SUPERCRITICAL FLUID CARBON DIOXIDE STERILIZATION OF CLINICAL SOLID WASTE

by

MD. SOHRAB HOSSAIN

Thesis submitted in fulfillment of the requirements

for the degree of

Doctor of Philosophy

ACKNOWLEDGEMENT

In the name of Allah, the Beneficent and Merciful

First and foremost, I would like to express my deepest gratitude to the almighty Allah for giving me an opportunity, courage and strength to complete this study.

I would like to express my sincere gratitude to my main supervisor, Professor Dr. Ir. Mohd Omar Ab Kadir (School of Industrial Technology, USM), my co-supervisor Dr. Venugopal Balakrishnan (Institute for Research and Molecular Medicine, USM) for their enthusiasm and invaluable guidance, advice and encouragements throughout the pursuit of this doctorate. This study would not have been possible without their support.

I express my sincere thanks to Professor Dr. Nik Norulaini Nik Ab Rahman (School of Distance Education, USM) for her guidance, advice and encouragements. I admire her invaluable comments and keen insight in this research.

I am grateful to the Institute for Post Graduate Studies, Universiti Sains Malaysia for providing the postgraduate research fellowship and postgraduate research grant (USM-RU-PRGS-1001/PTEKIND/ 843010) as financial support. It has been a great benefit to be able to work with Hospital Lam Wah Ee on this project and I am most thankful to the Hospital Management for ethical approval and permission to collect the clinical samples. I gratefully acknowledge the assistance from Pn. Rosliza Abdul Rahman (Chief Medical Laboratory Technologist, Department of Microbiology and Parasitology, Hospital Universiti Sains Malaysia); Pn Sabariah Osman (Senior

Technologist, Institute for Research in Molecular Medicine, Universiti Sains Malaysia),

on the detection of the bacteria in the clinical solid waste.

My heartiest gratitude to my uncle Professor Dr. Md. Zaidul Islam Sarker

(International Islamic University. Malaysia) for his continuous moral support and

invaluable advices. To my parents Md. Shamsul Islam and Most Kulsum Begum, My

mother in law Halima Binti Rasul, my siblings (Salma, Sabina, Sohel and Salek),

siblings in law (Rabeya, Noorzahan, Mehar, Farida, Azlan and Sarah) and my beloved

son and daughter (Raheel and Raeesa), with your love and prayers the dreams and hopes

had come true! I extend my love and reverence to you all. My friends and colleagues,

who have helped in diverse ways - Bazlul Mobin, Moftah, Jahurul, Zainun Abedin,

Vignesh, Malar, Sangeeta.....and many more. 'Thank you' is just not enough to say, I

appreciate your kind cooperation throughout this journey. I express my thanks to all the

lab assistance and staffs of the School of industrial Technology for their help and

assistance during this study.

Finally, I gratefully acknowledge the moral support and perseverance of my dear

wife and my best friend Noorul Aini Binti Mohd Salib, who took special care of my

physical and spiritual comfort throughout the study. Her continuing support and

enthusiasm for my career is most invaluable.

Md. Sohrab Hossain

May, 2013

iii

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iv
LIST OF FIGURES	ix
LIST OF TABLES	xvi
LIST OF ABBREVIATIONS AND SYMBOLS	XX
ABSTRAK	xxiv
ABSTRACT	xxvi
Chapter One: Introduction	
1.1 Clinical solid waste management in Malaysia	1
1.2 Problem statement	5
1.3 Objectives	8
Chapter Two: Literature Review	
2.1 Clinical Solid Waste Management	9
2.2 Definition and classification of Clinical solid waste	12
2.3 Sources of clinical solid waste	17
2.4 Clinical solid waste generation	18
2.5 Risks of Clinical solid waste	23
2.6 Treatment of clinical solid waste	26

2.6.1 Open dump and open burn	27
2.6.2 Landfill	28
2.6.3 Incineration	31
2.6.4 Autoclaving	33
2.6.5 Microwave	35
2.7 Supercritical fluid carbon dioxide sterilization	36
2.8 SF-CO ₂ Sterilization of the Clinical Solid waste	40
Chapter Three: Determination of the current status of clinical solid waste	
management in a Hospital of Penang, Malaysia	
3.1 Introduction	42
3.2 Materials and methods	44
3.2.1. Site selection	44
3.2.2 Gathering of information	45
3.2.3 Data Collections	45
3.3 Results and Discussion	47
3.3.1 Clinical solid waste management in Hospital Lam Wah Ee	47
3.3.2 Segregation of the Clinical Solid waste	49
3.3.3 Clinical Solid Waste generation	52
3.3.4 Collection and Storage of clinical solid waste	55
3.3.5 Treatment and Disposal of clinical solid waste	57
3.3.6 Encouraging waste reduction	58
3.4 Determination of the status of clinical solid waste management	58
3.5. Conclusion	

Chapter Four: Identification of Bacterial agent in Clinical solid waste, Sharp waste and General solid waste.

4.1. Introduction	63
4.2. Materials and methods	65
4.2.1 Sample collection and Preparation	65
4.2.2. Identification of the Bacteria in Clinical Solid Waste and	66
Sharp waste	
4.3. Results and Discussion	68
4.3.1 Identification of bacteria in clinical and general solid waste	68
4.3.2 Identification of bacteria in sharp waste	73
4.4. Conclusions	76
Chapter Five: Inactivation of bacteria in clinical solid waste using Supercr fluid carbon dioxide	itical
5.1. Inactivation of bacteria using SF-CO ₂	77
5.1.1 Mathematical model for inactivation of bacteria	79
5.1.2 Inactivation of bacteria using Steam autoclave	82
5.2. Materials and Methods	84
5.2.1. Preparation of bacteria	84
5.2.2 Sample Preparation	85
5.2.3. Inactivation of bacteria in clinical solid waste	87
5.2.4 Enumeration of viable colony	89
•	0,7

5.2.6 Statistical analysis	94	
5.3. Results and Discussion		
5.3.1 Inactivation of bacteria using autoclave	95	
5.3.2 Inactivation of bacteria using SF-CO ₂	103	
5.3.2.1 Effect of pressure	104	
5.3.2.2 Effect of temperature	106	
5.3.2.3 Effect of treatment time	108	
5.3.3 Mathematical Modeling on the inactivation of bacteria in	112	
clinical solid waste using SF-CO ₂		
5.3.3.1 Effect of pressure	112	
5.3.3.2 Effect of temperature	127	
5.3.3.3 Analysis of dependence on temperature by the	148	
Arrhenius model		
5.3.4 Statistical analysis for the optimization the experimental	152	
conditions of SF-CO ₂ sterilization		
5.4 Conclusion	167	
Chapter Six: The inactivation mechanisms of bacteria in clinical solid waste and		
the re-growth of bacteria in sterilized clinical solid waste.		
6.1 Introduction	168	
6.1.2 Inactivation mechanisms of bacteria in clinical solid waste	182	
6.2 Methodology	173	
6.2.1 Determination re-growth potential of bacteria from the	173	
sterilized clinical solid waste		

6.2.2 D	etermination of inactivation mechanisms of bacteria in	174
	clinical solid waste	
	6.2.2.1 Scanning electron microscope image analysis of	175
	bacteria	
	6.2.2.2 Analysis of the cellular protein of the bacteria	176
	6.2.2.3 Analysis of the enzymatic activity of bacteria	177
6.3 Results and	1 Discussion	179
6.4 Conclusion	ns .	198
Chapter Seven	n: Conclusion and Recommendation	
7.1 Conclusion		199
7.2 Recommen	dation	201
REFERENCE	CS CS	202
APPENDIX		220
LIST OF PUR	RLICATIONS	231

LIST OF FIGURES

Figure 2. 1	The classification of healthcare waste (Source: MOH, 2009).	17
Figure 3. 1	Overview of Clinical solid waste Management at the Hospital Lam	48
	Wah Ee, Penang Island, Malaysia.	
Figure 3.2	Clinical solid waste generation in Hospital Lam Wah Ee, Penang,	53
	Malaysia.	
Figure 3.3	The amount of clinical, non-clinical and recyclable waste	55
	generation (kg/day), and their percentage distribution of generated	
	waste in Hospital Lam Wah Ee, Penang Island, Malaysia	
Figure 3.4	Clinical solid waste collections for the disposal; (a). Transporting	57
	the clinical waste from internal storage area to centralized storage	
	room following the internal transport route (b). Loading of clinical	
	solid waste bins into the dedicated clinical waste van.	
Figure 3.5.	Proposed healthcare waste management to HLWE, Penang Island,	61
	Malaysia	
Figure 4.1	Flow chart for the identification of bacteria in clinical solid waste.	67
	+Ve: positive; -Ve: Negative; A: Acid growth; K: Alkaline	
	growth; N: Neutral.	
Figure 5.1.	Cell wall structure of gram positive and gram negative bacteria	78
Figure 5.2	The curve showing the typical bacteria cell inactivation based on	81
	the modified Gompertz model. $\log N/N_0 = \text{survival ratio}$; A (- \log	

	N $_{max}$): lower asymptote value (min); -k $_{dm}$: the is the maximum	
	inactivation rate (min $^{-1}$), λ : the time for lag phase (min); t: the	
	treatment time (min). t_t : complete inactivation time (min).	
Figure 5.3	Supercritical fluid carbon dioxide sterilization system. V: valve,	88
	DP: Diaphragm Pressure, DT: Diaphragm Temperature.	
Figure 5.4.	Inactivation of E. coli in clinical solid waste using steam	97
	sterilization. Experimental conditions: (o), 111°C (8 psi);	
	(\Box), 121 0 C (15 psi) and (\Diamond), 131 0 C (27 psi).	
Figure 5.5	Inactivation of P. aeruginosa in clinical solid waste using steam	98
	sterilization. Experimental conditions: (○), 111 ⁰ C (8 psi); (□),	
	121 ^o C (15 psi) and (◊), 131 ^o C (27 psi).	
Figure 5.6	Inactivation of A. baumannii in clinical solid waste using	99
	steam sterilization. Experimental conditions: (o), 111°C (8	
	psi); (\Box), 121^{0} C (15 psi) and (\Diamond), 131^{0} C (27 psi).	
Figure 5.7	Inactivation of S.aureus in clinical solid waste using steam	100
	sterilization. Experimental conditions: (o), 111°C (8 psi);	
	(\Box), 121 0 C (15 psi) and (\Diamond), 131 0 C (27 psi).	
Figure 5.8	Inactivation of S. pyogene in clinical solid waste using steam	101
	sterilization. Experimental conditions: (o), 111°C (8 psi);	
	(\Box), 121 0 C (15 psi) and (\Diamond), 131 0 C (27 psi).	
Figure 5.9	Inactivation of B. subtilis in clinical solid waste using steam	102
	sterilization. Experimental conditions: (o), 111°C (8 psi);	
	(\Box) , 121° C (15 psi) and (\Diamond) , 131° C (27 psi).	

- Figure 5.10 Effect of treatment pressure on the inactivation of bacteria in 105 clinical solid waste using SF-CO₂. Temperature, 35 ⁰C; Time, 30 min.
- Figure 5.11 Effect of treatment time on the inactivation of bacteria in clinical 107 solid waste using SF-CO₂.Pressure 10 MPa; Time, 30 min.
- Figure 5.12 Effect of treatment time on the inactivation of bacteria in clinical 109 solid waste using SF-CO₂. Pressure 10 MPa; Temperature, 35 0 C.
- Figure 5.13 Effect of SF-CO₂ pressure on the inactivation of *S. aureus* in 114 clinical solid waste at temperature 35 0 C and exposure time 30 min. N_{0} : Initial cell counts; N: viable cell counts after treatment, Exp: experimental data, Cal: calculated value by fitting the modified Gompertz equation to the experimental data.
- Figure 5.14 of SF-CO₂ pressure on the inactivation of *E. faecalis* in clinical 117 solid waste at temperature 35 0 C and exposure time 30 min. N_{0} :

 Initial cell counts; N: viable cell counts after treatment, Exp: experimental data, Cal: calculated values by fitting the modified Gompertz equation to the experimental data.
- Figure 5.15 of SF-CO₂ pressure on the inactivation of *E. coli* in clinical solid 120 waste at temperature 35 0 C and exposure time 30 min. N_{0} : Initial cell counts; N: viable cell counts after treatment, Exp: experimental data, Cal: calculated values by fitting the modified Gompertz equation to the experimental data.
- Figure 5.16 of SF-CO₂ pressure on the inactivation of *B. sphaericus* in clinical 123

solid waste at temperature 35 0 C and exposure time 30 min. N_{0} : Initial cell counts; N: viable cell counts after treatment, Exp: experimental data, Cal: calculated values by fitting the modified Gompertz equation to the experimental data.

- Figure 5.17 Effect of SF-CO₂ pressure on the inactivation of *S. marcescens* in 126 clinical solid waste at temperature 35 0 C and exposure time 30 min. N_{0} : Initial cell counts; N: viable cell counts after treatment, Exp: experimental data, Cal: calculated values by fitting the modified Gompertz equation to the experimental data.
- Figure 5.18 Effect of temperature on the inactivation of *S. aureus* in clinical 130 solid waste using SF-CO₂ at Pressure 10 MPa. *N*₀: Initial cell counts; *N*: viable cell counts after treatment, Exp: experimental data, Cal: calculated valus by fitting the modified Gompertz equation to the experimental data.
- Figure 5.19 Effect of temperature on the inactivation of *E. faecalis* in clinical 133 solid waste using SF-CO₂ at Pressure 10 MPa. *N*₀: Initial cell counts; *N*: viable cell counts after treatment, Exp: experimental data, Cal: calculated values by fitting the modified Gompertz equation to the experimental data.
- Figure 5.20 Effect of temperature on the inactivation of *E. coli* in clinical 136 solid waste using SF-CO2 at pressure 10 MPa. *N*₀: Initial cell counts; *N*: viable cell counts after treatment, Exp: experimental data, Cal: calculated values by fitting the modified Gompertz

- equation to the experimental data.
- Figure 5.21 Effect of temperature on the inactivation of B. sphaericus in 139 clinical solid waste using SF-CO2 at pressure 10 MPa. N_0 : Initial cell counts; N: viable cell counts after treatment, Exp: experimental data, Cal: calculated values by fitting the modified Gompertz equation to the experimental data.
- Figure 5. 22 Effect of temperature on the inactivation of *S. marcescens* in 141 clinical solid waste using SF-CO₂ at pressure 10 MPa. *N*₀: Initial cell counts; *N*: viable cell counts after treatment, Exp: experimental data, Cal: calculated values by fitting the modified Gompertz equation to the experimental data.
- Figure 5.23 Temperature dependence of the inactivation rate for the 149 inactivation of *S. aureus, E. faecalis, E. coli, B. sphaericus* and *S. marcescens* in clinical solid waste at SF-CO₂ pressure of 10 MPa. Symbols: experimental data. Lines: experimental data fitted with linear regression.
- Figure 5.24 Two-way table showing the interactions AC for the inactivation *S*. 157 *aureus* in clinical solid waste using SF-CO₂
- Figure 5.25 Two-way table showing the interactions AC for the inactivation E. 159 faecalis in clinical solid waste using SF-CO₂
- Figure 5.26 Two-way table showing the interactions AC for the inactivation B. 160 *sphaericus* in clinical solid waste using SF-CO₂.
- Figure 5.27 Two-way table showing the interactions AB (a) and AC (b) for the 162

- inactivation *E. coli in* clinical solid waste using SF-CO₂.
- Figure 5.28 Two-way table showing the interactions AB for the inactivation S. 164 marcescens in clinical solid waste using SF-CO₂.
- Figure 6.1 Proposed inactivation mechanisms of bacteria in SF-CO₂ 170 sterilization
- Figure 6.2 Scanning electron micrographs of *S. aureus*. A: untreated, B: 183

 Autoclaved treated, C: SF-CO₂ treated.
- Figure 6.3 Scanning electron micrographs of *E. faecalis*. A: untreated, B: 184

 Autoclaved treated, C: SF-CO₂ treated.
- Figure 6.4 Scanning electron micrographs of *B. sphaericus*. A: untreated, B: 185

 Autoclaved treated, C: SF-CO₂ treated.
- Figure 6.5 Scanning electron micrographs of *E. coli*. A: untreated, B: 186 Autoclaved treated, C: SF-CO₂ treated.
- Figure 6.6 Scanning electron micrographs of *S. marcescens*. A: untreated, B: 187

 Autoclaved treated, C: SF-CO₂ treated.
- Figure 6.7 Diameter of S. aureus (cocaii) and B. sphaericus 188 (bacilli). A: S. aureus, B: B. sphaericus.
- Figure 6.8 SDS-PAGE for the comparative protein profiles of untreated, 190 autoclave treated and SF-CO₂ treated *S. aureus* and *S. marcescens*.

 Experimental conditions, autoclave: Temperature 121°C for 60 min; SF-CO₂: pressure 20 MPa, temperature 60°C for 60 min.
- Figure 6.9 SDS-PAGE for the comparative protein profiles of untreated, 191 autoclave treated and SF-CO₂ treated *B. sphaericus*, *E. coli* and *E*.

faecalis. Experimental conditions, autoclave: Temperature 121°C for 60 min; SF-CO₂: pressure 20 MPa, temperature 60°C for 60 min.

Figure 6.10 Proposed healthcare solid waste management in a hospital with the 197 adoption of SF-CO₂ sterilization technology.

LIST OF TABLES

Table 2.1	Definitions and general classification of waste arising from	13
	healthcare facilities.	
Table 2.2	Examples of types of Clinical solid waste	15
Table2.3	Average health care waste generation rate in different countries	22
	hospitals	
Table 2.4	The possible microorganisms and the infected routes in the human	24
	body	
Table 2.5	The most common disposal methods of clinical waste in	27
	healthcare centers of different countries	
Table 2.6	Comparison of physical and transport properties of gases, liquids,	36
	and SCFs	
Table. 2.7	List of microorganisms processed by SCF-CO ₂ sterilization	39
Table 3.1	Segregation of healthcare solid waste at HLWE, Penang Island	50
	Malaysia	
Table 4.1.	Detection of bacteria in clinical and general solid waste	70
Table 4.2	16s rDNA base identification of bacteria in clinical sharp waste	74
Table 5.1.	Bacterial agents was treated in autoclave and SF-CO ₂	85
Table 5.2	Gravimetric composition of clinical solid wastes used in the study	86
Table 5.3	Initial concentration of bacteria in clinical solid waste before SF-	104
	CO ₂ treatment	

Table 5.4	Estimation of the Kinetic parameters of the modified Gompertz	115
	equation for the inactivation of S. aureus in clinical solid waste	
	using SF-CO ₂ with varying pressure	
Table 5.5	Estimation of the Kinetic parameters of the modified Gompertz	118
	equation for the inactivation of E. faecalis in clinical solid waste	
	using SF-CO ₂ with varying pressure.	
Table 5.6	Estimation of the Kinetic parameters of the modified Gompertz	121
	equation for the inactivation of E. coli in clinical solid waste	
	using SF-CO ₂ with varying pressure.	
Table 5.7	Estimation of the Kinetic parameters of the modified Gompertz	124
	equation for the inactivation of B. sphaericus in clinical solid	
	waste using SF-CO ₂ with varying pressure.	
Table 5.8	Estimation of the Kinetic parameters of the modified Gompertz	127
	equation for the inactivation of S. marcescens in clinical solid	
	waste using SF-CO ₂ with varying pressure.	
Table 5.9	Estimation of the Kinetic parameters of the modified Gompertz	131
	equation for the inactivation of S. aureus in clinical solid waste	
	using SF-CO ₂ with varying temperature.	
Table 5.10	Estimation of the Kinetic parameters of the modified Gompertz	134
	equation for the inactivation of E. faecalis in clinical solid waste	
	using SF-CO ₂ with varying temperature.	
Table 5.11	Estimation of the Kinetic parameters of the modified Gompertz	137

equation for the inactivation of E. coli in clinical solid waste using

	SF-CO ₂ with varying temperature.	
Table 5.12	Estimation of the Kinetic parameters of the modified Gompertz	140
	equation for the inactivation of B. sphaericus in clinical solid	
	waste using SF-CO ₂ with varying temperature.	
Table 5.13	Estimation of the Kinetic parameters of the modified Gompertz	142
	equation for the inactivation of S. marcescens in clinical solid	
	waste using SF-CO ₂ with varying temperature.	
Table 5.14	Activation energy and pre-expotential factor for the inactivation of	151
	S. aureus, E. faecalis, E. coli, B. sphaericus and S. marcescens in	
	clinical solid waste at SF-CO ₂ pressure of 10 MPa.	
Table 5.15	Maximum and minimum levels of the variables for the	153
	inactivation of bacteria using SF-CO ₂	
Table 5.16	Initial concentration of the bacteria in clinical solid waste	154
Table 5.17	Treatment code and coded variables for the 2 ³ factorial design of	154
	experiments	
Table 5.18	. Full 2^3 Factorial design of experiments for the inactivation of	155
	bacteria using SF-CO ₂	
Table 5.19	Analysis for Full 2 ³ factorial design of experiments for the	156
	inactivation of S. auerus in clinical solid waste using SF-CO ₂	
Table 5.20	Full 2 ³ factorial design analysis for the inactivation of <i>E. faecalis</i>	158
	in clinical solid waste using SF-CO ₂ .	
Table5.21	. Analysis of the Full 2^3 factorial design experiments for the	160

inactivation of B. sphaericus in clinical solid waste using SF-CO₂.

Table 5.22	Analysis of the full 2 ³ factorial design of experiments for the	162
	inactivation of E. coli in clinical solid waste using SF-CO ₂ .	
Table 5.23	Analysis of the full 2 ³ factorial design of experiments for the	163
	inactivation of S. marcescens in clinical solid waste using SF-CO ₂	
Table 6.1	Bacteria agents and their concentration in pre-sterilized clinical	174
	solid waste	
Table 6.2	Types of enzymes were evaluated to determine the enzymatic	178
	activity in treated and untreated bacteria using APIZYM kits	
Table 6.3	Re-growth of bacteria in sterilized clinical solid waste	179
Table 6.4	Identification of the protein concentration at Absorbance at 280	189
Table 6.5	nm. Enzymatic activities of untreated, autoclave treated and SF-CO ₂	193
	treated E. coli, S. marcescens, S. aureus. E. faecalis and B.	
	sphaericus in clinical solid waste.	

LIST OF ABBREVIATIONS AND SYMBOLS

μg Microgram

A Lower asymptote value

A. baumannii Acinetobacter baumannii

A. lwoffii Acinetobacter lwoffii

Acid phosphatase 2-naphthyl phosphate

Alkaline phosphate 2-naphthyl phosphate

API Analytical profile index

Cal: Calculated values

CFU Conoly forming unit

Cystine arylamidase L-cystyl-2-naphthylamide

E. faecalis Enterococcus faecalis

E_d Activation energy

Esterase (C 4) 2-naphthyl butyrate

Esterase Lipase (C 8) 2-naphthyl caprylate

Exp: Experimental data

HCFs Healthcare facilities

HCW Healthcare waste

HLWE Hospital Lam Wah Ee

ICU Intensive-care unit

K. pneumoniae Klebsiella pneumoniae

 k_{dm} Inactivation rate

KJ Kilojoule

L. sphaericus Lysinibacillus sphaericus

Leucine arylamidase L-leucyl-2-naphthylamide

Lipase (C 14) 2-naphthyl myristate

min minute

MINITAB Statistical software package for analyzing data

MOH Ministry of Health

MPa Megapascal

N: Viable cell counts after treatment

 N_0 : Initial cell counts

N-acetyl-β glucosaminidase 1-naphthyl-N-acetyl-βDglucosaminide

Naphthol-AS-BI-phosphohydrolase Napthol-AS-BI-Phosphate

NCBI National center for Biotechnology Information

P. aeruginosa Pseudomonas aeruginosa

P. mirabilis Proteus mirabilis

psi Pound per square inch

R Ideal gas constant

R² Regression coefficients

rDNA Ribosomal deoxyribonucleic acid

RPC Recycling project committee

RSS Residual sum of the squares

S. agalactiae Streptococcus agalactiae

S. aureus Staphylococccus aureus

S. epidermidis Staphylococcus epidermidis

S. liquefaciens Serratia liquefaciens

S. marcescens Serratia marcescens

S. marcescens Serratia marcescens

S. mutans Streptococcus mutans

S. pyogenes Streptococcus pyogenes

SCFs Supercritical fluids

SDS-PAGE Sodium dodecyl sulphate polyacrylamide gel

electrophoresis

SF-CO₂ Supercritical fluids carbon dioxide

T Absolute temperature

t Time

Trypsin N-benzoyl-DL-arginine-2-naphthylamide

t_t Complete inactivation time

Valine arylamidase L-valyl-2-naphthylamide

WHO World Health Organization

α chymotrypsin N-glutaryl-phenyylalanine-2-naphthylamide

 α fucosidase 2-naphthyl- α L- fucopyranoside

α galactosidase 6-Br-2-naphthyl-αD-galactopyranoside

α glucosidase 2-naphthyl-αD-glucopyranoside

a mannosidase 6-Br-2-naphthyl-αD-mannopyranoside

β galactosidase 2-naphthyl-βD- galactopyranoside

β glucosidase	6-Br-2-naphthyl-βD- glucopyranoside
β glucuronidase	Naphthol-AS-BI-βD-glucuronide
λ	Time for Lag phase

PENSTERILAN SISA PEPEJAL KLINIKAL MENGUNAKAN CECAIR KARBON DIOKSIDA LAMPAU GENTING

ABSTRAK

Satu kajian awal mengenai amalan pengurusan sisa klinikal telah dijalankan di Hospital Lam Wah Ee, Pulau Pinang, Malaysia. Amalan pengurusan merangkumi pengasingan, pengumpulan, pengangkutan dan memerlukan pelaburan kewangan yang tinggi. Walaupun amalan ini dipraktikkan, namun risiko jangkitan masih wujud. Program kitar semula didapati tidak mengurangkan jumlah sisa pepejal klinikal, bahaya dan kos pelupusan. Dalam kajian ini, beberapa jenis bakteria patogenik nosocomial dan oportunis telah dikenal pasti dan pensterilan sisa pepejal klinikal adalah perlu untuk mengurangkan risiko jangkitan kepada pekerja. Perbandingan kecekapan sterilisasi autoklaf wap dan karbon dioksida superkritikal (SF-CO₂) pada sisa pepejal klinikal telah dijalankan. Penyahaktifan bakteria melalui kaedah pensterilan wap bergantung kepada suhu (121 °C), masa rawatan (60 minit) dan jenis spesies bakteria. SF-CO₂ berupaya menyahaktif hampir kesemua spesies bakteria termasuk E. coli, E. faecalis, S. marcescens dan S. aureus, B. sphaericus pada suhu yang agak rendah iaitu 60°C dan tekanan sederhana pada 20 MPa. Model matematik Gompertz telah digunakan untuk menggambarkan tingkah laku penyahaktifan bakteria dalam sisa klinikal dengan menggunakan keadah SF-CO₂. Pertumbuhan semula bakteria tidak berlaku dalam sisa yang telah dirawat dengan kaedah SF-CO₂. Sisa rawatan sterilisasi autoklaf menunjukkan pertumbuhan semula bakteria selepas 2 hari. Analisa Mikroskop Elektron Pengskanan (SEM), protein selular dan aktiviti enzim yang belum dirawat, dirawat dengan autoklaf dan dirawat dengan SF-CO₂ mendedahkan bahawa autoklaf wap

menyahaktifkan bakteria secara fizikal dan mengubah sifat enzim selular. Dalam rawatan SF-CO₂ tekanan menjadi faktor yang menyebabkan kerosakan pada dinding sel, perpecahan sel dan anjakan pada bahagian luar membran. Ketiadaan protein semasa analisis SDS-PAGE mencadangkan bahawa protein selular dan enzim telah terlarut dalam SF-CO₂. Keputusan keseluruhan kajian ini menunjukkan bahawa teknik pensterilan sisa pepejal klinikal SF-CO₂ adalah lebih berkesan untuk digunakan dalam pengurusan sisa klinikal, terbukti berupaya mengurangkan risiko pendedahan kepada jangkitan dan keupayaan untuk memusnahkan sel-sel bakteria secara kimia dan fizikal. Dengan pengurangan risko, pihak hospital secara tidak langsung dapat menyediakan persekitaran yang selamat bagi pesakit, penjagaan kesihatan dan kakitangan klinikal.

SUPERCRITICAL FLUID CARBON DIOXIDE STERILIZATION OF CLINICAL SOLID WASTE

ABSTRACT

There is growing awareness on safe handling and management of clinical solid waste. The aim of the present study was to determine an effective sterilization method for safe handling and recycle-reuse of clinical solid waste materials. A preliminary study on the clinical waste management practice was conducted at Hospital Lam Wah Ee, Penang, The Malaysia. management practices encompasses segregation, collection, transportation and require high financial investments. Despite these practices, the infectious risk is still at hand. The existing recycling programs of general solid waste materials remains unchanged of the amount of clinical solid waste generation, its hazard and the disposal cost. In this study, several types of nosocomial and opportunistic pathogenic bacteria have been identified and sterilization of clinical solid waste is requisite to minimize infectious risks to the workers. Comparison on the sterilization efficiency of steam autoclave and supercritical carbon dioxide (SF-CO₂) on clinical solid waste was conducted. Steam sterilization inactivation of bacteria depended on temperature and treatment time and types of bacterial species. The most effective experimental condition for the autoclave treatment was found to be temperature 121 °C and 131 °C for the exposure time 60 min and 30 min, respectively. SF-CO₂ inactivates the bacteria in clinical solid waste including E. coli, E. faecalis, S. marcescens and S. aureus, B. sphaericus at a relatively lower temperature at 60 °C and moderate pressure of 20 MPa. Gompertz mathematical model was used to describe the inactivation behavior of bacteria in clinical solid waste using SF-CO₂. No re-growth of bacteria was detected in SF-CO₂ treated wastes, unlike bacterial re-growth in autoclave treated waste in 2 days. Analysis of Scanning Electron Microscope (SEM), cellular protein and enzymatic activity of bacterial cells revealed that steam autoclave physically inactivates the bacteria and denatures cellular enzymes. Meanwhile, SF-CO₂ inactivates the bacteria both physically and chemically. Both Pressure and temperature were the factors that cause cell wall damage and extracted out the cytoplasmic materials of bacterial cell. The absence of proteins and enzymes in the SDS-PAGE and APIZYM analysis, respectively, suggests that the cellular protein and enzymes have been dissolved in the SF-CO₂. The overall results of this study suggest that SF-CO₂ sterilization of clinical solid waste is a more effective technique to be employed in the clinical waste management. SF-CO₂ was proven to have reduced the risk of exposure to infection based on its capability to destroy the bacteria cells. With the reduced risk, the hospital could provide a safer environment for patients, healthcare and clinical staffs.

Chapter One: Introduction

1.1 Clinical solid waste management in Malaysia

In the last few decades, human activities and changes associated with lifestyles and consumption patterns have resulted in the generation of huge volumes of different types of wastes. The wastes have threatened the survival of humans and other living things, as well as the natural resources, those are necessary for human existence. Consequently, in little more than two decades public concern over the waste management and the pollution problems associated with waste generation have attracted significant attention and a great deal of researches have been conducted to evaluate appropriate waste management options in order to minimize environmental pollution and maximize resource recovery (Williams, 2005). In recent years, concern over the solid waste from healthcare facilities (HCFs) has increased throughout the world (DenBos and Izadpanah, 2002). Clinical solid waste, arising principally from hospitals and clinics, is potentially dangerous since it can spread infectious diseases due to the inadequate management of clinical solid waste (Abd El-Salam, 2010; Al-Khatib and Sato, 2009).

There is growing awareness on effective control and safe handling of clinical solid waste in worldwide due to the common concern for hospital hygiene (Alagoz and Kocasoy, 2008; Bdour et al., 2007). Clinical solid waste is prescribed by many as

1

infectious, requires pertain approach during handling and disposal of clinical solid waste (Abd El-Salam, 2010). The amount of clinical solid waste generation increases significantly in Malaysia with increasing public healthcare facility and advance technology (Tabasi and Marthandan, 2013). The existing clinical waste management practice in Malaysia is not able to adequately preserve human health and environmental contamination. The Ministry of Health (MOH, 2009) reported that the most common issue for the inadequate clinical solid waste management practice in Malaysia is the improper waste segregation at source. General waste is mixing with clinical solid waste and vice versa due to improper segregation practices in hospitals (DOE, 2009).

The increasing treatment and disposal cost of clinical solid waste and its hazards to human health and environment are relating to the miss classification, improper segregation of the waste (Blenkharn, 2005; Diaz et al., 2008; Lee et al., 2004). The technologies used at present to dispose the clinical solid waste is not environmentally friendly and do not cope with clinical solid waste in a safe manner. For example, the most used technology to dispose clinical solid is incineration. The incineration is considered as an inappropriate technology for treating clinical solid waste due to release a wide variety of pollutants including dioxins, furans, heavy metals, acid gases, carbon monoxide, and nitrogen oxide (Coker et al., 2009; Lee et al., 2004; Singh et al., 2011). Moreover, the incineration technology requires high financial start-up cost and occupational capital to implement the facilities (Alagöz & Kocasoy, 2008; Lee et al., 2004).

Recycling-reuse of clinical solid waste materials is the most desirable way to reduce the waste generation and to prevent materials from entering the waste stream (Lee et al., 2004; Tsakona et al., 2007). Clinical solid waste contains enormous volumes of recyclable materials (Lee et al., 2004; Marinkovic et al., 2008). Therefore, the development of recycling clinical solid waste can serve as a means of reducing rising quantities of waste generation and its treatment cost (Blekharn, 2005; Jang et al., 2006; Lee et al., 2004; Ozbek and Sanin, 2004; Park and Jeong, 2001; Patil and Shekdar, 2001; Tsakona et al., 2007; Tudor, 2007). Clinical solid waste must be free from infectious agents prior to recycling the waste materials. On this basis, the clinical solid waste must be sterilized at the point of generation in order to avoid possible infectious threat of clinical solid waste (Marinkovic et al., 2008; Tsakona et al., 2007).

The definition of the term 'sterilization' is the complete destruction or removal of all living microorganisms on or within a substance, including bacteria or spores, viruses, and fungi (Maurer, 1978; Williams, 2005; Zhang et al., 2006a). Sterilization of clinical solid waste presents a challenge to current sterilization technology due to the major portions of clinical solid waste are heat sensitive plastic or polymer materials. In medical practice, the most common sterilization techniques used are stream autoclaving, ethylene oxide, and gamma-radiation (Dempsey and Thirucote, 1989; Zhang et al., 2006a). Though, all these methods assure a satisfactory microbial inactivation, but still exists a number of limitations (Nik Norulaini et al., 2008; Spilimbergo et al., 2003). Steam autoclave, despite inactivate the microorganisms, can destroy the temperature sensitive materials (White et al., 2006). Additionally, the steam sterilization technique is

expensive and difficult to control because of the extremely high temperature required (Spilimbergo et al., 2002, 2003; White et al., 2006). Gama–radiation sterilization may change tensile strength and transparency of reusable waste material (Dillow et al., 1999). Ethylene oxide, on the other hand, is a toxic and flammable gas. It is a known carcinogen and can cause hemolysis (Dillow et al., 1999). Ethylene oxide sterilization can also chemically destroy the polymer materials. Hence, the available sterilization technologies in medical care are not suitable for the sterilization of clinical solid waste, since the heat sensitive recyclable and reusable clinical solid waste materials may destroy either thermally or chemically. Because of the limitation of the current sterilization technology, a low temperature sterilization technology must be evaluated to deal with clinical solid waste in order to propose cost effective and safer clinical solid waste management practice (Marinkovic et al., 2008).

Supercritical fluid carbon dioxide (SF-CO₂) is an effective sterilization method that has notable benefits over the existing sterilization method. The fluid carbon dioxide at the supercritical state (31.1 °C, 7.4 MPa) is non-toxic and nonflammable. Carbon dioxide is easily available as an industrial byproduct and thus is inexpensive. SF-CO₂ is proven to be effective against any sort of microorganisms, as it impacts target microorganisms both physically and chemically (Jimenez et al., 2008; Kim et al., 2009; Spilimbergo et al., 2002). SF-CO₂ has been potentially used to sterilize biomedical device for being effective against bacteria (Dillow et al., 1999; Spilimbergo et al., 2002), viruses (Fages et al., 1998), and spores (Zhang et al., 2006b). This technology sterilizes the heat sensitive biomedical device without any damage and lowering its quality

(Dillow et al., 1999; Zhang et al., 2006a). Although, SF-CO₂ has been proven as an effective sterilization technology, limited researches have been conducted to sterilize the clinical solid waste using SF-CO₂. Thus, the adoption of SF-CO₂ sterilization technology in clinical solid waste management is receiving potential interest with regards to determine a safer and resource recovery clinical solid waste management practice.

1.2 Problem statement

Many studies have documented to determine a safer clinical waste management practice within an affordable cost by the healthcare facilities. Patwary et al. (2009a) reported that segregation of general waste could dramatically impact on lowering the clinical waste generation. Studies conducted by Lee et al. (2004) and Tudor et al. (2007) reported that the recycling of healthcare waste is a good solution as a means of reducing rising quantities of clinical solid waste and its treatment cost. Lee et al. (2004) further reported that it must ensure that the recyclable healthcare waste must be free from infectious agent prior to conducted recycling program. Although, segregation practice would protect the mixing of general solid waste with the infectious waste, how it could affect the clinical solid waste generation rate and the treatment cost is not well described in literature. Most of the developing country's hospitals are facing financial constrain, lack of regulatory guideline in country level, inadequate segregation materials and trained clinical staffs, those are crucial to conduct effective segregation, resource recovery and recycling program of healthcare solid waste (Ozbek and Sanin, 2004; Sabour et al., 2007; Shinee et al., 2008). Therefore, effective source segregation and recycling practice of healthcare solid waste in a safe manner is impossible for most of the HCFs of developing countries.

One of the major reasons of improper clinical solid waste management practice in a healthcare facility is that the healthcare worker are not aware of possible infectious risk of clinical solid waste (Alagoz and Kocasoy, 2008; Coker et al., 2009; Saini et al., 2004). There is limited scientific information available in literature on the role clinical waste as a reservoir of infectious diseases. It is obligatory to characterize the types of microorganisms present in clinical solid waste in order to achieve a reliable infectious risk of the clinical solid waste.

Available technologies (i.e., incineration, Autoclave, microwave) used to treat clinical solid waste are not environmentally friendly and not able to preserve human health and the environment (Alagoz and Kocasoy, 2008, Marinkovic et al., 2008). Marinkovic et al., (2008) declared that sterilization using a mobile device at its source is the most acceptable solution to infectious medical waste (infectious waste and sharp objects). Sawalem et al., (2009) suggested adopting a low operating cost, easily implementable, and low maintenance sterilization method in clinical waste management to prevent contamination. Sterilization of the clinical solid waste with the view of conducting resource recovery is challenging due to major portions of clinical solid waste materials are made of heat sensitive plastics or bio-polymers. However, numerous studies reported that SF-CO₂ is a gentle terminal sterilization technology, which could

sterilize the heat sensitive high density plastics and polymers without damage and lowering the quality (Dillow et al., 1999; Ellis et al., 2010; White et al., 2006, Zhang et al., 2006a). No study has been conducted yet to determine the acceptable sterilization technology to sterilization clinical waste at its generation source. It is therefore, bearing considerable concern to determine a reliable sterilization technology to handle the clinical solid waste in a safe manner.

Many studies have been carried out to inactivate the bacteria in environmental waste using various sterilization technologies. Little attention has been paid on the regrowth bacteria from the sterilized waste. Bacteria are cellular microorganisms, able to re-grow and multiply under a favorable nutrient requirement (Chong et al., 2010; Rusin et al., 1997). Therefore, it must be ensured the complete inactivation of the bacteria in the cellular level in order to avoid unexpected re-growth of bacteria prior to decide any sterilization technology. Studies reported that pressure, temperature and medium are substantial during inactivation of bacteria in the SF-CO₂ treatment (Dillow et al., 1999; Kim et al., 2009; Spilimbergo et al., 2003), but there is not yet clear understanding of this effect. Several hypotheses have been proposed as an inactivation mechanism including cell rupture, lipid modification, changes of protein, loss of enzymatic activities, acidification, etc., (Dillow et al., 1999; Lin et al., 2008; Spilimbergo and Bertucco, 2003). However, there is limited evidence available in literature to acquire clear understating and confirm the proposed mechanisms.

1.3 Objectives

The objectives are:

- 1. To determine the current status of clinical waste management practice in a hospital of Penang, Malaysia.
- 2. To identify the bacteria in clinical solid waste, sharp waste and general solid waste.
- 3. To determine the effectiveness of the SF-CO₂ sterilization on the inactivation of microorganisms in clinical solid waste.
- 4. To study the inactivation mechanisms of bacteria in clinical solid waste and the re-growth of bacteria in sterilized clinical solid waste.

Chapter Two: Literature Review

2.1 Clinical Solid Waste Management

Safe Clinical solid waste management is crucial due to avoid the potential hazards to human health and environmental. Clinical solid waste is perceived by many as hazardous or infectious (Blenkharn, 1995; Miyazaki and Une, 2005; Phillips, 1999; Salkin, 2003). Although surveys refer that about 10-25% of waste contains the infectious agent (Bendjoudi et al., 2009; Mohee, 2005; Shinee et al., 2008), but Saini et al. (2004) reported that general waste may contain pathogenic bacteria and the microbial flora present in clinical waste and general waste might similar. Besides, there is a possibility of the contamination of non-clinical waste (general waste) with infectious agents during poor segregation, collection, storage and transportation (Blenkharn, 1995; Shinee et al., 2008). Hence, effective attention must be placed during treating clinical solid waste so that clinical waste cannot mix with non-clinical waste. Accordingly, clinical solid waste should be handled, stored, transported and disposed of in a controlled manner to safeguard public health and to prevent environmental pollution. Infectious pathogenic microorganisms may infect the human body during unsafe handling via direct contact (puncture, abrasion or cut in the skin) or indirect conduct (mucous membranes, inhalation or ingestion) (Pruss et al., 1999). A particular concern on the handling of sharps clinical solid waste, it represents the most acute potential hazards to health (Alagoz and Kocasoy, 2008). The management of clinical solid waste, particularly in developing countries is often poor and fraught with difficulties.

Unless clinical waste is properly handled and disposed, it can present risks to healthcare staffs, the public and the environment (Al-Khatib and Sato, 2009; Shinee et al., 2008). There is not yet clear understanding of the infectious risk of the inadequate clinical solid waste management, which is often implemented. A Number of studies have been conducted in many countries to define the best appropriate clinical waste management plan in order to minimize the health hazards and associate environmental pollution (Alagoz and Kocasoy, 2008; Bdour et al., 2009; Bendjoudi et al., 2009; Cheng et al., 2009; Da Silva et al., 2005; Hassan et al., 2008; Sawalem et al., 2009; Shinee et al., 2008). All such studies have indicated that the planning and implementation of waste management practices would reduce waste generation, minimize health hazard and disposal cost.

The management of clinical solid waste is considered as problematic due to its enormous volume of generation, serious threat to the human health as well as disposal cost (Bendjoudi et al., 2009; Da Silva et al., 2005; Diaz et al., 2008; Jang et al., 2006; Saini et al., 2004). Many developed countries have devised codes of practices and guidelines for handling and disposal such waste (Bdour et al., 2007; Da Silva et al., 2005; Lee et al., 2004). Although significant progress has been found, yet it still requires further modification in all aspects of clinical waste management practices. In most developing countries, clinical waste has not received adequate attention despite the fact that clinical waste labeled as hazardous or infectious (Alagoz and Kocasoy, 2008; Coad, 1992; Da Silva et al., 2005; Jang et al., 2006; Tsakona et al., 2007). In developing countries, clinical solid waste has been handled and disposed together with the non-

clinical waste, which is creating inevitable risks to the health care workers, publics and the environment (Alagoz and Kocasoy, 2008; Bendjoudi et al., 2009; Da Silva et al., 2005; Marinkovic et al., 2008; Shinee et al., 2008). WHO in 2002 conducted an investigation survey on the clinical waste management in 22 developed countries. The survey reported that the proportion of healthcare facilities that do not use proper waste disposal methods ranges from 18-64% (WHO, 2004). Healthcare workers are not educated and most of them have not had any special training on the clinical waste management (Coker et al., 2009; Diaz et al., 2008; Shinee et al., 2008). Generally, they use two hands during collection and sorting the waste (Shinee et al., 2008). Most of the healthcare institutions do not have appropriate color coded bags or containers for sorting the waste (Alagoz and Kocasoy, 2008). Some of the healthcare facilities have used plastic bags, paper bags or cardboard boxed to collect the clinical solid waste (Coker et al., 2009; Shinee et al., 2008). Besides, healthcare waste is not sorted because of the high fee of their disposal cost, therefore both clinical and non-clinical waste are mixed together and dump illegally (Alagoz and Kocasoy, 2008; Coker et al., 2009; Shinee et al., 2008). Even most of the hospitals have not any special place for the storage the clinical waste prior to disposal. Clinical waste is placed in an unsecured area until collected and it is fully accessible to the animals (Alagoz and Kocasoy, 2008; Da Silva et al., 2005).

World Health Organization defined an effective clinical solid waste management in a clinical facility depends on dedicated waste management plan, good administration, adequate financing and participation by trained clinical staff (WHO 2005),. In addition,

clear definition and classification of the waste (Askarian et al., 2004; Shinee et al., 2008), source segregation of the waste (Moreira and Gunther, 2013), the estimation of the amount and type of waste generated (Tsakona et al., 2007), and the use of appropriate disposal technology (Lee et al., 2004; Diaz et al., 2008) are crucial in order to decide an effective clinical solid waste management.

2.2 Definition and classification of Clinical solid waste

The waste generated in Healthcare facilities (HCFs) has not clearly been defined in the literature. There are currently several terms used to describe the waste that is generated in healthcare facilities, as presented in Table 2.1. It can lead to problems as it is important to have a specific definition of those wastes derived from healthcare premises. This is because, there are practical considerations to differentiate between the waste and the waste from HCFs, and in relation to choosing a right waste disposal method, which depends on the clear understanding (Bendjoudi et al., 2009; Moritz, 1995; Nemathaga et al., 2008). In literature, the terms 'clinical waste', 'health care waste', 'infectious waste' and 'medical/hospital waste' are typically encountered, they may have similar meanings or be subsets of one another, which substantially inhibits using and comparing data from different countries (Bendjoudi et al., 2009; Diaz et al., 2008; Jang et al., 2006; Lee et al. 2002; Mato and Kaseva, 1999; Moritz, 1995; Nemathaga et al., 2008).

Table 2.1 Definitions and general classification of waste arising from healthcare facilities.

Definition	Classification	Reference			
Health care waste	General waste and medical Waste	Shinee et al., 2008			
Hospital waste	General waste, medical waste and	Nemathaga et al., 2008			
	sharp				
Medical waste	Infectious waste and general medical	Cheng et al., 2009			
	waste				
Medical waste	General waste and special waste	Lee et at., 2004			
-	Infectious waste and non-infectious	Miyazaki and Une,			
	waste	2005			
Hospital waste	General waste and Hazardous waste	Sawalem et al., 2009			
Healthcare waste	Hazardous and non-hazardous waste	Mohamed et al., 2009			
Medical waste	Domestic waste and hazardous waste	Abd El-Salam, 2010			
Hospital waste	Hazardous and non-hazardous waste	Kaisar Alam Sarkar, et			
		al., 2006			
Healthcare waste	Medical waste and general waste	Ruoyan et al., 2010			
Medical/Hospital	Infectious and municipal waste	Tsakona et al., 2007			
waste					
Medical waste	Tissues and other	Jang et al., 2006			
Medical waste	Hazardous and non-hazardous waste	Patwary et al., 2009a			

Lee et al., (2002) used the term medical waste to deal with all types of wastes produced by HCFs. It includes all types of waste generated by HCFs, such as hospitals, clinics, physician office and other medical laboratory and research facilities (Hall, 1989; Jang et al., 2006). Medical waste is a subcategory of healthcare waste, which potentially indicates the infectious waste except sharps (Lee et al., 2002). Nemathaga et al. (2008)

delineated the definition of hospital waste is any type of waste generated from healthcare facilities. This includes both non-clinical and clinical waste constituents. The World Health Organization refers to the waste generate from HCFs as healthcare waste (HCW). According to Bendjoudi et al. (2009), HCW results from the treatment, diagnosis, or immunization of humans and/or animals in hospitals, veterinary and health-related research facilities, and medical laboratories. This type of waste contains infectious waste, toxic chemicals and heavy metals, and may contain substances that are genotoxic or radioactive. Generally, a small portion of the total healthcare waste bears the infectious agent. Clearly, 10-25% of total healthcare wastes are infectious (Bendjoudi et al., 2009; Mohee, 2005; Pruss et al., 1999), therefore waste arising from HCFs cannot be defined as infectious waste. Besides, all waste cannot be addressed as clinical waste. There are some categories of waste, those are not falling within the definition of clinical waste (Moritz, 1995).

Healthcare waste can be classified as non-clinical waste (non regulated HCW, also can define as general waste), and clinical waste (special waste, regulated HCW) (Lee et al., 2002, 2004; Mato and Kassenga, 1997). Non-clinical waste is such type of waste, which is not posing any infectious risk to human health and environment. Examples of non-clinical waste include packaging materials such as cardboard, office paper, leftover food, cans etc. (Lee et al., 2002, 2004; Diaz et al., 2008; Pruss et al., 1999). Conversely, clinical solid waste is the type of solid waste materials, which generates in clinical facilities during diagnosis, treatment, immunization, in research pertaining thereto and biological testing (WHO, 2000, 2004). Examples of clinical solid

waste are discarded surgical gloves, glassware, instruments, needles, lancets, culture, stocks and swabs and remove body organs (Nemathaga et al., 2008; Jang et al., 2006; Oweis et al., 2005; WHO, 2000). Clinical waste can be categorized as infectious waste, radioactive waste, chemical waste, pathological waste, pharmaceutical waste and sharps (Pruss et al., 1999). Examples of different types of clinical solid waste are given in Table 2.2 (Lee et al., 2002; Nemathaga et al., 2008; Shinee et al., 2008).

Table 2.2 Examples of types of Clinical solid waste

Category	Examples			
Infectious waste	Lab cultures and stocks of infectious agents, wastes from			
	isolation wards, tissues, materials or equipment contact with			
	infected patients			
Pharmaceutical waste	Expired or unnecessary pharmaceuticals and drugs.			
Pathological waste	Body parts, human fetuses, blood, other body fluids.			
Chemical waste	Solid chemicals from diagnostic and experimental work,			
	cleaning materials,			
Radioactive waste	Radioactive substances from radiotherapy or lab work			
Sharps	Needles, syringes, blades, broken glass, scalpels etc.			

The ministry of Health of Malaysia categorises the healthcare waste in the guideline as general waste and special regulated waste (MOH, 2009). The clinical waste is a one of the sub categories of the regulated waste. The clinical waste has been defined

as scheduled waste under the Environmental Quality Regulations, 1989 and further classified as infectious, pathological and sharp waste (MOH, 2009). According the MOH, (2009), the classification of healthcare waste is presented in Figure 2.1. Clinical waste is defined by MOH, (2009) as:

- a. Any waste which consists entirely or partly of human or animal tissue, blood or other body fluids, excretions, drugs or other pharmaceutical products, swabs or dressings or syringes, needles or other sharp instruments, being waste which unless rendered safe may prove hazardous to persons coming into contact with it; and
- b. Any other waste arising from medical, nursing, dental, veterinary, pharmaceutical or similar practice, investigation, treatment, care, teaching or research or the collection of blood from transfusion, being waste which may cause infection to any person coming into contact with it.

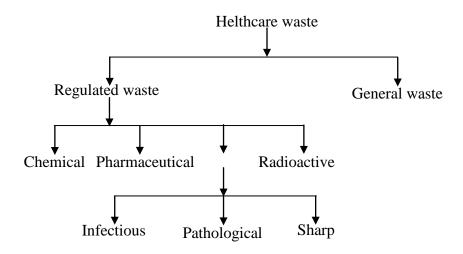


Figure 2.1 The classification of healthcare waste (Source: MOH, 2009).

2.3 Source of clinical solid waste

The principal sources of clinical solid waste are hospitals and clinics, particularly those providing acute services, i.e, offering Operating theatres, Maternity ward, Accident & Emergency, Mortuary, Intensive Care, Isolation Wards, Pharmacy, Pathology Laboratories and other research facilities (Bendjoudi et al., 2009; Blenkharn, 1995; Da Silva et al., 2005; Marinkovic et al., 2008). Other sources of clinical waste are ambulance services, public health laboratories, blood donation centers and blood banks, practice center of doctors, dentists, veterinary surgeons, immunization/vaccination clinics and hospitals, clinics and nursing homes providing community care, care of the elderly and services related to mental health and learning disabilities (Hagen et al., 2001; Marinkovic et al., 2008; Pruss et al., 1999).

There has been an increase in the amount of clinical waste coming from households. This is due in part to changes in health care policies. The establishment of home health and medical care services has, in recent years, become a basic requirement for the population (Blenkharn, 2008; Slack et al., 2004). Both medical devices and instruments are used while treating patients at home, thereby producing a variety of waste materials. Self-injecting diabetics and people changing colostomy bags at home can also generate significant quantities of clinical waste (Blenkharn, 2008; Harsh et al., 2010). The wastes generated from the treatment of patients suffering from infectious diseases may spread infection either through direct contact or indirectly through the environment. Waste materials originating from home health and medical care services are still included in general household waste materials, even when the wastes are infectious (Blenkharn, 2008; Miyazaki et al., 2007). However, the management of household infectious waste material has not received any attention yet, even in a developed country like Japan (Miyazaki et al., 2007).

2.4 Clinical solid waste generation

Generally, healthcare waste generation rate depends on the type of healthcare establishment, availability of instrumentations, general condition of HCFs area, ratio of disposable item in use and number of patient care (Alagoz and Kocasoy, 2008; Bdour et al., 2007; Cheng et al., 2009; Mohee, 2005). Also, the economic, social and cultural status of the patients might change the amount of waste generation (Askarian et al., 2004; Hassan et al., 2008). Among the factors, the number of day-care patients has a

significant effect on waste generation rate (Bdour et al., 2007; Patwary et al., 2009a). For example, Bdour et al. (2007) and Patwary et al. (2009a) reported that, due to the higher number of day-care patients, public healthcare facilities produce larger amount of healthcare waste than private healthcare facilities.

The proportion of clinical waste per bed is similar in both public and private hospitals because of the mismanagement of HCW and a lack of segregation of waste for sorting the clinical waste in surveying hospitals (Patwary et al., 2009a). Marinkovic et al., (2008) reported that the healthcare waste generation rate depends on the size and the type of the medical institution, which might differ from country to country based on the level of the economic development (Nemathaga et al, 2008). The developed countries generate higher amounts of healthcare waste than that of the developing countries (Marinkovic et al., 2008, Nemathaga et al, 2008, Pruss et al., 1999). Data from World Health Organization reveals that North America produces 7-10 kg of healthcare waste per bed/day, whereas South America produces 3 kg of waste per bed/day. This difference was also found in Europe and Asia. Western Europe produces 3-6 kg, whereas Eastern Europe 1.4-2 kg of waste per bed/day. In Asia, richer countries produce 2.5 kg per bed/day, and poorer countries 1.8-2 kg per bed/day (Pruss et al., 1999). From the data, it was evident that amount of healthcare waste generation rate depends on the level of economic development of the region. It was also noticed that, due to a higher level of economic development, the North America produces the largest amount of waste. This is might be due to the developed nation's lifestyle demands consumption of a high amount of goods and services, which tends to generate a higher amount of waste

(Marinkovic et al., 2008). Furthermore, the use of disposable instruments and packaging materials rather than the use of reusable items in healthcare centers in developed countries might increase the amount waste generation.

The clinical waste generation rate depends on waste management plan and segregation activities (Alagoz and Kocasoy, 2008). Cheng et al., (2009) reported that the total amount of healthcare waste generation is much higher at medical centers and private hospitals, but the proportion of clinical waste is much higher at local hospitals. This is due to poor segregation practice followed during sorting the clinical waste in the local hospital, which contaminated the non-clinical waste, hence the amount of clinical waste generation increased. The contribution of clinical wastes to the total waste stream varied from about 12.5-69.3% (Abd El-Salam, 2010; Da Silva et al., 2005; Hassan et al., 2008; Nemathaga et al., 2008; Sawalem et al., 2009; Shinee et al., 2008). The healthcare waste generation rate in different countries is given in Table 2.3. It is evident from the Table 2.3, developing countries in Africa (South Africa, Algeria, Egypt, Libya) and Asia (Bangladesh, Mongolia) continent generate the lower amount of HCW, but the proportion of clinical waste among total waste higher than that of middle develop countries in Europe continent (Croatia, Greece). This is because, the developed nations are following advanced legislation and guidelines during waste collection, and state of various possible ways during waste handling, storage and transportation to minimize the clinical waste generated (Alagoz and Kocasoy, 2008; Almuneef and Memish, 2003; Tudor, 2007). Clinical waste has not yet fully appreciated in the developing countries, still handled and disposed together with non-clinical waste (Alagoz and Kocasoy, 2008). Though, in the beginning, minor proportion of the total waste may be considered as clinical waste. Later, cross-contamination might occur due to mixing with the non-clinical waste, which is rendering the entire load of clinical waste (Blenkharn, 1995; Patwary et al., 2009a, b).

Quantity and quality of clinical waste generated at its source are the key issues to decide an effective clinical waste management practice (Coker et al., 2009; Shinee et al., 2008). Therefore, it is important to minimize clinical waste generation rate at generation source. Appropriate segregation and sorting of clinical waste at source can minimize the clinical solid waste generation rate. One of the critical obstacles to conduct source segregation of clinical solid waste is lack of knowledge on risk exposure of clinical solid waste.

Table 2.3 Average health care waste generation rate in different countries hospitals

Country/City	Waste generation rate	Non- clinical waste, %	Clinical waste, %	Generation period	Number of samples	Region	Reference
Algeria	0.7-1.22 kg/bed/day	75-90	10-25	16 September to 10 October, 2006	10	Africa	Bendjoudi et al., 2009
Libya	1.3 kg/patient/day	72	26		14	Africa	Sawalem et al., 2009
South Africa	0.60 kg/patient/day	60.74	39.26	April and July, 2003	2	Africa	Nemathaga et al., 2008
Taiwan	2.41-3.26 kg/bed/day	N/A	N/A	N/A	150	Asia	Cheng et., 2009
Brazil	2.63 kg/bed/day	80-85	15-20	September 2001 to March 2002	N/A	South America	Da Silva et al., 2005
Jordan	6.10 kg/patient/day*	N/A	N/A	March to September, 2004	14	Asia	Bdour et al., 2009
Ulaanbaatar, Mongolia	1.4-3.0 kg/patient/day	70.67	29.43	January and February 2005	56	Asia	Shinee et al., 2008
Dhaka, Bangladesh	1.71 kg/bed/day	79	21	Over 5 months in 2006	69	Asia	Patwary et al., 2009a
Croatia	2.4 kg per capita	86	14	N/A	151	Europe	Marinkovic et al., 2008
El-Beheira Governorate, Egypt	2.07 kg/bed/day	60.10	38.9	6 month period in 2008	8	Africa	Abd El-Salam, 2010
Sylhet city Bangladesh	0.934 kg/bed/day	63.97	36.03*	July 2003 to June 2004	17	Asia	Kaisar Alam Sarkar, et al., 2006
Binzhou, China	1.22 kg/bed/day	N/A	N/A	December 2006 to January 2007	6	Asia	Ruoyan et al., 2010
Greece	8.4 kg/bed/day	83.33	16.67	N/A	N/A	Europe	Tsakona et al., 2007

^{*} Maximum generation rate cited in literature; N/A: Data is not available

2.5 Risks of Clinical solid waste

The potential microbiological risks associated with the clinical waste are unfamiliar to healthcare workers. This is because of the literature on the role of infectious clinical waste as a reservoir of diseases is extremely limited (Salkin, 2003). Although, there have been a few reports documented on the infectious risks on clinical waste management, but, unfortunately scientifically substantiated evidence of the actual content of microorganisms, survival of microorganisms in clinical waste and the infectious risks to healthcare workers and the general public are extremely rare. Furthermore, the available information is restricted to developing countries, and therefore does not reflect the exposure, practices, and risk situations in developing countries (Salkin, 2003).

The infectious risk posed by clinical solid waste to human health and environment, which needs to be assessed, is the potential presence of pathogenic microorganisms. A great variety of pathogenic microorganisms may present in clinical solid waste (EA, 2003; Patwary et al., 2012; Pruss et al., 1999; Saini et al., 2004). A person involved in the treatment of clinical waste might be exposed to infectious agents through several routes including skin penetration, skin contact, or by the aerogenic route (EA, 2003; Pruss et al., 1999). According to Pruss et al., (1999), the possible microorganisms and their infected routes in the human body are given in Table 2.4.

Table 2.4 The possible microorganisms and the infected routes in the human body (Source: Pruss et al., (1999))

Type of infection	Transmission vehicles	Example of causative organisms
Gastroentic	Faeces and/or vomit	Enterobecteria, e.g. Salmonella,
infections		Shigella spp, Vibrio cholera,
		Helminths
Respiratory	Inhaled secretions,	Mycobacterium tuberculosis,
infections	saliva	measles virus, Streptococcus
		pneumonia
Ocular infection	Eye secretions	Herpesvirus
Genital infections	Genital secretions	Neisseria gonorrhoeae;
		herpesvirus
Skin infections	Pus	Streptococcus spp.
Anthrax	Skin secretions	Bacillus anthracis
Meningitis	Cerebro-spinal fluid	Neisseria meningitidis
Acquired	Blood,sexual	Human immunodeficiency virus
immunodeficiency	secretions	(HIV)
syndrome (AIDS)		
Haemorrhagic	All bloody products	Junin, Lassa, Ebola, and Marburg
fevers	and secretions	viruses
Septicaemia	Blood	Staphylococcus spp
Bacteraemia	Blood	Coagulase-negative
		Staphylococcus spp.;
		Staphylococcus aureus;
		Enterobacter, Enterococcus,
		Klebsiella, and Streptococcus spp.
Candidaemia	Blood	Candida albicans
Viral hepatitis A	Faeces	Hepatitis A virus
Viral hepatitis B	Blood and body fluids	Hepatitis B and C viruses
and C		