

Computer-aided molecular design (CAMD) or in silico or computer-aided drug

design (CADD) is being applied to expedite and assist hit-to-lead selection, hit

identification, optimize the absorption, distribution, metabolism, excretion (ADME)

and profile toxicity (Kapetanovic, 2008).

CADD could be devided into; (1) ligand based design, (2) structure based design,

and (3) de novo design. There are various methods of ligand-based drug design

(LBDD) can be applied, if protein structures are unknown, such as this method

Quantitative Structure Activity Relationship (QSAR) and pharmacophore modelling

(Kapetanovic, 2008, Zhang, 2011). The knowledge of ligand such as

pharmacological effect and bioactivity is important in LBDD. A ligand set with

known activity can generate model by computational approach such as QSAR,

pharmacophore modelling, and database mining (Zhang, 2011). The retrieval of all

3D structures from a database considered as being similar to a given target structure

is comparable with 2D similarity searching. However, 3D similarity searching reduce

the problem of conformational flexibility (Terfloth and Gasteiger, 2003). The

successful stories of LBDD approaches in facilitating drug discovery have been

reported by Kubinyi (Kubinyi, 2006, Kubinyi, 1993).

In SBDD, structural knowledge obtained from ligand–protein complexes (X-ray

crystallography or NMR data) can primarily facilitate the design of focused

structure-based libraries by optimizing ligand–receptor complementary interactions,

in an effort to increase potency and specificity (Orry et al., 2006, Hubbard, 2010).
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The applications of SBDD include the discovery of potent and selective HIV

protease inhibitors (Rubin et al., 1978, Wlodawer and Vondrasek, 1998), thrombin

inhibitors (Wagner et al., 1998, Bohm et al., 1999), and neuraminidase inhibitors

(Itzstein et al., 1993). Recent example of this method, peramivir (BCX-1812) which

is developed using structure based method utilise the crystallography structure of a

highly conserved NA active site and its substrate interactions (Young et al., 2001,

Babu et al., 2000).

On the other hand, De novo method is practically used when the ligand is unknown,

with a known target. De novo ligand design will be able to test many structures in a

short period of time and arrange them into a ranked list based on an accurate

prediction of binding free energies since the latter reflects actual binding propensities

(DeWitte and Shakhnovich, 1996, Bohm, 1998, Hartenfeller and Schneider, 2010).

One of CADD tools, which is the most popular in the last 10 years is virtual

screening (Lengauer et al., 2004). Both LBDD and SBDD approaches are powerful

technologies, which can be applied to virtual screening (VS) for lead identification

and optimization (Zhang, 2011).

1.8. Neuraminidase as a Target for Drug Discovery using SBDD technique

As mentioned in Section 1.7, SBDD is a powerful technique in the process of

discovery and development of drug. SBDD approach is responsible for evaluating

the complementarities and predicting the possibility of binding modes and affinities

between ligands and their macromolecular receptors (Zhang, 2011). The availability

of X-ray crystal structures of the influenza virus NA with and without a ligand such

as α-Neu5Ac and Neu5Ac2en (Colman et al., 1983, Varghese et al., 1983, Varghese 
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et al., 1992a) provides the key in designing NA inhibitors. Edmond and co-workers

(Edmond et al., 1966) together with Meindle’s group (Meindl and Tuppy, 1969)

started a random screening method in drug discovery. This method is based on

guided activity that focused on trial and error, but the method did not work as the

compounds easily produced drug resistant. Goodford (Goodford, 1985) calculated

the interaction energy between ligand and the target by using computational method

and found that interaction of both ligand and target can be predicted by using

predictive software programs such as GRID (Goodford, 1985). The software

program GRID forms the collection of computing resourch that performs task from

multiple sites. The GRID programs has been used by von Itztein et al. (Itzstein et al.,

1996) to design NA inhibitors using SBDD approach. Energy interaction between

sialic acid (SA) and NA in the complex crystal structure becomes the basis for drug

design a NA inhibitors (Wade, 1997).

It is possible to design highly potent NA inhibitors with SBDD as has been reported

in the discovery of zanamivir (ZANA) (Taylor and Itzstein, 1994). Using GRID

(Goodford, 1984, Goodford, 1985), the active site of NA is explored for the ability to

accommodate a variety of groups such as carboxylates, amine, methyl and phosphate

functional groups to get a potent and effective inhibiting NA (Itzstein et al., 1996).

Several compounds have been successfully modified and optimized based on charge

and shape of the character of active sites through SBDD methods, such as ZANA

(Itzstein et al., 1996) and OTV (Kim et al., 1997). Based on the results of

computational chemistry, von Itztein et al. (Itzstein et al., 1996) replaced the

hydroxyl group at C-4 from the Neu5Ac2en with amine base groups into 4-amino-4-

deoxy-Neu5Ac2en (Figure 1.3(a)) and further replaced with a guanidino group
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(ZANA) (Figure 1.3(b)). Based on these data, C-4 group on the guanidino of ZANA

successfully interact with carboxylic groups on the site active residues (Glu119 and

Glu227) which leads to better inhibition of NA of Neu5Ac2en. The importance of

NA in the history of the pathogenesis of influenza virus infection and the properties

of the active side residue which is highly conserved lead to a concrete reason to

design of small molecule, which is selective and effective towards NA.

The glycerol moieties of ZANA interact with the active site of NA in a similar way

to DANA. The in silico results showed that the replacement of glycerol with a more

hydrophobic group makes the ligand more stable in solid form (oral administration),

whereas ZANA is stable only in the form of solution (intravenous). In addition,

QSAR studies explained that the replacement of glycerol with considerations chain

length, branches, and stereochemistry of alkyl groups also improve the inhibition

against NA. This is the basis in designing OTV (GS4071) (Figure 1.4(a)). Kim et al.

performed optimization by the replacement of glycerol with 3-pentyl ether but

maintaining acetamido and amino groups in the GS 4071(Kim et al., 1997). In this

discovery, GS4104 (Figure 1.4(b)) has been developed for the purpose of drug

formulations, which is the ester derivative of OTV (Lew et al., 2000, Lew et al.,

1999, Li et al., 1998).

(A) (B)

Figure 1.3. The structures of (a) 4-amino-4-deoxy-Neu5Ac2en and (b) zanamivir.
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Based on the success the discovery of ZANA (Itzstein et al., 1996) and OTV (Lew et

al., 2000), SBDD has played an important role in the discovery of NA inhibitors.

However, the constant threat of pandemic avian influenza (Monto, 2005) and the

emergence of strains resistant to OTV (Tamiflu) makes the development of new

effective NA inhibitor interesting for drug development research.

HOOC O

NHAc

NH2

EtOOC O

NHAc

NH2

(A) (B)

Figure 1.4. (A) oseltamivir carboxylate (GS 4071) (B) oseltamivir (GS 4104).

1.9. Pharmacophore Modelling

IUPAC defines pharamcophore as the ensemble of steric and electronic features,

which are required to ensure the optimal molecular interactions with a specific

biological target structure and to trigger its biological response (IUPAC, 2007).

As QSAR theory that was developed by Hansch and Fujita showed that the sum of

the steric, electronic, and hydrophobic effects of substituent’s in a compound

determines its biological activity, pharmacophoric patterns are also influenced by

streometry, steric (atoms are accessible to the receptor), and electrostatic (Kubinyi,

1993). Technique of building pharmacophore is based on generating conformational search

then mapping common groups in terms of a particular or specific atom type (e.g.

hydrogen bond donor or acceptor), functional groups or some other similar

properties. After that, the molecules are aligned and superimposed at the specified
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points in a defined mode and then pharmacophore is created by joining the sites in

common and calculating distances by averaging sites of superposition in a least-

squares fit calculation. Spatial relationships between the pharmacophoric groups and

relationships can be expressed as distances, angles, and torsions. The 3D (distances,

angles, and torsions) pharmacophore features may describe the properties of the

geometric points as to the type of interaction with the receptor (Langer et al., 2007).

Typically, pharmacophore features include hydrogen bond donor, hydrogen bond

acceptor, aromatic, hydrophobic, positive ionizable, and negative ionizable. In

comparing a ligand and a pharmacophore, the quality of the mapping were indicated

by the fit value, a higher fit value represents a better fit.

1.9.1. Pharmocophore Software Tools

Gund et al. (Gund, 2000) developed the first pharmacophore software derived by

using 3D database, but at that time (around 1974) only a few 3D databases available.

The availability of 3D databases significantly increased the benefits to reach

electronic pharmacophore models that could predict bioactivity. DISCO was the first

pharmacophore software which incorporated 3D-searching in 1990 (Martin, 1995).

GASP (Genetic Algorithm Superposition Program) was created for pharmacophore

identification by Jones et al. (Jones et al., 1995). CATALYST was recently one of

the most popular pharmacophore modelling. CATALYST algorithms utilized to

generating pharmacophore hypothesis include HipHop, HipHoprefine, Hypogen, and

Hyporefine (Poptodorov et al., 2005, Clement and Mehl, 2000).

HipHop algorithm is able to identify 3D-conformation of chemical features common

to a set of molecules (Barnum et al., 1996). There are three steps to generate feature-
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based 3D-pharamcophore aligment: (a) Generation of conformational model for each

molecules in the training set is generated, (b) Evaluating of each conformer is

evaluated for the presence of chemical feature, (c) Determination of 3D-

configuration of chemical features to input molecule is determined (Clement and

Mehl, 2000). Beside HipHop module, CATALYST also includes Hypogen

pharmacophore generation algorithm that is a ligand-based QSAR tool using

pharmacophoric overlap to predict activity (Li et al., 2000).

1.9.2. Basic Principle of Hypogen Algorithm

HipHop as mentioned above is a qualitative model that could not predict activity.

However, it is also the aim of CATALYST pharmacophore modelling to generate

quantitative model based on a set of compounds with biological activities to predict

the activity (Chaudhaery et al., 2010) and it is called Hypogen. Hypogen correlates

fit value with activity, thus the model generated can estimate the activity.

Information of ligands of activities such as IC50 or Ki is used to construct hypotheses

model that best correlates the activities between the estimated and that determined in

experiment of assay (Li et al., 2000).

There are three phases in Hypogen: constructive, subtractive, and optimization phase.

The first phase (constructive) is very similar to HipHop algorithm processing and

uses a pruned exhaustive search of all the conformations (Poptodorov et al., 2005,

Kurogi and Guner, 2001).

Hypogen identifies common configurations of features among discrete

conformations of a set of molecules (Barnum et al., 1996). The training set is divided
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into three categories; most active, moderate active and inactive. The most active

ligands can be calculated by the equation in below:

MA * UncMA — (A/ UncA) > 0.0……………….Equation 1.1

Where MA is the activity of the most active compound, UncMA is the

uncertainty in the measured activity and A is the activity of the active compound. Unc is

the uncertainty of the compounds and the value of an ‘‘Uncertainty’’ is 3 by default

(Kurogi and Guner, 2001, Guner et al., 2004). Compounds are considered inactive

when their activity is located at 3.5 logarithmic units below that of the most active

compound.

Constructive phase limits to the maximum of eight (Li et al., 2000). HypoGen

creates all acceptable pharmacophores containing up to five features among the two

most active compounds. The two most active in the list an investigated to identify

systematically by overlaying all their conformation, and only hypothesis that fit a

minimum subset of features of the rest a active compounds are maintained

(Poptodorov et al., 2005).

Subtractive phase will process programme to examine the hypothesis that were

created in the constructive phase and deleted pharmacophores from the data structure

that are not likely to be useful or hypotheses that fit inactive training compounds 

(Taha et al., 2010, Poptodorov et al., 2005, Li et al., 2000).

A particular training compound is considered as being inactive if the activity of the

compound was 3.5 fold less than that of the most active compounds as following this

equation:

log (A) — log (MA) > 3.5………………. Equation 1.2
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where A and MA are the activity of the compound in the query and the activity of the

most active compound, respectively.

In optimization phase, simulated annealing algorithm is employed to apply the

predictive power of the hypotheses. Improving the score can be attempted by

applying small perturbation in the algorithm to the pharmacophores created (Li et

al., 2000). In the last step of optimization phase, quantitative extension of Occam's

razor selects the simplest models to estimate the activity correctly (Kurogi and Guner,

2001, Li et al., 2000).

1.9.3. Cost function in Hypogen

Hypogen generates the best hypothesis by using Cost function. Cost function in

Hypogen is used as the first step for validation process. Cost function is used to

evaluate the power of activity data of a compound as an input parameter and dataset.

CATALYST will generates two cost hypotheses (blank without activity data and

dataset with activity) to show the significance of the results (Poptodorov et al.,

2005). Fixed cost and null cost as theoretical costs are calculated in Hypogen as

output for correlation data between biological data reference and prediction (Sutter et

al., 2000). The value of weight cost is derived from gaussian form and the value

increases as the feature deviates from an ideal (2.0). Root mean squares (rms)

differences between the estimated and measured experiment activity for the data set

molecules is calculated as error component value. The configuration component is

called as constant cost. This value depends on the complexity of the hypothesis space

being optimized and equal to the entropy of the hypothesis space. The configuration

should not be greater than 17.0 in standard HypoGen mode.
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1.10. Molecular Docking Simulation

Molecular docking is a key tool that combines computational and structural

molecular biology to predict the predominant binding mode(s) of a ligand with a

protein of known three-dimensional structure (Morris and Lim-Wilby, 2008). The

general schematic of molecular docking is illustrated in Figure 1.5 (Morris and Lim-

Wilby, 2008). The macromolecule as target and ligand must be first chosen based on

the disease type and then the structure selected has to be prepared in correspondence

with the needs of the docking method being employed. Finally, the results must be

analyzed based on ranking of scoring function. Binding area consists of its position

(x-, y-, and z-translations), orientation (Euler angles, axis-angle, or a quaternion),

and, if the ligand is flexible, its conformation is defined by the torsion angles for

each rotatable bond (Morris and Lim-Wilby, 2008).

Figure 1.5. Schematic chart of a protocol for docking simulation (Morris and Lim-
Wilby, 2008).

Target Selection

Target Preparation

Docking

Ligand Selection

Ligand Preparation

Evaluating Docking
Results
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There are two terms to understand how well this method performs. The terms are

matching and scoring, and this will explain how to determine successful docking

between ligand and macromolecule (protein) (Kroemer, 2003, Rarey et al., 1999).

Matching is a computational method to find optimum suitability between ligand and

protein based on sterical factor evaluation and its electrostatic contribution which

play a role in receptor-ligand interaction (Kroemer, 2003, Halperin et al., 2002),

while scoring function is used to distinguish correct or wrong solution and sort the

correct solution (Halperin et al., 2002).

It is a common concept for docking and fragments placement algorithms in

computer-aided drug design (Rarey et al., 1999). The chemical matching algorithm

generally ranks known inhibitors better than does matching based on shape (Shoichet

and Kuntz, 1993). Matching methods is introduced with different treatment of ligand,

conformational exploration, interaction ligand-protein representation, and prediction

of binding affinity.

Algorithms approach was developed by considering ligand as flexible molecule

(Moustakas et al., 2006, Rarey et al., 1999, Shoichet and Kuntz, 1993). Autodock

algorithm used in this study is based on the concepts of natural selection, genetic

algorithms, operated by creating a set of proposed solutions (‘population’) to a

problem of interest, evaluating them (‘fitness pressure’), and then using the best

solutions to develop a new set of proposed solutions (‘breeding’) (Douguet et al.,

2000), (Pegg et al., 2001, Zabinsky, 2009).

In Autodock, local search technique is embedded with GA which transforms

genotypic representations into phenotypic and is called Lamarckian Genetic

Algorithm (LGA) that enhanced performance relative to simulated annealing and GA
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alone. Three new search methods in Autodock 3 include a genetic algorithm; local

search method; and adaptive global-local search method based on Lamarckian

genetic algorithm.

Autodock uses semiempirical free energy force field to evaluate conformation during

docking simulation. The force field is parameterized using ligand-protein complexes

with known inhibition constant (Ki) (Morris et al., 2009).

Figure 1.6 describes how Autodock calculate the binding free energy. Ligand and

protein initially present as unbound conformation states. In the first step,

intramolecular energy is calculated from unbound conformation state of ligand that

binds to protein. In the second step, force field evaluates ligand to protein

intermolecular energy (in bound conformation) (Morris et al., 2009).

Figure 1.6. Illustration of calculation step of energy in autodock (Morris, et al.,
2009).
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In Autodock, the equation to calculate free energy of binding also calculates entropic

terms to the molecular mechanics, Equations 1.3 (Morris et al., 1998, Budin et al.,

2001).

G = Gvdw+ GHBOND + Gelec + Gconform + Gtor + Gsol.......... Equation 1.3

The above four terms are the typical molecular mechanics for hydrogen bonding,

dispersion or repulsion, electrostatics, and deviations from covalent geometry,

respectively; Gtor are the restriction of internal rotors, global rotation and

translation; and Gsol is desolvation upon binding and the solvent hydrophobic

effect wherein the entropy changes the interfaces between solute-solvent.

Autodock 3 software consists of three programs; AutoTors, AutoGrid, and AutoDock

(Goodsell and Olson, 1990). AutoTors assists the input of ligand coordinates thus the

ligand has flexibility with rotatable torsion angles and partial charge. AutoGrid

facilitates to pre-calculate a three-dimensional grid of interaction energy based on

macromolecular coordinates. It constructs three-dimensional grid surrounding the

coordinates for the protein target. Finally, AutoDock performs docking simulation

between ligand into macromolecules (Goodsell et al., 1996). In this step, the ligand

explores six spatial degrees of freedom of rotation-translation and an arbitrary

number of torsional degrees of freedom (Morris et al., 2008).

1.11. Ligand-Based Drug Design: Discovery of Neuraminidase Inhibitors

In recent time, sialic acid or Neu5Ac2en derivatives have been synthesized and

evaluated for their influenza virus sialidase inhibitory potential. There at least 268

compounds of Neu5Ac2en derivatives have been synthesized worldwide

(www.bindingDB.org) (Chen et al., 2002, Liu et al., 2007). In addition, molecular
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