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SIFAT-SIFAT RANGKUMAN PENGOPERASIAN LINEAR DAN
FUNGSI ANALISIS

ABSTRAK

Tesis ini mengkaji kelas A terdiri daripada fungsi analisis ternormalkan di

dalam cakera unit terbuka U pada satah kompleks. Kelas fungsi meromorfi di

dalam cakera unit berliang tidak termasuk titik asalan turut dikaji. Secara ke-

seluruhannya, tesis ini merangkumi enam permasalahan kajian. Pertama, sub-

kelas fungsi-fungsi bak-bintang, cembung, hampir cembung dan kuasi cembung

diitlakkan dengan memperkenalkan subkelas baru fungsi-fungsi analisis dan mero-

morfi. Sifat tutupan kelas-kelas baru ini akan dikaji dan akan dibuktikan bahawa

konvolusi kelas-kelas ini dengan fungsi pra bak-bintang dan pengoperasi kamiran

Bernardi-Libera-Livingston adalah bersifat tertutup.

Keunivalenan fungsi f(z) = z +
∑∞
n=2 anz

n ∈ A dikaji dengan menyarankan

terbitan Schwarzian S(f, z) dan pekali kedua a2 fungsi f memenuhi ketaksamaan

tertentu. Kriteria baru untuk fungsi analisis menjadi α-Bazilevič kuat tertib tak

negatif dibangunkan dalam sebutan terbitan Schwarzian dan pekali kedua. Juga

syarat-syarat serupa untuk pekali kedua dan terbitan Schwarzian S(f, z) bagi f

diperoleh yang menjamin fungsi f tersebut terkandung di dalam subkelas tertentu

untuk S. Untuk suatu fungsi analisis f(z) = z +
∑∞
n=2 anz

n ∈ A yang memenuhi

ketaksamaan
∑∞
n=2 n(n − 1)|an| ≤ β, batas tajam β diperoleh supaya f sama

ada bak-bintang atau cembung tertib α. Batas tajam untuk η juga diperoleh

agar fungsi f yang memenuhi
∑∞
n=2

(
αn2 + (1 − α)n − β

)
|an| ≤ 1 − β adalah

bak bintang atau cembung tertib α. Beberapa ketaksamaan pekali lain berkaitan

dengan subkelas-subkelas tertentu juga dikaji. Andaikan f(z) = z +
∑∞
n=2 anz

n

analisis pada U dengan pekali kedua a2 memenuhi |a2| = 2b, 0 ≤ b ≤ 1, dan

katakan f memenuhi sama ada |an| ≤ cn + d (c, d ≥ 0) atau |an| ≤ c/n (c > 0)

x



untuk n ≥ 3. Jejari tajam bak-bintang Janowski dan beberapa jejari berkaitan

untuk fungsi sedemikian juga diperoleh.

Sifat kecembungan pengoperasi kamiran umum Vλ(f)(z) :=
∫ 1

0 λ(t)f(tz)/tdt

pada suatu subkelas fungsi analisis yang mengandung beberapa subkelas terso-

hor akan dikaji. Beberapa aplikasi menarik dengan pilihan λ berbeza akan dibin-

cang. Sifat-sifat geometrik untuk pengoperasi kamiran teritlak berbentuk Vλ(f) =

ρz+(1−ρ)Vλ(f), ρ < 1 akan juga diterangkan. Akhir sekali, sifat subordinasi dan

superordinasi untuk pengoperasi linear teritlak yang memenuhi suatu hubungan

jadi semula pembeza peringkat pertama telah dikaji. Suatu kelas fungsi teraku

yang sesuai telah dipertimbangkan untuk mendapatkan syarat cukup bagi do-

mainan dan subordinan terbaik. Keputusan yang diperoleh menyatukann hasil

kajian terdahulu.
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INCLUSION PROPERTIES OF LINEAR OPERATORS AND
ANALYTIC FUNCTIONS

ABSTRACT

This thesis studies the classA of normalized analytic functions in the open unit

disk U of the complex plane. The class of meromorphic functions in the punctured

unit disk which does not include the origin is also studied. This thesis investigates

six research problems. First, the classical subclasses of starlike, convex, close-to-

convex and quasi-convex functions are extended by introducing new subclasses

of analytic and meromorphic functions. The closure properties of these newly

defined classes are investigated and it is shown that these classes are closed under

convolution with prestarlike functions and the Bernardi-Libera-Livingston integral

operator.

The univalence of functions f(z) = z +
∑∞
n=2 anz

n ∈ A is investigated by

requiring the Schwarzian derivative S(f, z) and the second coefficient a2 of f to

satisfy certain inequalities. New criterion for analytic functions to be strongly α-

Bazilevič of nonnegative order is established in terms of the Schwarzian derivatives

and the second coefficients. Also, similar conditions on the second coefficient

of f and its Schwarzian derivative S(f, z) are obtained that would ensure the

function f belongs to particular subclasses of S. For an analytic function f(z) =

z+
∑∞
n=2 anz

n ∈ A satisfying the inequality
∑∞
n=2 n(n−1)|an| ≤ β, a sharp bound

on β is determined so that f is either starlike or convex of order α. A sharp bound

on η is obtained that ensures functions f satisfying
∑∞
n=2

(
αn2+(1−α)n−β

)
|an| ≤

1 − β is either starlike or convex of order η. Several other coefficient inequalities

related to certain subclasses are also investigated. Let f(z) = z +
∑∞
n=2 anz

n

be analytic in the unit disk U with the second coefficient a2 satisfying |a2| = 2b,

0 ≤ b ≤ 1, and let f satisfy either |an| ≤ cn + d (c, d ≥ 0) or |an| ≤ c/n (c > 0)

xii



for n ≥ 3. Sharp radius of Janowski starlikeness for such functions is obtained.

Several related radii are also obtained.

The convexity property of a general integral operator Vλ(f)(z) :=
∫ 1

0 λ(t)f(tz)/tdt

on a new class of analytic functions which includes several well-known classes is

investigated. Several interesting applications for different choices of λ are dis-

cussed. The geometric properties of the generalized integral operator of the form

Vλ(f) = ρz+ (1−ρ)Vλ(f), ρ < 1 are also inquired. Finally, subordination and su-

perordination properties of general linear operators satisfying a certain first-order

differential recurrence relation are investigated. An appropriate class of admissible

functions is considered to determine sufficient conditions for best dominant and

best subordinant. The results obtained unify earlier works.

xiii



CHAPTER 1

INTRODUCTION

Geometric function theory is a remarkable area in complex analysis. This field is

more often associated with geometric properties of analytic functions. Geometric

function theory has raised the interest of many researchers since the beginning

of the 20th century. The purpose of this chapter is to review and assemble for

references, relevant definitions and known results in geometric function theory

which underlie the theory of univalent functions.

1.1 Univalent Functions

A function f is analytic at z0 in a domain D if it is differentiable in some neigh-

borhood of z0, and it is analytic on a domain D if it is analytic at all points in

D. An analytic function f is said to be univalent in a domain D of the complex

plane C if it is one-to-one in D. It is locally univalent in D if f is univalent in

some neighborhood of each point z0 ∈ D. It is known that a function f is locally

univalent in D provided f ′(z) 6= 0 for any z ∈ D [48, p. 5]. In 1851, Riemann

proved that any simply connected domain which is not the entire plane and the

unit disk U := {z ∈ C : |z| < 1} are conformally equivalent.

Theorem 1.1 (Riemann Mapping Theorem) [48, p. 11] Let D be a simply con-

nected domain which is a proper subset of the complex plane. Let ζ be a given

point in D. Then there is a unique univalent analytic function f which maps D

onto the unit disk U satisfying f(ζ) = 0 and f ′(ζ) > 0.

Therefore, the study of conformal mappings on simply connected domains

may be confined to the study of functions that are univalent on the unit disk U .

The Riemann Mapping Theorem shows that there is a one-to-one correspondence

between proper simply connected domains (geometric objects) and suitably nor-

1



malized univalent functions (analytic objects).

Let H(U) denote the set of all analytic functions defined in the unit disk U .

Let A be the class of normalized analytic functions f defined in U of the form

f(z) = z +
∞∑
n=2

anz
n. (1.1)

More generally, let Am denote the subclass of A consisting of normalized analytic

functions f of the form

f(z) = zm +
∞∑

k=m+1

akz
k (m ∈ N := {1, 2, · · · }).

Denote by S the subclass of A consisting of univalent functions. The class S are

treated extensively in the books [48,61,151]. Bernardi [33] provided a comprehen-

sive list of papers on univalent functions theory published before 1981.

The Koebe function defined by

k(z) =
z

(1− z)2 =
∞∑
n=1

nzn,

and its rotations e−iβk(eiβz), play an important role in the class S. The Koebe

function maps U in a one-to-one manner onto a domain D consisting of the entire

complex plane except for a slit along the negative real axis from w = −∞ to

w = −1/4. A significant problem in the theory of univalent functions is the

Bieberbach’s conjecture which asserts that the Koebe function has the largest

coefficients in S.

Theorem 1.2 (Bieberbach’s Conjecture) [48, p. 37] If f =
∑∞
n=1 anz

n ∈ S, then

|an| ≤ n (n ≥ 2).

2



Equality occurs only for the Koebe function and its rotations.

In 1916, Bieberbach [36] proved the inequality for n = 2, and conjectured

that it is true for any n. In 1985, de Branges [37] proved this conjecture for

all coefficients n ≥ 2. Before de Branges’s proof, the Bieberbach’s conjecture

was known for n ≤ 6. Löwner [101] developed parametric representation of slit

mapping and used it to prove the Bieberbach’s conjecture for n = 3. The cases

n = 4, 5, 6 were proved by Garabedian and Schiffer [57], Pederson and Schiffer

[147], and Pederson [146]. In 1925, Littlewood [95] showed that the coefficients of

each function f ∈ S satisfy |an| ≤ en (n ≥ 2). Duren [48], Goodman [61] and

Pommerenke [151] provided the history of this problem.

As an application, a famous covering theorem due to Koebe can be proved

by Bieberbach’s conjecture for the second coefficient. This theorem states that if

f ∈ S, then the image of U under f must cover an open disk centered at the origin

with radius 1/4.

Theorem 1.3 (Koebe One-Quarter Theorem) [61, p. 62] The range of ev-

ery function f ∈ S contains the disk {w : |w| < 1/4}.

The Koebe function and its rotations are the only functions in S which omit

a value of modulus 1/4. The sharp upper and lower bounds for |f(z)| and |f ′(z)|

where f ∈ S are a consequence of the Bieberbach’s conjecture for the second

coefficient.

Theorem 1.4 (Distortion and Growth Theorem) [61, p. 68] Let f ∈ S.

Then for each z = reiθ ∈ U ,

1− r
(1 + r)3 ≤ |f

′(z)| ≤ 1 + r

(1− r)3 ,

and

r

(1 + r)2 ≤ |f(z)| ≤ r

(1− r)2 .

3



The above inequalities are sharp with equality occurring for the Koebe function and

its rotations.

1.2 Subclasses of Univalent Functions

The long gap between the formulation of the Bieberbach’s conjecture (1916) and

its proof by de Branges (1985) motivated researchers to investigate its validity on

several subclasses of S. These classes are defined by geometric conditions, and

include the class of starlike functions, convex functions, close-to-convex functions,

and quasi-convex functions. A set D in the plane is said to be starlike with respect

to an interior point w0 in D if the line segment joining w0 to every other point w

in D lies entirely in D. A set D in the plane is convex if it is starlike with respect

to each of its points; that is, if the line segment joining any two points of D lies

entirely in D. The closed convex hull of a set D in C is the closure of intersection

of all convex sets containing D. It is the smallest closed convex set containing D

and is denoted by co(D).

A function f ∈ A is starlike if f(U) is a starlike domain with respect to

the origin, and f is convex if f(U) is a convex domain. Analytically, these are

respectively equivalent to the conditions

Re
zf ′(z)

f(z)
> 0 and Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0 (z ∈ U).

In 1915, Alexander [4] showed that there is a close connection between convex

and starlike functions.

Theorem 1.5 (Alexander Theorem) [4] Suppose that f ′(z) 6= 0 in U . Then

f is convex in U if and only if zf ′ is starlike in U .

Denote the classes of starlike and convex functions by ST and CV respectively.

More generally, for α < 1, let ST (α) and CV(α) be subclasses of A consisting
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respectively of starlike functions of order α and convex functions of order α. For

0 ≤ α < 1, these functions are known to be univalent [48, p. 40], and are defined

analytically by

ST (α) :=

{
f ∈ A : Re

(
zf ′(z)

f(z)

)
> α

}
, (1.2)

and

CV(α) :=

{
f ∈ A : Re

(
1 +

zf ′′(z)

f ′(z)

)
> α

}
. (1.3)

Clearly, ST = ST (0) and CV = CV(0).

In 1952, Kaplan [77] introduced the class of close-to-convex functions. A func-

tion f ∈ A is close-to-convex in U if there is a starlike function ψ and a real

number α such that

Re eiα
zf ′(z)

ψ(z)
> 0 (z ∈ U). (1.4)

The class of all such functions is denoted by CCV . Geometrically, f is close-to-

convex if and only if the image of |z| = r has no large hairpin turns; that is,

there is no sections of the curve f(Cr) in which the tangent vector turns backward

through an angle greater than π. Starlike functions are evidently close-to-convex.

Another subclass of S is the class of quasi-convex functions. A function f ∈ A

is said to be quasi-convex in U if there is a function φ in CV such that

Re
(zf ′(z))′

φ′(z)
> 0 (z ∈ U).

This set of functions denoted by QCV was introduced by Noor and Thomas [129].

Note that CV ⊂ QCV where φ(z) ≡ f(z). Every close-to-convex function is

univalent. This can be inferred from the following simple but important criterion

for univalence proved by Noshiro [130] and Warschawski [207].

Theorem 1.6 (Noshiro-Warschawski Theorem) [61, p. 47] If f is analytic
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in a convex domain D and Re f ′(z) > 0 there, then f is univalent in D.

The subclasses of S consisting of starlike, convex and close-to-convex functions

satisfy the following chain:

CV ⊂ ST ⊂ CCV ⊂ S.

There are many criteria for functions to be univalent. In 1949, Nehari [123]

obtained univalence criterion which involves the Schwarzian derivative. Let S(f, z)

denote the Schwarzian derivative of a locally univalent analytic function f defined

by

S(f, z) :=

(
f ′′(z)

f ′(z)

)′
− 1

2

(
f ′′(z)

f ′(z)

)2
. (1.5)

A Möbius transformation M is defined by

M(z) =
az + b

cz + d
(ad− bc 6= 0). (1.6)

The functionM is univalent on the closed complex plane containing the point at∞.

A function of the form (1.6) always maps ”circles” onto ”circles” where a ”circle”

means a straight line or a circle [61, p. 10]. It can be shown that the Schwarzian

derivative is invariant under Möbius transformations, that is, S(M◦f, z) = S(f, z).

Also, the Schwarzian derivative of an analytic function f is identically zero if and

only if it is a Möbius transformation [48, p. 259].

The following univalence criterion was given by Nehari.

Theorem 1.7 [123] If f ∈ S, then

|S(f, z)| ≤ 6

(1− |z|2)2 . (1.7)
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Conversely, if an analytic function f in U satisfies

|S(f, z)| ≤ 2

(1− |z|2)2 , (1.8)

then f is univalent in U . The results are sharp.

The preceding result was first proved by Kraus [85] but had been forgotten for

a long time. Nehari re-discovered and proved Theorem 1.7. The Koebe function

satisfies (1.7) and shows that the constant 6 is sharp. Also, the function

L(z) =
1

2
log

(
1 + z

1− z

)
(1.9)

which maps U univalently onto the parallel strip | Imw| < π/2 satisfies (1.8) and

shows that the constant 2 is sharp. Nehari [125] also showed that inequality (1.8)

holds if f is convex and this result is sharp for the function L defined by (1.9).

By considering two particular positive functions, Nehari [123] obtained a bound

on the Schwarzian derivative that ensures univalence of an analytic function in A.

In fact, the following theorem was proved.

Theorem 1.8 [123, Theorem II, p. 549] If f ∈ A satisfies

|S(f, z)| ≤ π2

2
(z ∈ U),

then f ∈ S. The result is sharp for the function f given by f(z) = (exp(iπz) −

1)/iπ.

The problem of finding similar bounds on the Schwarzian derivatives that

would imply univalence, starlikeness or convexity of functions was investigated

by a number of authors including Gabriel [55], Friedland and Nehari [54], and
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Ozaki and Nunokawa [139]. Chiang [41] investigated convexity of functions f

by requiring the Schwarzian derivative S(f, z) and the second coefficient a2 of

f to satisfy certain inequalities. In Chapter 3, it is assumed that the second

coefficient of an analytic function f is small enough and that the Schwarzian

derivative S(f, z) satisfies a certain inequality. Under these assumptions, it is

shown that f is univalent. Also, similar conditions on the second coefficient of f

and its Schwarzian derivative S(f, z) are obtained that would ensure the function

f belongs to particular subclasses of S.

Various subclasses of ST and CV were later introduced that possess certain

geometric features. Goodman [62] introduced the class of uniformly convex func-

tions UCV . Geometrically, a function f ∈ S is uniformly convex if it maps every

circular arc γ contained in U with center ζ ∈ U onto a convex arc. Goodman [62]

gave a two-variable analytic characterization for the class UCV , that is,

UCV :=

{
f ∈ S : Re

(
1 +

(z − ζ)f ′′(z)

f ′(z)

)
> 0, ζ, z ∈ U

}
,

while Rønning [167], and Ma and Minda [103] independently gave a one-variable

characterization for f ∈ UCV by using the minimum principle for harmonic func-

tions:

f ∈ UCV ⇔
∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ < Re

(
1 +

zf ′′(z)

f ′(z)

)
(z ∈ U). (1.10)

For 0 ≤ α < 1, let Ωα be the parabolic region in the right-half plane defined

by

Ωα = {w = u+ iv : v2 < 4(1− α)(u− α)} = {w : |w − 1| < 1− 2α + Rew}.

The class PST (α) of parabolic starlike functions of order α is the subclass of A

consisting of functions f such that zf ′(z)/f(z) ∈ Ωα, z ∈ U . Thus f ∈ PST (α)
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if and only if

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ < 1− 2α + Re

(
zf ′(z)

f(z)

)
(z ∈ U). (1.11)

The class PST , called parabolic starlike functions, was introduced by Rønning

[167]. Analytically, f ∈ PST if

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ < Re

(
zf ′(z)

f(z)

)
(z ∈ U).

Rønning [167] also showed that

f ∈ UCV ⇔ zf ′ ∈ PST (1/2) = PST .

Closely related is the class UST of uniformly starlike functions introduced by

Goodman [63]. A function f ∈ S is uniformly starlike if it maps every circular arc

γ contained in U with center ζ ∈ U onto a starlike domain with respect to f(ζ).

A two-variable analytic characterization of the class UST is given by

UST :=

{
f ∈ S : Re

(
(z − ζ)f ′(z)

f(z)− f(ζ)

)
> 0, ζ, z ∈ U

}
. (1.12)

Goodman [62] showed that the classical Alexander relation (Theorem 1.5) does

not hold between UST and UCV . Such a question between UST and UCV is in

fact equivalent to UST = PST , and it was shown in [62, 168] that there is no

inclusion between UST and PST :

UST 6⊂ PST , PST 6⊂ UST .

Several authors have studied the above classes, amongst which include the works

of [62,102–104,165,179]; surveys on the classes UCV , UST and PST can be found
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in [14] by Ali and Ravichandran, and in [166] by Rønning.

The class of meromorphic functions is yet another subclass of univalent func-

tions that will be discussed in the thesis. Let Σ denote the class of normalized

meromorphic functions f of the form

f(z) =
1

z
+
∞∑
n=0

anz
n, (1.13)

that are analytic in the punctured unit disk U∗ := {z : 0 < |z| < 1} except for a

simple pole at 0. In 1914, Gronwall [65] proved the following Area Theorem.

Theorem 1.9 (Area Theorem) If f is univalent function of the form

f(ξ) = ξ + b0 +
∞∑
n=1

bn
ξn

(|ξ| > 1), (1.14)

then
∑∞
n=1 n|bn|2 ≤ 1.

The interest of the class Σ arose from an application of the Area Theorem in

the proof of the Bieberbach’s conjecture for the second coefficient. A function f

of the form (1.14) and g ∈ Σ are related by the transformation f(1/z) = g(z).

The transformation

f(ξ) =
1

g(1/ξ)
(|ξ| > 1) (1.15)

takes each g in S into a function f of the form (1.14). By the transformation

(1.15), the Koebe function takes a particularly simple form

φ(ξ) =
1

k(1/ξ)
= ξ − 2 +

1

ξ

which maps the exterior of unit disk {ξ ∈ C : 1 < |ξ| < ∞} onto the domain

consisting of the entire complex plane minus the slit −4 ≤ w ≤ 0.
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A function f ∈ Σ is said to be starlike if it is univalent and the complement

of f(U) is a starlike domain with respect to the origin where f(z) 6= 0 for z ∈ U .

Denote by Σst the class of meromorphically starlike functions. Analytically, it is

known that f ∈ Σst if and only if

Re
zf ′(z)

f(z)
< 0 (z ∈ U).

Note that f ∈ Σst implies f(z) 6= 0 for z ∈ U . Similarly, a function f ∈ Σ is

convex, denoted by f ∈ Σcv, if it is univalent and the complement of f(U) is a

convex domain. Analytically, f ∈ Σcv if and only if

Re
(zf ′(z))′

f ′(z)
< 0 (z ∈ U).

In general, for 0 ≤ α < 1, the classes of meromorphic starlike functions of

order α and meromorphic convex functions of order α respectively are defined by

Σst(α) :=

{
f ∈ Σ : Re

zf ′(z)

f(z)
< α

}
,

Σcv(α) :=

{
f ∈ Σ : Re

(zf ′(z))′

f ′(z)
< α

}
.

These classes have been studied by several authors [23, 24, 88, 116, 117, 191, 192,

205]. We assembled geometric features and analytic expressions of the well-known

subclasses of univalent functions to apply for future convenience.

1.3 Function with Negative Coefficients

The following simple result follows from an application of the Noshiro-Warschawski

Theorem (Theorem 1.6).

Theorem 1.10 Let f(z) = z +
∑∞
n=2 anz

n ∈ A, and
∑∞
n=2 |an| ≤ 1. Then

f ∈ S.
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If an ≤ 0 for all n, then the condition above is also a necessary condition for

f to be univalent. In 1961, Merkes et al. [105] obtained a sufficient condition for

f ∈ A to be starlike of order α, which is also necessary in the event an ≤ 0.

Theorem 1.11 [105, Theorem 2, p. 961] Let 0 ≤ α < 1, and f(z) = z +∑∞
n=2 anz

n ∈ A. Then f ∈ ST (α) if

∞∑
n=2

(n− α)|an| ≤ 1− α. (1.16)

If an ≤ 0 for all n, then (1.16) is a necessary condition for f ∈ ST (α).

This motivated the investigation of functions whose coefficients are negative. The

class of functions with negative coefficients in A, denoted by T , consists of func-

tions f of the form

f(z) = z −
∞∑
n=2

anz
n (an ≥ 0). (1.17)

Denote by T ST (α) and T CV(α) the respective subclasses of functions with

negative coefficients in ST (α) and CV(α). For starlike and convex functions of or-

der α with negative coefficients, Silverman [182] determined the distortion theorem,

covering theorem, and coefficients inequalities and extreme points. Silverman [182]

also provided a survey, some open problems, and conjectures on analytic functions

with negative coefficients. In 2003, the classes T ST and T CV were generalized in

terms of subordination by Ravichandran [158]. The subordination concept and its

applications will be treated in Section 1.8.

As in the case with the Bieberbach’s conjecture, there are several easily stated

questions related to the class T that appear difficult to solve. Related works to

analytic functions with negative coefficients include [10,11,26,89,118,119,136,155,

156, 175]. Merkes et al. [105] proved Theorem 1.11 based on a method used by

Clunie and Keogh [46], which was later applied to obtain sufficient conditions for
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functions f to be in certain subclasses of analytic functions. For instance, the

following lemma is a sufficient coefficient condition for functions f ∈ A to satisfy

Re

(
α
z2f ′′(z)

f(z)
+
zf ′(z)

f(z)

)
> β (α ≥ 0, β < 1, z ∈ U). (1.18)

Lemma 1.1 [97] Let β < 1, and α ≥ 0. If f(z) = z +
∑∞
n=2 anz

n ∈ A satisfies

the inequality
∞∑
n=2

(
αn2 + (1− α)n− β

)
|an| ≤ 1− β, (1.19)

then f satisfies (1.18). If an ≤ 0 for all n, then (1.19) is a necessary condition

for functions f to satisfy (1.18).

Geometric properties of analytic functions satisfying (1.18) will be investigated

in Chapter 5. Sălăgean [176] obtained several interesting implications for analytic

functions with negative coefficients. Motivated by the investigation of Sălăgean

[176], several implications are investigated for functions f ∈ A satisfying (1.18).

The largest bound β for analytic functions f(z) = z +
∑∞
n=2 anz

n satisfying the

inequality
∑∞
n=2 n(n − 1)|an| ≤ β are determined that will ensure f to be either

starlike or convex of some positive order. For f ∈ T ST (α), and f ∈ T CV(α),

the largest value is obtained that bounds each coefficient inequality of the form∑
nan,

∑
n(n − 1)an,

∑
(n − 1)an and

∑
n2an. The results obtained will be

applied to ensure the hypergeometric functions zF (a, b; c; z) satisfy (1.18). The

hypergeometric functions will be treated in Section 1.9.

1.4 Univalent Functions with Fixed Second Coefficient

Certain properties of analytic functions are influenced by their second coefficient.

In 1920, Gronwall [66] extended the distortion and growth theorems for an ana-

lytic function f(z) = z +
∑∞
n=2 anz

n with a pre-assigned second coefficient. Cor-

responding results for convex functions with a pre-assigned second coefficient were
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also obtained [66].

Let the class Ab consist of functions f ∈ A with a fixed second coefficient a2

with |a2| = 2b, 0 ≤ b ≤ 1. Each f ∈ Ab has the form

f(z) = z +
∞∑
n=2

anz
n (|a2| = 2b).

Let CVb(α) denote the class of convex functions of order α and ST b(α) denote the

class of starlike functions of order α where f ∈ Ab. Also denote by ST b := ST b(0)

and CVb := CVb(0) the class of starlike functions and the class of convex functions

with |a2| = 2b respectively. Finkelstein [52] obtained distortion and growth theo-

rems for the classes ST b and CVb. The results obtained in [52] were generalized

to the class ST b(α) by Tepper [199] and the class CVb(α) by Padmanabhan [140].

Later in 2001, Padmanabhan [141] investigated the problem for general classes of

functions defined by subordination.

Silverman [181] investigated the influence of the second coefficient on the class

of close-to-convex functions. Here, a function f ∈ Ab is close-to-convex of order

β and type α, denoted by f ∈ CCVb(α, β), if there is a function ψ ∈ CVb(α) such

that

Re
f ′(z)

ψ′(z)
> β (β ≥ 0).

Silverman [181] proved distortion and covering theorems for f ∈ CCVb(α, β). The

theory of differential subordination for functions f ∈ Ab was discussed in [13,122].

Ali et al. provided a brief history of these works in [9].

Lewandowski et al. [92] proved that an analytic function f satisfying

Re

(
z2f ′′(z)

f(z)
+
zf ′(z)

f(z)

)
> 0 (z ∈ U) (1.20)
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is starlike. The class of such functions was extended to the form (1.18) and has

subsequently been investigated by Ramesha et al. [157], Nunokawa et al. [133],

Obradović and Joshi [134], Padmanabhan [142], Ravichandran [160,162], and Liu

et al. [97]. For −α/2 ≤ β < 1, Li and Owa [93] proved that functions satisfying

(1.18) are starlike. In 2002, the class of analytic functions satisfying

Re
zf ′(z)

f(z)
< β (β > 1, z ∈ U)

was considered by Owa and Nishiwaki [128], while its subclasses were earlier in-

vestigated by Uralegaddi et al. [204,206], Owa and Srivastava [138]. Liu et al. [96]

investigated the class of functions satisfying

Re

(
α
z2f ′′(z)

f(z)
+
zf ′(z)

f(z)

)
< β (α ≥ 0, β > 1, z ∈ U). (1.21)

In Chapter 7, the class of functions satisfying (1.18) and (1.21) will be put in

a general form

L(α, β)∩Ab :=

{
f ∈ Ab : α

z2f ′′(z)

f(z)
+
zf ′(z)

f(z)
≺ 1 + (1− 2β)z

1− z
, β ∈ R \ {1}, α ≥ 0

}
.

(1.22)

Also, the well-known class of analytic functions introduced by Janowski [73] defined

by

ST [A,B] ∩ Ab =

{
f ∈ Ab :

zf ′(z)

f(z)
≺ 1 + Az

1 +Bz
,−1 ≤ B < A ≤ 1

}
will be considered. The radius properties for functions f ∈ L(α, β) ∩ Ab and

f ∈ ST [A,B] ∩ Ab are investigated in Chapter 7. The radius problems will be

treated in the next section.
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1.5 Radius Problems

Let M be a set of functions and P be a property which functions in M may or

may not possess in a disk |z| < r. The least upper bound of all numbers r such

that every function f ∈ M has the property P in the disk Ur = {z : |z| < r}

is the radius for the property P in the set M. Every univalent analytic function

is univalent, but every univalent function is not always convex. However, every

univalent analytic mapping maps a sufficiently small disk into a convex domain.

The largest radius of the disk with this property is the radius of convexity. It is

known that the radius of convexity for the set S is 2−
√

3 and is attained by the

Koebe function [127]. Grunsky [67] proved that the radius of starlikeness for the

set S is tanh(π/4). The radius of close-to-convexity for the set S was determined by

Krzyż [87]. A list of such radius problems was provided by Goodman [61, Chapter

13].

For f(z) = z +
∑∞
n=2 anz

n ∈ S, de Branges [37] proved the Bieberbach’s

conjecture that |an| ≤ n (n ≥ 2) (Theorem 1.2). However, the inequality |an| ≤

n (n ≥ 2) does not imply f is univalent; for example, f(z) = z + 2z2 satisfies

the coefficient inequality but f is not a member of S as f ′(−1/4) = 0. In view of

this, it is interesting to investigate the radius of univalence, starlikeness, and other

geometric properties of f(z) = z +
∑∞
n=2 anz

n ∈ A when the Taylor coefficients

of f satisfy |an| ≤ cn+ d (n ≥ 2).

The inequality |an| ≤ M holds for functions f(z) = z +
∑∞
n=2 anz

n ∈ A

satisfying |f(z)| ≤M , and for these functions, Landau [90] proved that the radius

of univalence is M−
√
M2 − 1. For functions f(z) = z+

∑∞
n=2 anz

n ∈ A satisfying

the inequality |an| ≤ n (n ≥ 2), Gavrilov [58] showed that the radius of univalence

is the real root r0 ≈ 0.1648 of the equation 2(1−r)3−(1+r) = 0, and for functions

f(z) = z+
∑∞
n=2 anz

n ∈ A satisfying |an| ≤M (n ≥ 2), the radius of univalence is

1−
√
M/(1 +M). Yamashita [209] showed that the radius of univalence obtained
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by Gavrilov is the radius of starlikeness as well. Indeed, Gavrilov [58, Theorem 1]

estimated the radius of univalence to be 0.125 < r0 < 0.130, while Yamashita [209]

obtained r0 ≈ 0.1648. Yamashita also determined the radius of convexity for

functions f(z) = z +
∑∞
n=2 anz

n ∈ A satisfying |an| ≤ M (n ≥ 2) to be the real

root of (M + 1) (1− r)3 −M(1 + r) = 0.

Recently Kalaj et al. [74] obtained the radii of univalence, starlikeness, and

convexity for harmonic mappings satisfying similar coefficient inequalities.

In [161], Ravichandran obtained the sharp radii of starlikeness and convexity of

order α for functions f ∈ Ab satisfying |an| ≤ n or |an| ≤M (M > 0), n ≥ 3. The

radius constants for uniform convexity and parabolic starlikeness for functions f ∈

Ab satisfying |an| ≤ n, n ≥ 3 were also obtained. Ravichandran [161] determined

the radius of positivity for the real part of the functions p(z) = 1+c1z+c2z
2 + · · ·

satisfying the inequality |cn| ≤ 2M (M > 0), n ≥ 3 with |c2| = 2b, 0 ≤ b ≤ 1.

Let f = z +
∑∞
n=2 anz

n ∈ Ab satisfy either |an| ≤ cn + d (c, d ≥ 0) or

|an| ≤ c/n (c > 0) for n ≥ 3. In Chapter 7, sharp L(α, β)-radius and sharp

ST [A,B]- radius for these classes are obtained. The radius constants obtained

by Ravichandran [161] and Yamashita [209] are shown to be special cases of the

results obtained in Chapter 7.

1.6 Convolution

Let f(z) =
∑∞
n=0 anz

n , and g(z) =
∑∞
n=0 bnz

n be analytic in the unit disk U .

The Hadamard product of f and g is defined by

(f ∗ g)(z) =
∞∑
n=0

anbnz
n (z ∈ U).
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The alternative representation as a convolution integral

(f ∗ g)(z) =
1

2πi

∫
|ζ|=ρ

f

(
z

ζ

)
g(ζ)

dζ

ζ
(|z| < ρ < 1),

is the reason f ∗ g is also called the convolution of f and g where Rf and Rg are

the radii of convergence for f and g respectively [172, p. 11]. Since f and g are

analytic in U , Rf ≥ 1 and Rg ≥ 1. Thus,

1

Rf∗g
= lim sup |anbn|

1
n ≤

(
lim sup |an|

1
n

)(
lim sup |bn|

1
n

)
=

1

Rf

1

Rg
≤ 1,

where Rf∗g is the radius of convergence for f ∗ g. Hence f ∗ g is analytic in

|z| < RfRg. Mandelbrojt and Schiffer [150] conjectured univalence is preserved

under integral convolution; namely if f, g ∈ S , then

G(z) =

∫ z

0

(f ∗ g)(t)

t
dt ∈ S.

Epstein and Schöenberg [50], Hayman [70], and Loewner and Netanyahu [100]

proved counterexamples to the Mandelbrojt and Schiffer conjecture. In 1958, Pólya

and Schöenberg [150] conjectured that

CV ∗ CV ⊂ CV .

Suffridge [195] proved that the convolution of every pair of convex functions is

close-to-convex. In 1973, the Polya and Schöenberg’s conjecture was proved by

Ruscheweyh and Sheil-Small [173]. They also proved that the class of starlike

functions and close-to-convex functions are closed under convolution with convex

functions. However, it turns out that the class of univalent functions is not closed

under convolution. In fact, ST ∗ ST is not even contained in the family S. For

example, let f = g = k ∈ ST , where k is the Koebe function. Then f ∗ g 6∈ S
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because an = n2 > n. Further details about related works can be found in [48].

A subclass of analytic functions considered by Ruscheweyh [172] known as

prestarlike functions was applied to the basic convolution results.

For α < 1, the class Rα of prestarlike functions of order α is defined by

Rα :=

{
f ∈ A : f ∗ z

(1− z)2−2α ∈ ST (α)

}
,

while R1 consists of f ∈ A satisfying Re f(z)/z > 1/2. In particular,

f ∈ R1/2 ⇔ Re
zf ′(z)

f(z)
>

1

2
(z ∈ U),

f ∈ R0 ⇔ Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0 (z ∈ U). (1.23)

Therefore, R1/2 = ST 1/2 and R0 = CV . It is a known result [172] that the classes

of starlike functions of order α and convex functions of order α are closed under

convolution with prestarlike functions of order α. Prestarlike functions have a num-

ber of interesting geometric properties. Ruscheweyh [172] and Sheil-Small [180]

investigated the significance of prestarlike functions. The results and techniques of

Ruscheweyh and Sheil-Small developed in [173] in connection with their proof of

the Polya-Schöenberg conjecture have been applied in many convolution articles.

The convex hull method is based on the following convolution result for prestarlike

and starlike functions.

Theorem 1.12 [172, Theorem 2.4] Let α ≤ 1, φ ∈ Rα and f ∈ ST (α). Then

φ ∗ (Hf)

φ ∗ f
(U) ⊂ co(H(U)),

for any analytic function H ∈ H(U), where co(H(U)) denotes the closed convex
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hull of H(U).

In Chapter 2, the classical subclasses of starlike, convex, close-to-convex and

quasi-convex functions are extended to new subclasses of analytic functions. Using

the method of convex hull and the theory of differential subordinations discussed

later in Section 1.8, convolution properties of these newly defined subclasses of

analytic functions are investigated. It is shown that these classes are closed un-

der convolution with prestarlike functions. Also, new subclasses for meromor-

phic functions are similarly introduced, and the convolution features of these

subclasses are investigated. It is proved that these classes are also closed un-

der convolution with prestarlike functions. It is shown that the Bernardi-Libera-

Livingston integral operator preserve all these subclasses of analytic and meromor-

phic functions. It would be evident that various earlier works, for example those

of [3, 35,44,120,148,159], are special instances of the results obtained.

1.7 Dual Set and Duality for Convolution

Let A0 be the set of all functions f ∈ H(U) satisfying f(0) = 1. For V ⊂ A0,

define the dual set

V ∗ :=
{
f ∈ A0 : (f ∗ g)(z) 6= 0 for all g ∈ V, z ∈ U

}
.

The second dual V ∗∗ is defined as V ∗∗ = (V ∗)∗. It is of interest to investigate

the relations between V and V ∗∗. In general, V ∗∗ is much bigger than V , but

many properties of V remain valid in V ∗∗. Let Λ be the set of continuous linear

functionals on H(U) and λ(V ) := {λ(f) : f ∈ V }. In 1975, Ruscheweyh [170]

proved the following fundamental result, known as the Duality Principle.

Theorem 1.13 (Duality Principle) [170] Let V ⊂ A0 have the following prop-

erties:

20



(1) V is compact,

(2) f ∈ V implies f(xz) ∈ V for all |x| ≤ 1.

Then λ(V ) = λ(V ∗∗) for all λ ∈ Λ on A, and co(V ) = co(V ∗∗).

The Duality Principle has numerous applications to the class of functions pos-

sessing certain geometric properties like bounded real part, convexity, starlikeness,

close-to-convexity and univalence. The monograph of Ruscheweyh [172], and also

the paper [170] in which many of the results of this topic were first published have

become basic references for duality theory. As an application of Duality Principle,

the following corollary was shown by Ruscheweyh [172]. The result is false with

V ∗∗ replaced by co(V ).

Corollary 1.1 [172, Corollary 1.1. p. 17] Let V ⊂ A0 satisfy the conditions in

Theorem 1.13. Let λ1, λ2 ∈ Λ with 0 6∈ λ2(V ). Then for any f ∈ V ∗∗ there exists

a function g ∈ V such that

λ1(f)

λ2(f)
=
λ1(g)

λ2(g)
.

Ruscheweyh determined a big class of sets in A0 in which the above result was

applicable.

Theorem 1.14 [170, Theorem 1, p. 68] If

Vβ =

{
(1− β)

1 + xz

1 + yz
+ β : |x| = |y| = 1, β ∈ R, β 6= 1

}
,

then

V ∗β =

{
f ∈ A0 : Re f(z) >

1− 2β

2(1− β)

}
,

and

V ∗∗β =
{
f ∈ A0 : ∃φ ∈ R with Re eiφ(f(z)− β) > 0, z ∈ U

}
.
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Singh and Singh [187] proved the Bernardi integral operator

Fc(z) = (c+ 1)

∫ 1

0
tc−1f(tz)dt (c > −1)

is starlike for −1 < c ≤ 0, where Re f ′(z) > 0 in U . In 1986, Mocanu proved that

Re f ′(z) > 0⇒ F1 ∈ ST ,

and the result was later improved by Nunokawa [131]. Singh and Singh [186] also

proved

Re f ′(z) > −1

4
⇒ F0 ∈ ST .

Such problems were earlier handled using the theory of subordination which

will be discussed in Section 1.8. In 1975, Fournier and Ruscheweyh [53] used the

Duality Principle [172] to find the sharp bound for β such that Fc(P(β)) ⊂ ST

where P(β) is given by

P(β) :=
{
f ∈ A : ∃φ ∈ R with Re eiφ

(
f ′(z)− β

)
> 0, z ∈ U

}
, (1.24)

and −1 < c ≤ 2.

Indeed, Fournier and Ruscheweyh [53] investigated starlikeness properties of a

general operator

F (z) = Vλ(f)(z) :=

∫ 1

0
λ(t)

f(tz)

t
dt. (1.25)

over functions f in the class P(β) given by (1.24), where λ is a non-negative

real-valued integrable function satisfying the condition
∫ 1

0 λ(t)dt = 1. Ali and

Singh [21] found a sharp estimate of the parameter β that ensures Vλ(f) is convex

over P(β).
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The duality theory of convolutions developed by Ruscheweyh [172] is now

popularly used by several authors to discuss similar problems, among which include

the works of [27–31, 45, 47, 83, 152–154]. As a consequence of these works, several

interesting results on integral operators for special choices of λ were derived. A

survey on integral transforms in geometric function theory was provided by Kim

[81]. Integral operators will be treated again in Section 1.9.

The class Wβ(α, γ) defined by

Wβ(α,γ) :=
{
f ∈ A : ∃φ ∈ R with

Re eiφ
(

(1− α + 2γ)
f(z)

z
+ (α− 2γ)f ′(z) + γzf ′′(z)− β

)
> 0, z ∈ U

}
,

(1.26)

for α ≥ 0, γ ≥ 0 and β < 1 was recently introduced by Ali et al. [12]. Ali et al. [7]

investigated the starlikeness of integral transform (4.1) over the class Wβ(α, γ) by

applying the Duality Principle.

In Chapter 4, the Duality Principle is used to determine the best value of

β < 1 that ensures the integral operator Vλ(f) in (1.25) maps the class Wβ(α, γ)

defined in (1.26) into the class of convex functions. Simple necessary and sufficient

condition for Vλ(f) to be convex are obtained. For specific choices of the admissible

function λ, several applications are investigated. As an important consequence, it

is shown that a function f satisfying the third-order differential equation

Re
(
f ′(z) + αzf ′′(z) + γz2f ′′′(z)

)
> β

is convex in U where β > −0.629445. Also, the smallest value of β < 1 is obtained

such that the generalized integral operator of the form ρz + (1 − ρ)Vλ(f), ρ < 1,

over the class of Wβ(α, γ) is starlike. Corresponding result for ρz + (1− ρ)Vλ(f),
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ρ < 1, to be convex is also derived.

1.8 Differential Subordination

In this section, the basic definitions and theorems in the theory of subordination

and certain applications of differential subordinations are described. A function

f is subordinate to an analytic function g, written f(z) ≺ g(z), if there exists

a Schwarz function w, analytic in U with w(0) = 0 and |w(z)| < 1 satisfying

f(z) = g(w(z)). If g is univalent in U , then f(z) ≺ g(z) is equivalent to f(0) = g(0)

and f(U) ⊂ g(U). The following concepts and terminologies were introduced by

Miller and Mocanu in [111].

Let ψ(r, s, t; z) : C3×U → C, and h be univalent in U . If an analytic function

p satisfies the second-order differential subordination

ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z), (1.27)

then p is called a solution of the differential subordination. The univalent function

q is called a dominant of the solution of the differential subordination, or more

simply, dominant, if p(z) ≺ q(z) for all p satisfying (1.27). A dominant q1 satisfying

q1(z) ≺ q(z) for all dominants q of (1.27) is said to be the best dominant of (1.27).

The best dominant is unique up to a rotation of U . Miller and Mocano provided

a comprehensive discussion on differential subordination in [111].

Let ψ(r, s, t; z) : C3×U → C, and h(z) be analytic in U . Let p and ψ(p(z), zp′(z),

z2p′′(z); z) be univalent in U . If p satisfies the second-order differential superordi-

nation

h(z) ≺ ψ(p(z), zp′(z), z2p′′(z); z), (1.28)

then p is called a solution of the differential superordination. An analytic function

q is called a subordinant of the solution of the differential superordination, or
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