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REKABENTUK, SINTESIS, AKTIVITI SITOTOKSIK DAN               

INTERKALASI DNA BAGI TERBITAN β-KARBOLINA BARU 

 

ABSTRAK 

Fokus kajian ini adalah untuk menyelidik tentang kesan sitotoksik in vitro 

terbitan baru β-karbolina terhadap sel kanser manusia K562. Analisis menggunakan 

model 3D-QSAR telah mendedahkan kepentingan penukargantian pada posisi-2 dan 

-9 β-karbolina. Dua siri baru terbitan N2-benzil-β-karbolina (M23-M46) dan N2-N9-

benzil-1-tertukarganti-β-karbolina (M47-M113) telah disintesis dan dicirikan 

menggunakan tindak balas empat langkah telah memberikan hasil yang baik (>70%). 

Sebatian M23-M113 menunjukkan aktiviti antikanser yang paling kuat dengan nilai 

IC50 antara 0.01-4 μM, kecuali sebatian M88-M90 dengan nilai IC50 lebih daripada 

100 μM. Enam daripada terbitan N2-N9-benzil-1-tertukarganti-β-karbolina (M53, 

M85, M86, M104, M109 dan M112) menunjukkan nilai IC50 antara 0.01-0.07 μM 

berbanding Doxorubicin (DOX) yang digunakan sebagai kawalan positif (0.77 μM). 

Kajian hubungan struktur-aktiviti (SAR) mendedahkan bahawa penukargantian 

tambahan kumpulan benzil pada posisi-2 dan -9 menunjukkan aktiviti sitotoksik 

yang paling menarik. Agen interkalasi seperti DOX, harmine (HAR), 5-fluorouracil 

(5-FU) dan terbitan β-karbolina yang terpilih, M53 dan M56 digunakan sebagai 

sebatian model. Mekanisme interkalator telah diterokai menggunakan DNA timus 

anak lembu (CT-DNA) sebagai sistem model. UV-Vis menunjukkan bahawa DOX, 

HAR, M53 dan M56 mendorong kesan hipokromik dan anjakan merah, sementara  

5-FU tidak. Dalam pemancaran pendarfluor, pelindapkejutan pendarfluor telah 

diperhatikan dalam sistem EtBr-DNA (siasatan) dengan penambahan DOX, HAR,  

5-FU, M53 dan M56. Dalam dikroisme bulat, DOX dan HAR mengubah keamatan 
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jalur positif dan negatif DNA dalam arah yang sama manakala sebatian M53 dan 

M56 mencetuskan perubahan yang bertentangan. Pengikatan DOX, HAR, M53 and 

M56 dengan DNA adalah secara mod interkalasi. Dalam kajian in silico, sebatian 

M53 dan M56 telah didok ke d(CGATCG)2 oligonukleotides yang diambil dari Bank 

Data Protein (PDB ID: 1D12) sebagai wakil model interaksi antara agen antikanser 

dan DNA melalui mod interkalasi. Kajian eksperimen dan in-silico saling 

dipersetujui di mana kedua-duanya membuktikan bahawa sebatian M53 dan M56 

terikat kepada DNA secara interkalasi antara pasangan asas CG. 
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DESIGN, SYNTHESIS, CYTOTOXIC ACTIVITY AND DNA 

INTERCALATION OF NEW β-CARBOLINE DERIVATIVES 

 

ABSTRACT 

The focus of this study has been to investigate the in vitro cytotoxic effects of 

new β-carboline derivatives on the K562 human cancer cell line. Analysis using 3D-

QSAR models has revealed the importance of derivatisation at position-2 and -9 of 

the β-carbolines. Two new series of N2-benzylated-β-carboline (M23-M46) and     

N2-N9-benzylated-1-substituted-β-carboline derivatives (M47-M113) were 

synthesised and characterised using four-step reaction and were produced in good 

yields (>70%). Compounds M23-M113 exhibited the most potent anticancer activity 

with IC50 values between 0.01-4 µM, except for compounds M88-M90 which 

produced IC50 values of more than 100 µM. Six of N2-N9-benzylated-1-substituted-β-

carboline derivatives (M53, M85, M86, M104, M109 and M112) showed IC50 

values between 0.01-0.07 µM when compared to doxorubicin (DOX) which was 

employed as the positive control (0.77 µM). The structure-activity relationships 

(SARs) study has revealed that additional substituents of the benzyl group at 

position-2 and -9 exhibited the most interesting cytotoxic activities. Intercalator 

agents such as DOX, harmine (HAR), 5-fluorouracil (5-FU) and selected -carboline 

derivatives M53 and M56 were used as the model compounds. The intercalating 

mechanism was explored using calf thymus DNA (CT-DNA) as a model system. 

UV-Vis showed that DOX, HAR, M53 and M56 induced hypochromic effect and 

redshift, while 5-FU did not. In fluorescence emission, fluorescence quenching was 

observed in the EtBr-DNA system (probe) upon addition of DOX, HAR, 5-FU, M53 

and M56. In circular dichroism (CD), DOX and HAR changed the intensities of the 
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positive and negative bands of DNA in the same direction while compounds M53 

and M56 induced the opposite change. The binding of DOX, HAR M53 and M56 

with DNA was through the intercalation mode. In the in-silico study, compounds 

M53 and M56 were docked onto d(CGATCG)2 oligonucleotides retrieved from the 

Protein Data Bank (PDB ID: 1D12) as the representative of the interaction model 

through intercalation mode between anticancer agents and DNA. The experimental 

and in-silico studies were in good agreement whereby both proved that compounds 

M53 and M56 were bound to DNA via intercalation between CG base pairs. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Cancer 

Cancer, an illness that has haunted mankind and will continue to be a major health 

issue, can be defined as a collection of diseases characterised by uncontrolled cell 

proliferation leading to dissemination (metastasis) to other parts of the body 

eventually compromising normal body function. The spread of the primary growth to 

secondary locations distinguishes cancer from benign tumours making its eradication 

far more difficult.  

 As far as the Malaysian community is concerned, the incidence of cancer 

increased from 32,000 cases in 2008 to 37,400 in 2012. This number is predicted to 

rise to 56,932 by 2025 if no action is taken (The Star Online, 2014). According to the 

International Agency for Research on Cancer (IARC), which is under World Health 

Organisation (WHO), and through their Globocan project, death due to cancer 

(cancer mortality) was 20,100 in 2008 and had increased to 21,700 in 2012. Based on 

statistics released by Globocan 2012, cancer cases worldwide are forecast to rise by 

75% and reach close to 25 million over the next two decades (Ferlay et al., 2014; The 

Star Online, 2014). It is believed that some races are genetically predisposed to 

particular types of cancer while incidence rates depend on environmental factors 

such as diet and lifestyle (National Cancer Institute, 2015). 
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 Carcinogenesis, the process leading to cancer formation, is complicated and 

not yet fully understood and often involves phenotypic alterations that give cancer 

cells a selective advantage for growth over normal cells. These may include over 

competitive behaviour for growth factors, over-production of intercellular growth 

signals or errors in genes which regulate programmed cell death (apoptosis). This is 

usually accompanied by modifications which enable cells to invade surrounding 

tissue and metastasize to other parts of the body to form new tumours (King, 1996). 

 The prognosis for patients treated at the early stages of this malady is 

invariably better due to the smaller number and less destructive nature of a tumour. 

Surgery is the usual starting point for treatment of solid tumours followed by 

radiation therapy and chemotherapy depending on the site and nature of the disease. 

As a majority of tumour cells have a higher proportion of dividing cells as compared 

to normal tissue, they are more susceptible to the lethal effect of chemotherapeutic 

agents. However, rapidly dividing normal cells, such as those of the bone marrow, 

digestive tract and hair follicles are also affected causing unwanted side effects such 

as myelosuppression, vomiting, gastrointestinal disturbances and alopecia (Han et al., 

2017). This poses limitations on the dose of a particular drug that can be 

administered, which in turn reduces the effect of the treatment. 

 The problem of systemic toxicity has been partially alleviated by combination 

therapy which usually involves the administration of two or three cytotoxic agents 

with different mechanisms of action, such as topoisomerase inhibitors, 

antimetabolites, and alkylating agents (Tacar et al., 2012). This strategy also 

enhances overall tumour cell destruction but rarely eradicates all the cells. The small 

clone and progenitor cells which survive treatment frequently redivide to form a new, 
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drug-resistant tumour. Unfortunately, this means that except for prostate cancer, 

Hodgkin’s lymphoma and childhood leukaemia, the disease is often fatal.  

 As a consequence, extensive research is being carried out to find new drugs 

that overcome the problems of toxicity and resistance associated with chemotherapy. 

Many of these are based on compounds already in clinical use. 

 

1.2 DNA intercalating agents 

Among the agents currently used in the treatment of cancer are the DNA 

intercalating agents. These possess a polycyclic aromatic ring system that allows 

reversible non-covalent interdigitation between adjacent base pairs in the 

hydrophobic interior of the DNA double helix (Lerman, 1961). The impact would be 

a local distortion and an overall lengthening of the DNA helix as it unwinds to 

accommodate the drug molecule (Waring, 1979; Reinert, 1983) (Figure 1.1). 

Compounds with tri-and tetracyclic chromophores which are approximately of the 

same dimension as the purine-pyrimidine base pairs usually show optimal binding.  

 

Figure 1.1: Intercalation of ethidium bromide (EtBr) into-double-stranded DNA, 

showing lengthening of the DNA helix (reproduced from Watson, 1987) 
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In some cases, the drug may contain additional constituents attached to the 

chromophore which strengthens intercalation by interacting with the anionically 

charge DNA phosphate backbone (Foye et al., 1982; Pachter et al., 1982; Pohle et al., 

1990). However, this type of binding is much weaker than intercalation because it 

occurs on the exterior surface of the DNA helix and is influenced to no small extent 

by the conditions of the surrounding medium (Jones et al., 1980). 

 

1.2.1 The anthracycline antitumor agents 

Anthracycline antibiotics such as doxorubicin (DOX) were isolated from 

Streptomyces bacterium (Streptomyces peucetius var caesius) in the 1960s (Chen et 

al., 1999). DOX still among the most widely and active chemotherapeutic agents in 

use (Lown, 1993; Iwaki et al., 2000; Minotti et al., 2004; Peng et al., 2005).  

 Chemically, the anthracyclines contain an amino sugar attached to an 

aglycone ring, the latter consisting of a non-aromatic (A) ring conjugated with an 

anthraquinone moiety (Figure 1.2). DOX can also be used alone or in combination to 

treat a wide range of cancers including acute leukaemias, Hodgkin's and non-

Hodgkin's lymphomas, cancers of the bladder, stomach, breast, lung, thyroid, 

ovaries, soft tissue, bone sarcomas, multiple myelomas, and others (Rebecca et al., 

2017).  

 

Figure 1.2: The antitumor anthracycline doxorubicin 

A 
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 The principal mode of action of the anthracyclines is thought to be mediated 

through intercalation of the aglycone portion of the molecule between adjacent DNA 

base pairs (Takahashi & Naganuma, 2017). DOX interacts with DNA on a molecular 

level by intercalation and destruction of macromolecular biosynthesis. This inhibits 

the function of enzyme topoisomerase II which is involved in the unwinding of 

supercoiling of DNA for transcription. DOX stabilises the topoisomerase II complex 

after it has fragmented the DNA strand for replication preventing the DNA double 

helix from being re-sealed thereby stopping the replication process. The aromatic 

chromophore of the molecule intercalates between the base pairs of the DNA, while 

the six-membered daunosamine sugar is placed in the minor groove and interacts 

with flanking base pairs together to the intercalation site (Box, 2007). As a result of 

the highly undesirable features associated with the use of the anthracyclines in 

chemotherapy, a lot of time and effort has been devoted to developing derivatives of 

DOX in the hope of enhancing antitumor activity and lowering the side effects.  

 In order to elucidate the desired biological activity, the structure of a drug 

should be complementary with the receptor. However, due to the complex nature of 

the biological systems, the predicted effect of the structural fluctuations in the 

biological activity of the drug is uncertain (Shah et al., 2010). Therefore, extensive 

research is an important pre-requisite for the determination of structure-activity 

relationship (SAR) and the significance of structural modification. With this in mind, 

new anticancer agents, β-carbolines, were evaluated for their drug-DNA binding. 

 In recent years, β-carboline derivatives have been reported to have excellent 

anticancer drug properties. Their ability to act as DNA intercalating agents is related 

to their potent antitumor activities (Rescifina et al., 2014; Zhang & Sun, 2015; 

Kumar et al., 2017). Among the β-carboline derivatives, the most represented 
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naturally occurring β-carboline alkaloid endowed with antitumor properties is 

harmine (HAR) or 7-methoxy-1-methyl-9H-pyrido[3,4-b]indole (Figure 1.3). HAR is 

capable of inducing DNA single or double strand breaks (Boeira et al., 2002). 

Recently, derivatives of HAR have come into focus as they can inhibit various 

cancer cell lines in nanomolar concentrations (Meinguet et al., 2015; Geng et al., 

2018).  

 

Figure 1.3: The chemical structure of harmine 

 

1.3 Problem statement 

Inspired by cytotoxic potential of β-carboline derivatives against various cancer cell 

lines (Cao et al., 2010; 2013; Zhang et al., 2013), a series of new β-carboline 

derivatives were designed, synthesised, and screened for their in vitro cytotoxic 

strength. 

 Previous studies have reported more complicated synthesis route for the        

β-carboline derivatives with structural requirements for position-2 and -9 (Zhang et 

al., 2013). Therefore, the present study has been streamlined to develop a more 

straightforward, less time consuming and cost-effective synthesis route. This 

synthesis process is challenging especially when it comes to completing 

aromatization under oxidative conditions and β-carbolineum salt reactions for 

generating a high yield of β-carboline derivatives. Although the cytotoxic potency at 

various positions has been explored extensively over the years, synthesis of 

derivatives with such structural requirements at position-2 and -9 in the one-pot 
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reaction has not been investigated thus far. Benefits of this reaction include time, cost 

and labour efficiencies.  

 For the cytotoxicity studies, literature has reported anticancer potential of      

β-carboline against many in vitro cell lines such as BGC-823, MCF-7, 22RV1, 

HepG2, 769-P, HT-29, A375, SK-OV-3, Eca-109 and LLC (Zhang et al., 2013). The 

current study will focus on the structural requirements of β-carboline derivatives at 

position-2 and -9 for the cytotoxic activity against the K562 cell line. K562 is human 

immortalised myelogenous leukemia (CML) cell line. There is no cytotoxic activity 

of β-carboline against K562 has been reported. Therefore, this study is the first of its 

kind to indicate the structural relationship between β-carboline derivatives and K562 

cells. In addition, the orientation of β-carboline derivatives that bind to the DNA 

complex will also be studied. The interactions between β-carboline derivatives and 

DNA will be studied using various spectrophotometric methods. In order to 

understand the molecular interaction with its macromolecular target, molecular 

docking technique will be used to provide molecular interaction information between 

β-carbolines and DNA.  

 

1.4 Scope of study 

The primary goal of this research is to design and synthesise new β-carboline 

derivatives library and to elucidate their antitumor structure-activity relationships 

(SARs). It is essential to use inexpensive starting materials with minimal usage of 

chromatography and less reaction steps in the synthesis. In the present study, 

exploration of the cytotoxic potential of β-carboline derivatives having substituents 

at position-2 and -9 positions was undertaken using 3D-QSAR studies.  
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 The new β-carboline derivatives were produced by the positional 

modification of benzyl substituent moieties at position-2 and -9. This amendment 

may be the key for the modulation of cytotoxic strength. The mechanism of action of 

the compounds via DNA binding interactions was analyzed using several analytical 

procedures including thermal melting denaturation, UV-Visible absorption 

spectroscopy, fluorescence emission spectroscopy and circular dichroism coupled 

with the computational technique of molecular docking. 

 

1.5 Objectives  

Based on the importance of β-carboline, the objectives of this study are listed below: 

i. To understand structural requirement for various positions of β-carboline 

scaffold as potent cytotoxic agents using 3D-QSAR model developments 

using literature data. 

ii. To synthesise, characterise and evaluate various β-carboline derivatives 

against human chronic myelogenous leukaemia (CML) cancer cell (K562) 

and mouse embryonic fibroblast BALB/3T3 clone A31 non-cancer cell line 

cytotoxic activities. 

iii. To investigate the interaction between selected β-carboline derivatives and 

DNA.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Background of β-carboline 

β-Carboline derivatives display a broad range of significant biological activities 

(King et al., 2000; Arzel et al., 2001; Chen et al., 2009) and their saturated 

derivatives are a common nucleus in various natural products (Edwanker, 2009).     

β-Carboline has a common planar tricyclic pyrido[3,4-b]indole ring system that 

belongs to the group of indole alkaloids consisting of a pyridine ring that is bonded 

to an indole skeleton (Abramovitch & Spencer, 1964; Allen & Holmstedt, 1980).  

 Consequently, a substitute β-carboline, 9H-pyrido[3,4-b]indole - also known 

as norharman (1) has been identified as mentioned by IUPAC. The structure of        

β-carboline is similar to tryptamine with the ethylamine chain connected to the 

indole ring, producing a three-ringed structure. The structure and the numbering of 

the β-carboline skeleton are shown in Figure 2.1. 

 

Figure 2.1: Numbering of the β-carboline (1) skeleton 

 

 The first β-carboline alkaloid known as harmaline (5), was initially isolated in 

1841 from Peganum harmala (Zygophyllaceae, Syrian rue) (Figure 2.2). In North 

Africa and the Middle East, it is used as an emmenagogue and an abortifacient as 

well as a traditional herb to stimulate menstrual flow (Mahmoudian et al., 2002). In 
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the Amazon basin, plants containing β-carbolines were utilised as hallucinogenic 

snuffs or drinks. Besides, the extracts of the seeds of Peganum harmala have been 

used for hundreds of years to treat malaria and alimentary tract cancers in Northwest 

China (Chen et al., 2004; Moloudizargari et al., 2013). The roots and seeds of 

Peganum harmala contain the highest level of alkaloids with low concentrations 

being observed in the leaves and stems. In addition, there is no β-carboline alkaloid 

in the flowers (Lamchouri, 2014). 

 

Figure 2.2: Peganum harmala (adapted from Asgarpanah & Ramenzanloo, 2012)  

 

 The occurrence of β-carbolines in nature is widespread presumably due to the 

simple biogenesis of tryptamine (or tryptophan). During the last two decades, 

numerous β-carboline alkaloids with saturated and unsaturated tricyclic ring systems 

have been revealed from various plants, marine creatures, insects, foodstuff and 

mammals. This also includes body fluids and human tissues as major bioactive 

constituents (Airaksinen & Kari, 1981; Karin et al., 1990; Saxton, 1998; Carbrera & 

Seldes, 1999; Kawasaki & Higuchi, 2005; Cao et al., 2007; Higuchi & Kawasaki, 

2007; Mansoor et al., 2009; Gonzalez-Gomez et al., 2009).  

 β-Carbolines can be categorised according to the degree of saturation of their 

N-containing six-membered pyridine ring. Unsaturated members are fully aromatic 
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β-carbolines such as norharman (1), harman (2), harmine (3) and harmol (4), whereas 

dihydro-β-carbolines (DHβCs) such as harmaline (5), harmalol (6) and harmalan (7) 

have partially saturated ring (Figure 2.3). Fully saturated members are known as 

tetrahydro-β-carboline (THβC) such as compound 8 (Figure 2.3) (Cao, et al., 2007). 

The tricyclic β-carbolines usually contain several substituents both in the N-

containing six-membered pyrido ring and the indole ring. The so-called Pictet-

Spengler condensation reaction of indoleethylamines or tryptophan with an aldehyde 

or α-keto acids has been confirmed to be the most efficient route for the chemical 

synthesis of THβCs or tetrahydro-β-carboline-3-carboxylic acids (THβCAs) (Cao et 

al., 2007). They showed unique three-dimensional arrangements of the chiral 

functional groups exhibiting specificity in the protein binding and eliciting a specific 

biological response. The rings are often referred to as A-, B-, and C-ring, as labelled 

in structure 1 (Figure 2.3).  

 The presence of two kinds of nitrogen (-N and -NH) in β-carbolines, pyridinic 

nitrogen and the less crucial pyrrolic nitrogen, affects the photophysical and 

photochemical properties of the alkaloids. The basicity of pyrrolic nitrogen increases 

upon excitation (Dias et al., 1992; Carmona et al., 2000) and is also affected by the 

substitutions in the tricyclic structure (Hidalgo et al., 1990).  Depending on the pH 

and solvent employed, β-carbolines can exist in four forms; cationic, neutral, anionic 

and zwitterion (or alternative quinine-type canonical formula) (Varela et al., 2001). 
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Figure 2.3: Structures of β-carbolines (1, 2, 3 and 4), dihydro-β-carbolines (DHβCs) 

(5, 6 and 7) and tetrahydro-β-carboline (THβC) (8) alkaloids 

 

 β-Carbolines are of great interest due to their broad spectrum of biochemical 

effects and pharmacological properties. Numerous reports showed β-carboline 

alkaloids effect the central nervous system (CNS) such as benzodiazepine receptors, 

5-HT2A and 5-HT2C receptors (Brierly & Davidson, 2012; Herrick-Davis et al., 2015; 

Phipps & Grundmann, 2017). Other researches focused on the antitumor activity of 

β-carbolines. Various reports suggested β-carbolines demonstrate potent antitumor 

activities (Cao et al., 2013; Zhang et al., 2013). The cytotoxic activity correlates with 

both the planarity of the molecule and the presence of the ring substituents 

(Chourasiya et al., 2016). Multiple mechanisms have been suggested for their 

antitumor activity such as intercalating into DNA (Hayashi et al., 1977), inhibiting 

topoisomerase I and II (Deveau et al., 2001), cyclin-dependent kinase (CDK) (Song 

et al., 2002; 2004), and IKK (I-Kappa-B kinase) (Castro et al., 2003). 
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2.2 Synthesis of β-carboline derivatives  

Several synthesis methods aimed at displaying the biological activities of β-carboline 

derivatives have been reported (Snyder et al., 1948; Brossi et al., 1973; Bobbitt & 

Willis, 1980; Lippke et al., 1983; Ishida et al., 1999; Cao et al., 2004; 2005a; 2008; 

2010a; Guan et al., 2006; Wu et al., 2009a; 2009b; Meesala et al., 2014; Kamal et al., 

2015a; 2015b). Their importance has demanded efficient synthesis methods for 

constructing heterocyclic systems and their functionalization. The most efficient and 

rapid routes for the construction of the β-carboline moiety include the intramolecular 

Friedel-Crafts reactions such as Pictet-Spengler and Bischeler-Napieralski reaction 

followed by esterification, aromatization or decarboxylation and N-alkylation or     

N-benzylation.  

 

2.2.1 Precursors in the synthesis of β-carbolines 

Tryptophan (9) and its decarboxylation product tryptamine (10) (Figure 2.4) are two 

primary precursors usually used in the construction of β-carboline skeleton (Love, 

2006; Domínguez & Pérez-Castells, 2011). A recent study has described that indole 

(11) (Figure 2.4) is the source of the β-carboline skeleton (Kamlah et al., 2016). 

 

Figure 2.4:  Precursors used in the synthesis of β-carbolines 
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2.2.2 Conventional synthetic methods of β-carbolines 

Pictet-Spengler and Bischeler-Napieralski condensations are the two conventional 

methods used to synthesise β-carbolines (Love, 2006; Cao et al., 2007; Domínguez 

& Pérez-Castells, 2011). However, these two well-known procedures do not lead 

directly to the entirely aromatic β-carbolines (1) but through tetrahydro- (8) or 

dihydro-β-carboline derivatives (12), as illustrated in Scheme 2.1.  

 

Scheme 2.1: Summary of conventional synthetic methods of β-carbolines (1) 

 

 The Pictet-Spengler reaction which was first discovered in 1911 by Ame 

Pictet and Theodor Spengler has been the crucial procedure in generating either 

substituted or fused β-carbolines (Pictet & Spengler, 1911; Cox & Cook, 1995). It 

consists of the condensation of indole ethylamine such as tryptamine (10) (or 

tryptophan, 9) with an aldehyde or another electrophile. The reaction of THβCs 

proceeds through a spiro-indolenine intermediate (10b) as illustrated in Scheme 2.2, 

which collapses to form β-carbolines (1) (Cao et al., 2004).  
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Scheme 2.2: Mechanism reaction of compound 8 using Pictet-Spengler reaction  

 

 Nucleophilic aromatic rings such as indole or pyrrole have given products 

with excellent yields under mild conditions while the less nucleophilic aromatic rings 

such as benzene or indoles with electron withdrawing substituents on the benzene 

ring have exhibited poor yields even under harsh conditions. The electrophilic 

substitution at position-2 by indole gave the five-membered ring intermediate (10b) 

which then rearranged to form a six-membered ring (10c). Deprotonation gave the 

desired product of THβC (8) (Larghi et al., 2005). The electrophilicity of the imine 

double bond works as the driving force for the cyclisation (Scheme 2.2). The reaction 

occurs readily in mild condition which is temperature- and pH-dependent. 

Aromatization to the desired β-carbolines (1) can be accomplished by the oxidation 

of THβC (8). 

 Bischeler-Napieralski reaction is an intramolecular electrophilic aromatic 

substitution reaction that allows the cyclisation of β-arylethylamides. It was first 

discovered in 1893, by August Bischler and Bernard Napieralski. This result is 

similar to the Pictet-Spengler reaction but differs in the fact that tryptamine (10) is 

first acylated to give amide (11) (Scheme 2.3). The latter is dehydrated to an active 
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iminium species which is then cyclised to provide DHβC (12). The common 

dehydration reagents used were PCl5, POCl3, SOCl2 or ZnCl2 for the removal of the 

carbonyl oxygen. Even though the oxidation step of the DHβC (12) is much easier to 

achieve than THβC (8) the dehydration step requires vigorous reaction conditions 

which restrict the use of this method. 

 

Scheme 2.3: A Bischler-Napieralski cyclisation and reduction of DHβC (12) 

 

2.2.3 The aromatization of β-carbolines system 

The Pictet-Spengler reaction allows for the construction of a THBC core with 

appropriate substitution which could be extended after the cyclisation or the 

installation of different changes, undergoing cascade reactions during cyclisation to 

afford new THBC derivatives. These THBCs can then be oxidised to generate the 

desired β-carboline derivatives.  

 However, alternative strategies to create β-carbolines can also be 

accomplished by using a variety of reagents (Love, 1996). A few reactions have been 

conducted by heating the substrate with palladium on carbon (Soerens et al., 1979; 

Coutts et al., 1984; Hibino et al., 1985), sulphur in refluxing cumene or xylenes 

(Cain et al., 1982; Cao et al., 2004; Wu et al., 2009a; Qifeng et al., 2009), and 

potassium dichromate over the extended reaction time (Zhang et al., 2013). Other 

oxidising agents such as selenium dioxide (Gatta & Mitisi, 1987; Cain et al., 1983) 

and manganese dioxide (Dantale & Soderberg, 2003) were often used in excess. 

These organic-based reagents affect such dehydrogenation limiting the choice to only 
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the quinone-derived reagents such as chloranil (Snyder et al., 1948; Lippke et al., 

1983), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone and DDQ (Kobayashi et al., 

1990; Yeun-Mun & Hamann, 2007) with low yields (< 30%).  

 A more efficient method for the synthesis of β-carbolines employing one-pot 

tandem β-elimination and aromatization reactions has been developed (Dong et al., 

2010). The plausible mechanism for the one-pot conversion is shown in Scheme 2.4 

converting N-tosyl-THBCs (13) into β-carbolines (14) with 70-95% yields (Dong et 

al., 2010). The N-tosyl-THBCs (13) would first react with a base to form the anions 

A-1 or A-2, and these would then immediately undergo β-elimination to afford the 

dihydro intermediates B-1 or B-2 (Amos et al., 2003; Ishikawa et al., 2004; Kitahara 

et al., 2008). The dihydro intermediates, B-1 or B-2, would then be oxidized in situ 

by molecular oxygen in the air to give the final product of β-carbolines (14) 

(Previero et al., 1984). The reaction pathways would be governed by the acidities of 

the protons on C-1 and C-3, whereby if the proton on C-1 was more acidic, then 

Path A would be preferred, whereas if the proton on C-3 were more acidic, Path B 

would be preferred. 
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Scheme 2.4: A plausible mechanism for the one-pot conversions of N-tosyl-THBCs 

(13) into β-carbolines (14) through tandem β-elimination and aromatization reactions  

 

Another work reported the aromatization of THβCs under different 

conditions. Panarese & Water (2010) showed that 2-iodoxybenzoic acid (IBX) is a 

convenient reagent for the dehydrogenation of THβCs (15). They applied this 

approach in the total synthesis of marine indole alkaloid Eudistomin U (17) as shown 

in Scheme 2.5 (Panarese & Water, 2010).  
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Scheme 2.5: IBX-mediated aromatization in the total synthesis of Eudistomin U (17) 

 

  Meesala et al. (2014) reported an efficient synthetic method to construct 

aromatic β-carbolines (1) from THβCAs (18) via copper(II) mediated 

decarboxylation and subsequent aromatization. Based on previous reports (Cohen & 

Schambach 1970; Goossen et al., 2007), a possible mechanism has been outlined in 

Scheme 2.6. Initially, a copper catalyst is inserted into a carboxylic acid (18) to give 

an intermediate 18a which undergoes oxidative addition to form intermediate 18b. A 

rapid reductive elimination provides the intermediate decarboxylation 18c, followed 

by protonolysis and converting it into THβCs (8), which is then transformed into the 

aromatic β-carboline (1) by oxidative aromatization.  
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Scheme 2.6: Proposed mechanism for copper-mediated decarboxylation and 

aromatization of THβCAs (18) 

 

 Kamal et al. (2015a, b) developed a simple, mild and efficient protocol for a 

one-pot reaction of a THβACs (19) to produce β-carboline (20) (Scheme 2.7). This 

employs a cost-effective or mild oxidant N-chloro-succinimide (NCS) (Kamal et al., 

2015a) and iodobenzene diacetate (Kamal et al., 2015b) (Scheme 2.8), which 

produces high yields of the desired products and is able to serve as an alternative 

method compared. 
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Scheme 2.7: A possible reaction mechanism for the decarboxylation aromatization 

of THβCs (19) 

 

 

Scheme 2.8: Synthesis of β-carbolines (20) from THβCs (21) using iodobenzene 

diacetate 

 

 To summarize the aromatization of β-carboline derivatives, a variety of 

methods have been used, but only limited forms can generate the essential                

1-substituted product. An oxidation step is also necessary to prepare the entirely 

aromatic β-carbolines from DHβCs (12). Since the oxidation of DHβC (12) is more 

facile than THβCs (8), there is a drawback in the Bischeler-Napieralski approach 

(Scheme 2.1, page 14) which needs a vigorous condition in the dehydration reaction 

leading to 8 thereby making the Pictet-Spengler reaction the most appropriate 

strategy for this project.   
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2.3 Pharmacological effects of β-carboline derivatives in vitro 

Detailed knowledge relating to the pharmacophore of a given substance enhances the 

understanding of the mechanism. It is possible to identify the features of the 

pharmacophore that increase the activity of the ligand in comparison to its 

derivatives. Several investigations have reported the effects of β-carboline alkaloids 

on the CNS. In the last decade, interest in these alkaloids was stimulated by their 

promising antitumor activities. 7-Methoxy-β-carboline scaffold, harmine (3) binds to 

DNA one hundred-fold more efficiently than harmaline (5) showing cytotoxicity and 

antitumor activities against HL-60 and K562 cells (Ishida et al., 1999; Patel et al., 

2012).  

 Ishida et al. (1999) reported that twenty-six β-carbolines were evaluated for in 

vitro cytotoxicity in a human tumour cell line panel with structural modifications at 

position-1, -2, -3, -6, -7 and -9. Harmine (3) exhibited significant activities against 

several cell lines including three drug-resistant KB sublines with various resistance 

mechanisms. α-(4-Nitrobenzylidine)-harmine (22) showed a broad cytotoxicity 

spectrum against ovarian cancer (1A9), nasopharynx (KB), osteosarcoma (SaOS-2), 

lung carcinoma (A549), melanoma cancer (SK-MEL-2), glioblastoma (U-87-MG) 

and breast cancer (MCF-7) cells with ED50 values ranging from 0.3 to 1.2 µg/mL. 

SAR analysis suggested that; (i) the introduction of an oxygenated substituent at C-7 

led to the enhanced cytotoxic activity; (ii) the length of C-7 alkoxy chain affected 

both the cytotoxicity and cell line specificity; (iii) N9-alkylated-β-carboline 

derivatives exhibited strong cytotoxic effect; (iv) C-6 brominated-β-carboline 

derivatives showed selective cytotoxic activities; (v) N2-alkylated-β-carboline 

derivatives displayed distinct cytotoxic activities; (vi) 3,4-dihydro-β-carboline 

derivatives were inactive (Ishida et al., 1999).   



23 

 

  

 Xiao et al. (2001) have reported that 3-substituted-β-carboline derivatives, 

23-27 showed cytotoxic activities against human tumour cell lines including HL-60, 

KB, Hela and BGC-823 and were also bound to DNA by intercalation. Compound 25 

exhibited the strongest stabilisation of CT-DNA (ΔTm = 5.7 °C), the most significant 

binding affinity (Kb = 4.503 × 104 M-1) as well as the lowest binding energy and 

showed high inhibition rate for HL-60 and BGC-823 cells. 

 Bis-3,4-dihydro-β-carbolines (28) and bis-β-carbolines (29) were synthesised 

and exhibited cytotoxic activity towards L-1210 cell with IC50 values less than 4 µM 

(Jiang et al., 2002). Also, 1-substituted-3,4-dihydro-β-carboline derivatives showed 

significant antitumor activities against human KB-16 and murine P-388, HT-29 and 

A-549 (Al-Allaf & Rashan, 1998). Among them, 1-(9’-ethyl-3’-carbazole)-3,4-

dihydro-β-carboline (30) exhibited the most potent cytotoxic activities against all 

tested tumour cell lines with IC50 < 0.001 ug/ml (Shen et al., 2005). It is worthy to 

note that trans-palladium(II)-harmine complexes (31) displayed remarkable 

cytotoxic activities against P-388, L-1210 and K562 cell lines with the IC50 of 0.385, 

0.385 and 0.364 µM, respectively (Al-Allaf & Rashan, 1998).  
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 Cao and co-workers previously synthesised various β-carboline derivatives by 

simple structural modifications and probed the fundamental requirement of these 

compounds for potent activity in vitro (Cao et al., 2004; 2005; 2005a; 2008). A series 

of new 9-substituted-β-carboline derivatives were synthesised from harmine (1) and 

L-tryptophan (9). Compound 32 with carboxyl and n-butyl groups at position-9 and  

-3, respectively, showed the highest antitumor effect against human tumour cell lines 

including PLA-801 with IC50 value of 92 µM, HepG2 (73 µM) and Bel-7402 (92 

µM), BGC-823 (116 µM), Hela (60 µM) and Lovo (11 µM) (Cao et al., 2004). Later, 

other series of new 1,3-bisubstituted- and 1,3,9-trisubstituted-β-carbolines were 

synthesised and evaluated for in vitro study against human tumour cell lines 

including PLA-801, HepG2, Bel-7402, BGC-823, Hela and Lovo (Cao et al., 2005a). 

1,3,9-Trisubstituted β-carboline derivatives showed higher cytotoxic activities in 

vitro than their corresponding 1,3-bisubstituted derivatives. Among all the 

synthesised compounds, 1,3,9-trisubstituted-β-carbolines (33) with a methyl group at 

position-1, ethoxycarbonyl group at position-3 and pentafluorobenzyl at position-9 


