UNIVERSITI SAINS MALAYSIA

Second Semester Examination 2012/2013 Academic Session

June 2013

EKC 574 – Downstream Processing of Biochemical and Pharmaceutical Products

Duration: 3 hours

Please ensure that this examination paper contains <u>FOUR</u> printed pages and <u>THREE</u> printed pages of Appendix before you begin the examination.

Instruction: Answer **ALL** questions.

- 2 - [EKC 574]

Answer ALL questions.

1. Under Good Manufacturing Practice, Facilities Conceptual Design is concerning the segregation of process and building utilities to avoid contamination. Figure Q.1. is the facility layout of a bioprocessing industry.

Figure Q.1.

- [a] Proposed the material and personnel traffic (show directly on the sketch sheet)

 [5 marks]
- [b] Suggest on how to prevent contamination between the corridor and the work zone.

[2 marks]

[c] Water for Injection (WFI) is water purified to remove chemicals and microorganisms. List out three unit operations involved in the production of WFI.

[3 marks]

- 2. Benzylpenicillin is an antibiotic effective against anthrax disease. As part of a purification process, 200 mg of benzylpenicillin is mixed with 25 mL of n-octanol and 25 mL of water. After equilibrium is established, there is a water rich phase that contains essentially no n-octanol and an octanol-rich phase that contains 74 mol% n-octanol and 26 mol% water.
 - [a] Assuming infinite dilution, determine the concentrations of benzylpenicillin in each of these phases.

[10 marks]

[b] For the real solution, if the ratio of $\frac{\gamma_{BP}^W}{\gamma_{BP}^O}$ is <1, comment on the concentration changes of benzylpenicillin in the octanol phase.

[3 marks]

- 3 - [EKC 574]

[c] What is the major disadvantage of solvent extraction for biological product?

Data: The molecular weight of benzylpenicillin is 334.5, that of n-octanol is 130.23, the liquid density of n-octanol is 0.826 g/cm³, and partition coefficient of benzylpenicillin in n-octanol/water is 65.5.

- 3. A 400 L solution of a protein at 0.05 g/L needs to be concentrated to 1.5 g/L using an ultrafiltration membrane of surface area 500 cm² at a flux of 12 x 10^{-5} cm/s. The protein has a diffusion coefficient of 1.8×10^{-6} cm²/s at 15° C.
 - [a] Determine whether concentration polarization is an important external factor affecting the membrane's performance. Assume that the boundary layer thickness is 0.015 cm.

[3 marks]

[b] Propose a method to reduce the concentration polarization based on the expression of Sh = f(Re, Sc)

[3 marks]

[c] What is the concentration of protein on the surface of the ultrafiltration membrane for the bulk concentration of 1.5 g/L.

[4 marks]

[d] Calculate the time needed to complete the filtration and achieved the desired final concentrations.

[5 marks]

4. [a] Discuss the significance of G value and Σ factor in the scaling up of centrifuges.

[8 marks]

[b] A suspension of yeast cells is to be filtered at a constant filtration rate of 50 L/min. The suspension has a solid content of 70 kg/m³ of suspension and the yeast cells have a bulk density of 800 kg/m³. Laboratory tests indicate that the specific cake resistance is 40 m/kg and the viscosity of the filtrate is 2.9×10^{-3} kg/m.s. The filter has an area of 0.1 m^2 and the medium offers negligible resistance. How long can the filtration rate be maintained before the pressure drop exceeds 1 kg/m•s²? What volume of cake and filtrate are collected during this time? Note that ρ_0 is expressed in mass of solids per volume of filtrate, and NOT total volume of suspension. [HINT: volume of suspension = volume of filtrate + volume of cake].

[17 marks]

5. [a] Paclitaxel is an anticancer drug that can be produced by plant cell cultures of *Taxus baccata*. However, most of the product is entrapped in the cells and require cell disruption to release the product into the medium. Suggest <u>two</u> techniques that can be used to disrupt the cells.

[8 marks]

- 4 - [EKC 574]

[b] Cell-free fermentation liquor contains 8 x 10⁻⁵ mol/L immunoglobin G. It is proposed to recover at least 90% of this antibody by adsorption on synthetic, non-polar resin. Experimental equilibrium data are correlated as follows:

$$q = 5.5 \times 10^{-5} \, y^{0.35}$$

where q is mol solute adsorbed per cm³ adsorbent and y is liquid-phase solute concentration in mol/L. What minimum quantity of resin is required to treat 2 m³ fermentation liquor in a single-mixed tank? Show the detail flow chart of the process.

[12 marks]

[c] Describe a vacuum-shelf dryer and its application in industry.

[5 marks]

6. Protease, an enzyme that can degrade proteins, is used in products such as laundry detergent. Because it applications do not involve food products or injectable therapeutics, it need not be produced in a highly purified form. Protease can be produced in solid form. Develop and briefly explain the following steps that would improve the purity of the final product.

Appendix

$$J(x) = \frac{D}{\delta(x)} \ln \frac{C_w}{C_b}$$

$$\left(\frac{C_{final}}{C_o}\right) = \left(\frac{V_o}{V_f}\right)^R$$

$$\frac{At}{V} = \frac{\mu \alpha \rho_0}{2\Delta P} \left(\frac{V}{A}\right) + \frac{\mu R_M}{\Delta P}$$

$$v_g = \frac{\rho_p - \rho_f}{18\mu} D_p^2 g$$

$$Q = v_g \left[\frac{2\pi l R^2 \omega^2}{g}\right]$$

$$Q = v_g \left[\frac{2\pi l R^2 \omega^2}{g \ln(R_0/R_1)}\right]$$

$$t_E = \frac{1}{\nu \varepsilon} (K + \varepsilon - K\varepsilon)$$

$$Q = W_g \left[\frac{t_0(R_0^2 - R_1^2)\omega^2}{g \ln(R_0/R_1)}\right]$$

$$W_g = \frac{t_0(R_0^2 - R_1^2)\omega^2}{g \ln(R_0/R_1)}$$

$$W_g = \frac{t_0(R_0^2 - R_1^2)\omega^2}{g \ln(R_0^2 - R_1^2)\omega^2}$$

$$W_g = \frac{t_0(R_0^2 -$$

[EKC 574]

- 6 -

Length	Volume
1 ft = 12 in = 0.3048 m, 1 yard = 3 ft	$1 \text{ ft}^3 = 0.028317 \text{ m}^3 = 7.481 \text{ gal}$, $1 \text{ bbl} = 42 \text{ U.S. gal}$
1 mi = 5280 ft = 1609.344 m	1 U.S. gal = $231 \text{ in}^3 = 3.7853 \text{ L} = 4\text{qt} = 0.833 \text{ lmp.gal}.$
1 nautical mile (nmi) = 6076 ft	$1 L = 0.001 \text{ m}^3 = 0.035315 \text{ ft}^3 = 0.2642 \text{ U.S. gal}$
Mass	Density
$1 \text{ slug} = 32.174 \text{ lb}_{\text{m}} = 14.594 \text{ kg}$	$1 \text{ slug/ft}^3 = 515.38 \text{ kg/m}^3$, $1 \text{ g/cm}^3 = 1000 \text{ kg/m}^3$
$1 \text{ lb}_{\text{m}} = 0.4536 \text{ kg} = 7000 \text{ grains}$	$1 \text{ lb}_{\text{m}}/\text{ft}^3 = 16.0185 \text{ kg/m}^3$, $1 \text{ lb}_{\text{m}}/\text{in}^3 = 27.68 \text{ g/cm}^3$
Acceleration & Area	Velocity
$1 \text{ ft/s}^2 = 0.3048 \text{ m/s}^2$	1 ft/s = 0.3048 m/s , 1 knot = 1 min/h = 1.6878 ft/s
$1 \text{ ft}^2 = 0.092903 \text{ m}^2$	1 min/h = 1.4666666 ft/s (fps) = 0.44704 m/s
Mass Flow & Mass Flux	Volume Flow
$1 \text{ slug/s} = 14.594 \text{ kg/s}. 1 \text{ lb}_{\text{m}}/\text{s} = 0.4536 \text{ kg/s}$	1 gal/min = $0.00228 \text{ ft}^3/\text{s} = 0.06309 \text{ L/s}$
$1 \text{ kg/m}^2 \text{s} = 0.2046 \text{ lb}_{\text{m}}/\text{ft}^2 \text{s}$	1 million gal/day = $1.5472 \text{ ft}^3/\text{s} = 0.04381 \text{ m}^3/\text{s}$
$= 0.00636 \text{ slug/ft}^2 \text{s}$	
Pressure	Force and Surface Tension
$1 \text{ lb}_f/\text{ft}^3 = 47.88 \text{ Pa}, 1 \text{ torr} = 1 \text{ mm Hg}$	$1 \text{ lb}_f = 4.448222 \text{ N} = 16 \text{ oz}, 1 \text{ dyne} = 1 \text{ g cm/s}^2 = 10^{-5} \text{N}$
$1 \text{ psi} = 144 \text{ psf}, 1 \text{ bar} = 10^5 \text{ Pa}$	$1 \text{ kg}_{\text{f}} = 2.2046 \text{ lb}_{\text{f}} = 9.80665 \text{ N}$
1 atm = 2116.2 psf = 14696 psi = 101,325 Pa	1 U.S. (short) ton = 2000 lb_f , 1 N = 0.2248 lb_f
$= 29.9 \text{ in Hg} = 33.9 \text{ ft H}_2\text{O}$	$1 \text{ N/m} = 0.0685 \text{ lb}_{\text{f}}/\text{ft}$
Power	Energy and Specific Energy
$1 \text{ hp} = 550 \text{ (ft.lb}_{\text{f}})/\text{s} = 745.7 \text{ W}$	1 ft lb _f = 1.35582 J, 1 hp·h = 2544.5 Btu
$1 (ft.lb_f)/s = 1.3558 W$	1 Btu = 252 cal = $1055.056 J = 778.17 ft lb_f$
1 Watt = 3.4123 Btu/h = 0.00134 hp	$1 \text{ cal} = 4.1855 \text{ J}, 1 \text{ ft.lb}_f/\text{lb}_m = 2.9890 \text{ J/kg}$
Specific Weight	Heat Flux
$1 \text{ lb}_f/\text{ft}^3 = 157.09 \text{ N/m}^3$	$1 \text{ W/m}^2 = 0.3171 \text{ Btu/(h ft}^2)$
Viscosity	Kinematic Viscosity
1 slug/(ft.s) = 47.88 kg/(m.s) = 478.8 poise (p)	$1 \text{ ft}^2/\text{h} = 2.506 \cdot 10^{-5} \text{ m}^2/\text{s}, 1 \text{ ft}^2/\text{s} = 0.092903 \text{ m}^2/\text{s}$
1 p=1 g/(cm.s) 0.1 kg/(m.s) = $0.002088 \text{ slug/(ft s)}$	1 stoke (st) = $1 \text{ cm}^2/\text{s} = 0.0001 \text{ m}^2/\text{s} = 0.001076 \text{ ft}^2/\text{s}$
Temperature Scale Readings	
$^{\circ}F = (9/5)^{\circ}C + 32$ $^{\circ}C = (5/9)(^{\circ}F - 32)$	$^{\circ}R = ^{\circ}F + 459.69$ $^{\circ}K = ^{\circ}C + 273.16$
Thermal Conductivity*	Gas Constant*
$1 \text{ cal/(s.cm.}^{\circ}\text{C}) = 242 \text{ Btu/(h.ft.}^{\circ}\text{R})$	$R = 82.057 \text{ atm.cm}^3/(\text{gmol.K}) = 62.361 \text{ mm Hg.L/(gmol.K)}$
$1 \text{ Btu/(h.ft.}^{\circ}\text{R}) = 1.7307 \text{ W/(m.K)}$	= $1.134 \text{ atm.ft}^3/(\text{lbmol.K}) = 0.083144 \text{ bar.L}/(\text{gmol.K})$
	= $10.73 \text{ psi. ft}^3/(\text{lbmol.}^{\circ}\text{R}) = 555.0 \text{ mm Hg.ft}^3/(\text{lbmol.}^{\circ}\text{R})$
• Note that the intervals in absolute (Kelvin) and °C are equal. Also, 1 °R = 1 °F.	
$Latent\ heat:\ 1\ J/kg = 4.2995\times 10^{-4}\ Btu/lb_m = 10.76\ lb_f.ft/slug = 0.3345\ lb_f.ft/lb_m\ ,\ 1\ Btu/lb_m = 2325.9\ J/kg$	
Heat transfer coefficient: 1 Btu/(h.ft ² .°F) = $5.6782 \text{ W/(m}^2.$ °C).	
Heat generation rate: $1 \text{ W/m}^3 = 0.09665 \text{ Btu/(h ft}^3)$	
Heat transfer per unit length: $1 \text{ W/m} = 1.0403 \text{ Btu/(h ft)}$	
Mass transfer coefficient: 1 m/s = 11.811 ft/h, 1 lb _{mol} /(h.ft ²) = 0.013562 kgmol/(s.m ²)	

Sketch Sheet

Sketch the material and personnel flow onto this sketch sheet. Detach it from the question paper and submit together with your answer booklets

