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SINTESIS DAN PENCIRIAN NANOGEL POLIELEKTROLIT SENSITIF-pH 

UNTUK PENGHANTARAN ORAL BAGI ALBUMIN SERUM BOVIN DAN 

INSULIN SEBAGAI PROTEIN MODEL  

 

ABSTRAK 

Peptida dan protein diberikan secara parenteral kerana ketidakstabilan dan 

ketidakstabilan bio melalui laluan oral. Pentadbiran parenteral dikaitkan dengan 

pematuhan pesakit miskin akibat kesakitan dan ketidakselesaan melalui pelbagai 

suntikan. Pentadbiran oral boleh memberi manfaat untuk meningkatkan pematuhan 

pesakit dan tindak balas fisiologi terhadap peptida dan protein (contohnya insulin). 

Tujuan kajian ini adalah untuk mensistesis nanogel polielektrolit MMA/IA sensitif  

pH untuk digunakan sebagai pembawa untuk penghantaran oral protein model 

(Albumin Serum Bovin dan insulin). Nanogel disintesis menggunakan monomer 

metil metakrilat (MMA), asid itakonik (IA) dan pemautan silang etilena glikol 

dimetacrilat (EGDMA) melalui proses pempolimeran radikal bebas. Beberapa 

parameter dioptimumkan semasa sintesis nanogel MMA/IA sensitif pH. Parameter 

optimum untuk sintesis nanogel ialah etanol/air 70/30 v/v, isipadu pencairan 96/57.6 

v/v, EGDMA 1.5 mol % dan MMA/IA 70/30 mol %. Spektrum 
1
H NMR dan FTIR 

memperlihatkan ketiadaan puncak proton vinil MMA, IA dan EGDMA, 

menunjukkan sintesis nanogel telah berjaya. LC-TOF-MS menunjukkan berat 

molekul 934.717. Analisis XRD memperlihatkan nanogel dalam bentuk amorfus dan 

nisbah pengembangannya 8.08±0.64 pada pH 7.4. Saiz zarah nanogel 229.10±2.09 

nm, indek polisebaran (PdI) 0.111±0.03 dan potensi zeta -43.1±1.81 mv. Analisis 

mikroskop transmisi elektron (TEM) memperlihatkan bahawa nanogel mempunyai 

bentuk yang tidak teratur. Ketoksikan in vitro dengan ujian MTT menggunakan sel 

Caco-2 menunjukkan  bahawa nanogel adalah tidak toksik pada kepekatan 0.25, 0.5 
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dan 1 mg/ml. Manakala, kajian toksisiti in vivo menggunakan tikus Sprague Dawley 

juga menunjukkan bahawa nanogel pada dos 2000 mg/kg berat badan tidak toksik. 

Formulasi cecair terpilih BSA/NGs-PEC (BF16) dan Ins/NGs-PEC (InF12) 

menunjukkan nisbah kompleksasi optimum antara BSA:nanogel 1:8 dan 

insulin:nanogel 1:40. Formulasi BF16 mempunyai saiz zarah 287.87±8.86 nm dan 

kecekapan pemerangkapan (% EE) sebanyak 89.32±4.36 %. Sementara itu, 

formulasi BF16 dibeku-kering menggunakan trehalos (BF16-Tre2) mempunyai saiz 

zarah 324.10±16.75 nm dan % EE 85.44 ±2.19 %. Formulasi InF12 mempunyai saiz 

zarah 190.43±0.90 nm dan % EE sebanyak 85.18±2.33%. Manakala formulasi InF12 

yang dibeku-kering menggunakan trehalose (InF12-Tre2) mempunyai saiz zarah 

430.50±27.61 nm dan % EE 82.15±2.12%. BSA dibebaskan dari formulasi BF16 

sebanyak 7.65±1.82% dalam SGF dan 92.17±2.23 % dalam SIF. Sementara itu 

pembebasan BSA dari formulasi BF16-Tre2 13.21±4.0 % dalam SGF dan 

95.16±4.16 % dalam SIF. Pembebasan insulin dari InF12 adalah 33.53±4.01 % 

dalam SGF dan 91.43±4.50 % dalam SIF. Manakala pembebasan insulin dari InF12-

Tre2 adalah 28.71±3.81 % dalam SGF dan 96.53±5.09 % dalam SIF. Data kajian 

kestabilan menunjukkan bahawa formulasi BF-16Tre2 dan InF12-Tre-2 stabil dalam 

penyimpanan 5±3 
◦
C selama kajian kestabilan. Ujian SDS-PAGE memperlihatkan 

bahawa struktur utama BSA dalam formulasi BF16-Tre2 dan insulin dalam 

formulasi lnF12-Tre2 tidak berubah. Kajian in vivo pada tikus diabetes berikutan 

pemberian oral formulasi InF12-Tre2 yang mengandungi dos insulin 100 IU/kg 

berat badan telah menurunkan kadar glukosa dengan signifikan kepada 51.1±5.5 % 

selepas 6 jam dan peningkatan konsentrasi insulin serum setelah 8 jam. Sebagai 

kesimpulan, nanogel adalah pembawa harapan bagi penghantaran protein secara 
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oral, dan formulasi InF12-Tre2 mungkin berpotensi untuk penghantaran insulin 

secara oral. 
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SYNTHESIS AND CHARACTERIZATION OF pH-SENSITIVE 

POLYELECTROLYTE NANOGELS FOR ORAL DELIVERY OF BOVINE 

SERUM ALBUMIN AND INSULIN AS MODEL PROTEINS 

ABSTRACT 

 

 Peptide and protein are administered parentrally owing to their instability 

and insufficient bioavailability through oral route. Parenteral administration is 

associated with poor patient compliance due to pain and discomfort by multiple 

injections. Oral administration can be beneficial to improve patient compliance and 

physiologic response to peptide and protein (e.g. insulin). The aim of the present 

study was to synthesize pH sensitive polyelectrolyte methyl methacrylate/itaconic 

acid (MMA/IA) nanogels to be used as a carrier for oral delivery of model proteins 

(BSA and insulin). The nanogels were synthesized using monomers methyl 

methacrylate (MMA), itaconic acid (IA) and a crosslinker ethylene glycol 

dimethacrylate (EGDMA) via free radical polymerization. Several parameters were 

optimized during the synthesis of pH sensitive MMA/IA nanogels. The optimized 

parameters to synthesis the nanogels were ethanol/water 70/30 v/v, dilution volume 

96/57.6 v/v, EGDMA 1.5 mol % and MMA/IA 70/30 mol %. The 
1
H

 
NMR and 

FTIR spectra showed absence of vinyl proton peaks of MMA, IA and EGDMA, thus 

indicating successful synthesis of nanogels. The LC-TOF-MS showed that the 

molecular weight was 934.717. The XRD analysis revealed that the nanogels were 

in the amorphous form and had the swelling ratio of 8.08±0.64 at pH 7.4. The 

nanogels had the particle size of 229.10±2.09 nm, polydispersity index (PdI) of 

0.111±0.03 and zeta potential of -43.1±1.81mv. The transmission electron 

microscope (TEM) analysis showed that the nanogels had irregular shape. The in 

vitro toxicity performed by MTT assays using caco-2 cell revealed that the nanogels 
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was nontoxic at concentrations of 0.25, 0.5 and 1 mg/ml. Meanwhile, the in vivo 

toxicity study using Sprague Dawley rats also showed that the nanogels at a dose of 

2000 mg/kg body weight was non-toxic. The selected BSA/NGs-PEC (BF16) and 

Ins/NGs-PEC (InF12) liquid formulations showed the optimum complexation ratio 

between BSA:nanogels at 1:8 and insulin:nanogels at 1:40. The BF16 formulation 

had the particle size of 287.87±8.86 nm and % entrapment efficiency (%EE) of 

89.32±4.36 %. Meanwhile, the lyophilized BF16 formulation using trehalose (BF16-

Tre2) had the particle size of 324.10±16.75 nm and % EE of 85.44±2.19 %. The 

InF12 formulation had the particle size of 190.43±0.90 nm and % EE of 85.18±2.33 

%. While, the lyophilized InF12 formulation using trehalose (InF12-Tre2) had the 

particle size of 430.50±27.61 nm and % EE of 82.15±2.12 %. The release of BSA 

from BF16 formulation was 7.65±1.82 % in SGF and 92.17±2.23 % in SIF. 

Meanwhile, the release of BSA from BF16-Tre2 formulation was 13.21±4.0 % in 

SGF and 95.16±4.16 % in SIF. The release of insulin from InF12 was 33.53±4.01 % 

in SGF and 91.43±4.50 % in SIF. Meanwhile, the release of insulin from InF12-Tre2 

was 28.71±3.81 % in SGF and 96.53±5.09 %  in SIF. The stability study data 

revealed that the BF-16Tre2 and InF12-Tre-2 formulations stored at 5±3 
◦
C were 

stable during the stability study period. The SDS-PAGE assay indicated that the 

primary structure of BSA in the BF16-Tre2 and insulin in the lnF12-Tre2 

formulations were intact. The in vivo study in the diabetic rats following oral 

administration of  100 IU/kg body weight InF12-Tre2 formulation had reduced 

blood glucose level significantly to 51.1±5.5 % after 6 hours and increased serum 

insulin concentration significantly after 8 hours. In conclusion, the nanogels are 

promising carriers for oral delivery of proteins, and InF12-Tre2 formulation may 

have potential for oral delivery of insulin. 
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CHAPTER 1 

INTRODUCTION 

1.1 Peptide and protein therapeutics  

Peptides and proteins are building units of life and are now gaining considerable 

attention as therapeutic groups. The current market for peptide and protein drugs is 

estimated to be greater than 4 billion USD per year (Craik et al., 2013). The global 

peptides drug market has been predicted to increase from US$ 14.1 billion in 2011 

to an estimated US$ 25.4 billion in 2018 (Fosgerau and Hoffmann, 2015). As 

compared to small molecular drugs the market of peptide and protein drugs is 

growing very fast and  is expected to attain much larger proportion of market in the 

near future (Craik et al., 2013). The peptide based medicine Lupron from Abbott 

Laboratories achieved global sale of more than US$ 2.3 billion in 2011, while 

Lantus from Sanofi reached sale of US$ 7.9 billion in 2013 (Kaspar and Reichert, 

2013).  

The understanding of molecular biology of macromolecular endogenous proteins, 

and their role in various pathological conditions has resulted in realization of 

therapeutic potential of peptide and protein. The therapeutic role of peptide and 

protein in different ailments like diabetes, cancer and genetic diseases has drastically 

increased their recognition as drug. The advantages of using peptide and protein as 

therapeutics are because of the following reasons; (i) proteins are highly specific in 

their response, (ii) show less interference with normal biological processes and have 

reduced side effects, (iii) well tolerate-ability and less likely to evoke immune 

response and (iv) effective alternative for treatment without need for gene therapy 

(because for diseases caused by gene mutation or deletion, protein drugs are 

effective in treatment without requiring gene therapy) (Leader et al., 2008). 
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Additionally, the problem of availability of peptide and protein drugs at commercial 

scale has been overcome to a certain extent due to extensive research in the field of 

recombinant DNA, peptide and protein engineering and tissue culture techniques. 

However, their formulation and optimum delivery is still considered as a substantial 

challenge to pharmaceutical scientists. To date, peptide and protein based therapies 

that have been unsuccessful are more numerous than the successful ones. This is 

because huge number of challenges or issues needs to be resolved in developing 

successful peptide and protein loaded formulations. 

 1.1.1 Current routes of peptide and protein administrations and limitations  

The low bioavailability of peptide and protein drugs after administration by the oral 

or non-oral mucosal route is due to poor permeability characteristics involving brush 

border, luminal, cytosolic metabolism, and hepatic clearance mechanisms (Aungst, 

1993). Hence, at present approximately 75% of peptide and protein drugs are 

administered parentally.  Among these, intravenous (i.v.) and subcutaneous delivery 

are the most popular methods for administrations of peptide and protein therapeutics 

(Langer et al., 1985). This route has solved the problem of bioavailability by 

enhancing the absorption of high molecular weight peptide and protein drugs. 

However, frequent injections, oscillating plasma drug profiles and low patient 

acceptability make parenteral administration problematic.  

Additionally, parenteral administration has revealed the emergence of numerous 

shortcomings in addition to the bioavailability issue, such as non-covalent 

complexation with blood products, dissociation of protein subunit, conformational 

changes, destruction of labile side groups, opsonization and rapid metabolism 

(Fosgerau and Hoffmann, 2015, Torchilin, 2008). These shortcomings have 
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prompted researchers to develop effective delivery system to deliver therapeutic 

peptide and protein with ease and efficiency.  

1.2 Challenges in oral peptide and protein delivery  

1.2.1 Critical issues with physicochemical properties of peptide and protein  

An undesireable physicochemical characteristic, low bioavailability, lack of 

effective route and method of delivery has resulted in only limited use of peptide 

and protein as therapeutic agents. Various critical issues associated with peptide and 

protein therapeutics include (i) difficult to cross absorption barriers due to high 

molecular weight and possessing both hydrophilic and hydrophobic units, (ii) high 

susceptibility to various physical and chemical environmental conditions due to 

tertiary structure, (iii) short in-vivo biological half-life due to rapid clearance 

through liver and (iv) potent nature that requires precise dosing (Humphrey and 

Ringrose, 1986).   

1.2.2 In vivo barriers associated with oral peptide and protein delivery 

Before pharmaceutical macromolecular therapeutic peptide and protein reach their 

final destination, they have to face a number of challenges or barriers.  An overview 

of three major in vivo barriers in oral peptide and protein delivery is presented in 

Figure 1.1 (Mudassir et al., 2015). These include; (i) the acidic environment of the 

stomach, (ii) intestinal enzymes and (iii) intestinal epithelium tight junctions 

(Khafagy et al., 2007).  

The efficiency of orally administered peptide and protein is hindered by chemical, 

physical and enzymatic environment of GIT (Humphrey and Ringrose, 1986). As 

soon as these drugs are administered, their stability is affected by highly acidic 

conditions of the stomach. The major classes of proteases (e.g. serine, cysteine, 
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threonine, aspartic and metallo- proteinases, trypsin, carboxypeptidase and 

chymotrypsin) are secreted mostly in the duodenum  (Lee et al., 1991). These 

proteases are responsible for 20% enzymatic degradation of orally administered 

peptide and protein. Moreover, large amount of peptidases on the brush border of 

epithelial cells as well as in the lumen of the small intestine are also responsible for 

iv-vivo degradation of peptide and protein (Allémann et al., 1998). Additionally, 

mucous turnover, and peristalsis movements further reduces the chances of peptide 

and protein to come in contact with and cross epithelial barrier.   

 

Figure 1.1: An overview of three major in vivo barriers in oral peptide and protein 

delivery (Mudassir et al., 2015)  

 

For the peptide and protein drugs that gained access to the surface of the epithelium, 

their diffusion is further hindered by mucous, villi, microvilli and brush border 

glycol-calyx (a layer of sulphated muco-polysaccaharides) (Sanderson et al., 1994). 

These barriers are of significance because peptide and protein drugs are transported 

across epithelium cells in order to gain access to blood circulation. The mucosal 

layer contains glycol-calyx which is located apical to the epithelial cell barrier. The 

mucosal layer is additionally composed of mucins which are heavily glycosylated 

high molecular weight proteins. An unstirred layer is created near the epithelial 

surface which is due to limited bulk flow to epithelial cells (Aoki et al., 2005). An 
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overview of the intestinal barriers to peptide and protein delivery is presented in 

Figure 1.2. 

 

Figure 1.2: Intestinal barriers to peptide and protein delivery (the intestinal epithelial 

barriers is composed of single layer of columnar epithelial cells and mucosal layer 

present on the apical side) (Chen et al., 2011).  

 

1.3 Transportation of peptide and protein and loaded nanocarriers across the 

intestinal epithelium 

 

The transport mechanisms of peptide and protein across the intestinal epithelium 

may involve (i) trans-cellular pathways (ii) para-cellular pathways and (iii) specific 

uptake of ligand-modified nanocarriers. An overview of transport mechanisms of 

peptide and protein drugs delivered by nanocarriers across the intestinal epithelium 

is presented in Figure 1.3A and B.   

 

1.3.1 Trans-cellular pathways 

The transportation of peptide and protein loaded nanocarriers via trans-cellular 

pathways involves the passage of nanocarriers through enterocytes or M cells of 

Peyer‟s patches (Roger et al., 2010, Shakweh et al., 2004). Apparently, the high 

molecular weight peptide and protein loaded nanocarriers cannot diffuse through 

cells by passive diffusion due to large size. In contrast, different energy-dependent 

mechanisms (active transport) could facilitate the transport of peptide and protein 
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loaded nanocarriers. The active trans-cellular transport of nanocarriers is initiated in 

the endocytosis at the apical cell membrane and transported across the cell. Finally, 

the nanocarriers are released in baso-lateral pole (Burton et al., 1991). The trans-

cellular pathways generally depend upon the particle size, surface charge and muco-

adhesion characteristic of nanocarriers (Roger et al., 2010, Shakweh et al., 2005, 

Shakweh et al., 2004). It has been demonstrated that particle size between 50 to 500 

nm had shown optimum interaction between nanocarriers and epithelial cells (Desai 

et al., 1996). Shakweh et al. (2005) reported the effect of surface charge on non-

specific uptake by enterocytes or M cells. They found the negatively charged 

nanoparticles had better uptake by Peyer‟s patches. Additionally, the uptake by 

epithelial cell was also enhanced for materials showing muco-adhesion. The muco-

adhesion increased residence time as well as contact of peptide and protein loaded 

nanocarriers over epithelium thus increasing drug concentration at absorption site. 

The hydrophilic polymers such as poly acrylic acid (PAA), thiomers and chitosan 

(CS) and their derivatives also showed the muco-adhesive properties (Takeuchi et 

al., 2001).  

  

1.3.2 Para-cellular pathway 

The para-cellular pathway is considered as the preferred route for transporting high 

molecular weight peptide and protein drugs. Para-cellular space occupies less than 

1% of total mucosal surface. Practically, the passage of peptide and protein loaded 

nanocarriers approximately larger than 1 nm is completely hindered by intestinal 

tight junctions (Nellans, 1991). Therefore, it is well recognized that the para-cellular 

route does not allow the passage of nanocarriers or peptide and protein. However, 

the success of para-cellular transportation relies upon the reversible opening of 

intestinal tight junctions (TJs) (Nellans, 1991). Fortunately, certain polymers have 
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shown capability to reversibly open TJs. Among these, the anionic polymers (such 

as poly acrylic acid), cationic polymers (such as chitosan and its derivatives) and 

calcium chelators are the most prominent examples. Poly acrylic acid (PAA) and 

chitosan (CS) generally act by interacting with surface receptors or extracellular 

domains of TJ proteins. Thus, activating cascade that results in opening of TJs. The 

calcium chelating TJs are opened via activation of protein kinase C (Salamat-Miller 

and Johnston, 2005). 

  

1.3.3 Specific uptake of ligand-modified nanocarriers  

In order to increase cellular uptake, nanocarriers are modified by covalently 

conjugating or adsorbing ligands (e.g. vitamins or other proteins) to their surface. 

For example, lectins (a class of protein that can bind to cell membrane) were 

conjugated to the nanoparticles, which  resulted in an increase  in the protein  

transport across intestinal mucosa, especially through  Peyer‟s patches and M cells 

(Hussain et al., 1997). The authors investigated the intestinal uptake of orally 

administered inert nanoparticles where their surface was conjugated with tomato 

lectin. It was observed that lectin-conjugated nanoparticles showed 15 times increase 

in intestinal uptake. Another approach to increase oral uptake of various peptide and 

protein therapeutics is the use of vitamin B12. The Vitamin B12 formed complex 

with intrinsic factor (IF) present in the small intestine. The vitamin B12-IF complex 

was identified by IF-specific receptor present on the luminal surface of intestinal 

cells, which aids in transporting  across intestinal enterocytes (Russell-Jones, 1998).  

 

Although the specific uptake of ligand-modified nanocarriers (for example specific-

receptor-mediated trans-cytosis) has shown encouraging outcomes, the major 

limitations were (i) inadequate absorption of peptide and protein loaded nanocarriers 
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(ii) adequate amount of ligand must be bound to the particle surface for achieving 

optimum therapeutic effect (iii) toxicity as well as possible immune response arising 

due to continuous absorption of particles by M cells into Peyer‟s patches (Khafagy 

et al., 2007). 

 

(A) 

 

(B) 

 

Figure 1.3: Transport mechanisms; (A) uptake of peptide and protein drugs across 

the intestinal epithelium; (B) transpotation of protein loaded nanoparticles through 

paracellular pathway (Mudassir et al., 2015, Chen et al., 2011) 

 

1.4 Approaches to overcome oral peptide and protein delivery barriers  

The primary objective of oral peptide and protein delivery is to protect loaded 

peptide and protein from stomach acid, luminal proteases and to facilitate their 

transport across the intestinal epithelium. To overcome these absorption barriers, 
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various approaches/ technologies have been used. These approaches are discussed as 

follows: 

1.4.1 Enteric coating  

Enteric coating has been used traditionally to protect peptide and protein from the 

acidic environment of the stomach. However, the efficiency and reliability of enteric 

coating was limited due to variable pH and enzymes present in the GI tract. 

Additionally, the enteric polymers are subjected to uncontrolled polymerization 

during storage and handling, thus resulting in poor control of the  release of macro-

molecules at the target site (Hussan et al., 2012). Therefore, there is a need to 

develop advanced pharmaceutical technologies to protect peptide and protein from 

enzymatic and intestinal absorption barriers. 

  

1.4.2 Permeation or absorption enhancers 

It is known that co-administration of peptide and protein with permeation enhancers 

significantly improved absorption (Lee, 1990). Generally, permeation enhancers act 

by combination of several mechanisms such as (i) by increasing para-cellular 

transport of peptide and protein through disruption and opening of tight junctions 

(TJs), (ii) reducing mucous viscosity and (iii) increasing membrane fluidity. The 

major classes of permeation enhancers include surfactants (sodium lauryl sulfate, 

poly-sorbitate and tween 80), bile salts (sodium glycholate and sodium 

deoxycholate) and fatty acids (sodium caprate, acyl carnites, oleic acid and lauric 

acid) (Fasano and Uzzau, 1997, Mesiha et al., 1994). Surfactants act by disrupting 

intestinal membrane, and cause an increase in membrane permeability of peptide 

and protein across the cell epithelium (trans-cellular pathway) (Xia and Onyuksel, 

2000). Bile salts decreases mucus viscosity and peptidase activity, while promoting 

disruption of phospholipid acyl chain and formation of mixed micelles (Sakai et al., 
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1997). Similarly, fatty acids act through modulating para-cellular permeability 

(Anilkumar et al., 2011). The efficiency of permeation enhancers is influenced by 

the nature of peptide and protein, the nature of permeation enhancers and capability 

of delivery system to release permeation enhancers (Nishihata et al., 1984). The 

major drawback of this approach is the potential toxicity of permeation enhancers on 

intestinal epithelial cells. The disruption of intestinal tight junctions through 

continuous and irreversible opening of tight junctions  may increase transport of 

toxins and other biological pathogens (Swenson et al., 1994). Nevertheless the use of 

permeation enhancers is considered as an effective approach for oral peptide and 

protein delivery, however the toxicity issues related to the excipients has to be 

addressed, especially when it is used in the treatment of chronic disease.  

  

1.4.3 Enzyme inhibitors 

Enzyme inhibitors prevent inactivation of peptide and protein drugs by digestive 

enzymes. For this purpose, both enzyme inhibitors and peptide and protein 

therapeutics are co-administered to increase oral bioavailability. Enzyme inhibitors 

act by binding reversibly/irreversibly to the target enzyme, thus resulting in 

inactivation and reduced enzymatic activity (Copeland, 2013). Various drugs used as 

enzyme inhibitors include sodium glycocholate, bacitracin, puromycin, camostat 

mesilate, chicken ovomucoid (trypsin inhibitor), aprotinin (inhibitor of trypsin and 

chymotrypsin), soybean trypsin inhibitor (inhibitor of pancreatic endopeptidases) 

(Bernkop-Schnürch, 1998, Yamamoto et al., 1994). The major drawback of this 

approach is the potential toxic effect due to the enzyme inhibitors themselves. 

Moreover, the enzyme inhibitors may result in excessive reduction in normal 

enzymatic activity in vivo and disrupt normal absorption of dietary peptide and 

protein (Knarreborg et al., 2003, Bernkop-Schnürch, 1998). An alternate approach to 
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observe enzyme inhibition is to alter pH at the site of action because the stomach 

enzymes are effective only at acidic pH (approximately 2) (Piper and Fenton, 1965). 

 

 1.4.4 Physicochemical modification of peptide and protein  

The physicochemical modification of peptide and protein involve conjugation with 

polymers to improve membrane permeability and proteolytic stability (Herman et 

al., 1995). The immune response induced by peptide and protein can be modified 

through chemical modifications. Various approaches for physicochemical 

modification of peptide and protein include (i) protein-polymer conjugation, (ii) 

pegylation (iii) amino acid alterations and (iv) hydrophobizations.  

The protein-polymer conjugations require polymers which should be non-

immunogenic, water soluble, biocompatible and biologically inert. Generally, 

polymers used for peptide and protein conjugations must be capable to augment the 

intrinsic properties of bio-macromolecules, while they should not diminish 

biological activity or boost toxicity. N-(2-hydroxypropyl) methylacrylamide and 

poly (ethylene glycol) are the most widely used polymers for peptide and protein 

conjugation (Carter et al., 2016, Grover and Maynard, 2010, Naipu et al., 2010).   

Pegylation is the process where poly(ethylene glycol) (PEG) is covalently attached 

to peptide and protein which result in  improvement of  therapeutic potential 

(D‟souza and Shegokar, 2016). The advantage of pegylation is the formation of 

steric shield which protects the peptide and protein from recognition by 

macrophages (body‟s immune response). It also enhances stability of peptide and 

protein against enzymes. Additionally, the increase in particles size also reduces 

renal clearance (D‟souza and Shegokar, 2016).  
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The enzymatic stability of peptide and protein can also be achieved through 

chemical modifications. The modifications involve the replacement of one or more 

L-amino acids with D-amino acids which are responsible for enzymatic cleavage 

(Tugyi et al., 2005). The development of various analogs of the endogenous opioid 

penta-peptide methionine (Met)-enkephalin is the example of chemical modification 

(Bohner et al., 1994).  

The surface modifications of peptide and protein are achieved through 

hydrophobization process in which hydrophobic unit added within the peptide and 

protein backbone (Yuan et al., 2011). For example the covalent conjugation of fatty 

acids with insulin and desmopressin significantly increased intestinal permeability 

(Kahns et al., 1993, Hashizume et al., 1992). Although the physicochemical 

modifications showed valuable improvement in transport of peptide and protein, 

however, these methodologies increased the risk of declining therapeutic and 

biological activity of peptide and protein.  

 

1.4.5 Muco-adhesive polymeric systems  

Mucoadesive polymeric systems act by prolonging the gastrointestinal residence 

time. They protect the drug from the harsh environment of the stomach and enhance 

absorption of loaded peptide and protein across the intestinal epithelium (Khan et 

al., 2013, Rekha and Sharma, 2013, Rekha and Sharma, 2009, Rekha and Sharma, 

2008a, Rekha and Sharma, 2008b). Thiolated polymers are popular examples of 

muco-adhesive systems. However, some drawbacks have been observed regarding in 

vivo performance of mucoadesive polymeric systems, such as prevention of free 

movements (Hwang et al., 1998, Claesson et al., 1995, Perez and Proust, 1987). 
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1.4.6 Alternative approaches for enhancing the absorption of peptide and 

protein  

The alternative approaches include the use of eutectic mixtures and cell-penetrating 

peptides (CPPs). These approaches help in improving the solubility and 

permeability, thus facilitating the transport of peptide and protein across the cellular 

membranes. The use of eutectics in polymeric delivery system has not yet been 

extensively explored (Tuntarawongsa and Phaechamud, 2012). Recently the use of 

borneol/menthol eutectic mixture has been reported to enhance bioavailability of 

polypeptide (daidzein) in the treatment of breast and colon cancer (Shen et al., 

2011). However, borneol/ menthol eutectic mixture had toxic effect towards tight 

junctions (Tscheik et al., 2013). The cell-penetrating peptides (CPPs) act by 

enhancing permeability through the intestinal epithelial cells (Foged and Nielsen, 

2008). The positive effects of CPPs on the intestinal absorption of peptide and 

protein have been observed. It was demonstrated that high dose of CPPs was 

required to achieve the desired therapeutic effect of peptide and protein drugs 

(Morishita et al., 2007). However, multiple administrations of CPPs doses may 

cause toxic effect. Therefore, it was concluded that safer and effective CPPs are 

required for oral delivery of peptide and protein (Morishita et al., 2007).  

 

1.5 Characteristics of ideal oral peptide and protein delivery systems  

Researchers in the field of pharmaceutical technology have been searching for 

efficient and effective nanocarriers which could be used to overcome oral peptide 

and protein delivery challenges. To date there are several peptide and protein 

delivery systems available which have been widely explored. Among these delivery 

systems only a few can fulfil most of the requirements of ideal drug delivery 
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systems (DDS).  The characteristics of ideal DDS are presented in Figure 1.4 

(Mudassir et al., 2015).  

 
 

 

 

 

 

 

 

 

 

 

Figure 1.4:  Characteristics of ideal DDS (Mudassir et al., 2015) 

 

1.6 Oral peptide and protein delivery systems 

1.6.1 Micro or nano-emulsions 

Micro and nano-emulsions have shown capability to protect loaded peptide and 

protein from chemical and enzymatic degradation when administered through the 

oral route. They are generally classified into three categories such as (i) oil-in-water 

(o/w), (ii) water-in-oil (w/o), and (iii) bi-continuous micro-emulsions. They are 

promising in improving the bioavailability of hydrophobic molecules, including 

hydrophobic peptides, for example cyclosporine A (Ritschel, 1996, Sarciaux et al., 

1995). Sun et al. (2012) developed novel nano-emulsion DDS using BSA as model 

protein to improve its stability. The BSA nano-emulsion showed average particle 

diameter of about 21.8 nm and encapsulation efficiency (>90%). The loaded BSA 

showed good structural integrity and specificity for the primary, secondary, and 
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tertiary structures, and also good bioactivity. Generally, the biggest challenge in 

utilizing micro or nano-emulsion in peptide and protein delivery was to overcome its 

low loading capacity and low physicochemical stability during storage. 

 

1.6.2 Liposomes 

Liposomes are lipid based delivery systems and have been extensively used for 

delivery of peptide and protein drugs. Kowapradit et al. (2012) prepared BSA-

loaded N-(4-N,N-dimethylaminobenzyl) chitosan coated liposomes (TM56Bz42CS-

coated LP-BSA) for oral protein drug delivery.  The mean particle size and zeta-

potential of the TM56Bz42CS-coated LP-BSA were 128 ± 15 nm and 

5.38 ± 1.66 mV, respectively. The results revealed that the transport of FITC-BSA 

from TM56Bz42CS-coated FITC-BSA-LP was enhanced due to increased protein 

permeability across the Caco-2 cell monolayers. These liposomes were nontoxic and 

showed protection for loaded protein against degradation. Although some promising 

results were obtained using liposomes as peptide and protein carriers, however, the 

use of conventional liposomes is still limited. After extensive research for many 

years, it turned out that it was extremely challenging to overcome certain vital 

physicochemical and biological properties of liposomes e.g. leakage of drug 

molecules and short residence time in blood. Thus, due to these obstacles  the use of  

liposomes for peptide and protein delivery is limited (Lasic, 1998).   

 

1.6.3 Chitosan based nanoparticles 

Chitosan (CS) is a polysaccharide obtained by deacetylation of chitin.  Chitin is a 

hard substance that occurs widely in nature, particularly in the exoskeletons of 

arthropods such as crabs, prawns, insects and spiders. The building blocks of CS are 

glucosamine and N-acetyl-glucosamine (Thanou et al., 2001). CS is a suitable 
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carrier for delivery of peptide and protein to the small intestine due to their excellent 

muco-adhesive characteristics. The mechanism of muco-adhesion involves the 

interaction between the negatively charged sialic-acid groups in mucin and the 

positively charged CS (Bravo-Osuna et al., 2007). Additionally, CS was reported as 

a promising carrier for oral peptide and protein delivery owing to its capability to 

reversibly open intestinal tight junctions (TJs). Yeh et al. (2011) investigated the 

mechanism of TJs opening in Caco-2 cells treated with CS. The results revealed that 

para-cellular permeability (TJs opening) was due to redistribution of claudin-4 

(CLDN4) from the cell membrane to the cytosol, which was associated with its 

degradation in lysosomes.  Consequently, the TJ strength was diminished. It was 

further reported that the recovery of TJs depends on CLDN4 synthesis. It was 

suggested that multiple mechanism could be involved during opening of TJs.  

However, the usage of CS for oral peptide and protein delivery is limited due to it 

being insoluble at neutral/basic pH (Smith et al., 2004).     

 

1.6.4 Poly (lactide-co-glycolide) (PLGA) nanoparticles 

Nanoparticles consisting of PLGA have been widely investigated due to their 

biodegradability and biocompatibility. The hydrophobic nature of PLGA generally 

makes them unsuitable for entrapping water soluble peptide and protein drugs. 

Cheng et al. (2006) developed magnetically responsive polymeric poly(lactide-co-

glycolide) (PLGA) microparticles for oral delivery of protein drugs. The protein 

drug (insulin) was encapsulated in the PLGA microparticles. Hypoglycemic effect 

was evaluated in mice in the presence of applied external magnetic field. The 

authors reported a reduction in blood glucose level of up to 43.8 % in the presence 

of external magnetic field for 20 hours. However, it was suggested that potential 
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acute toxicity as well as regulation of the applied magnetic field for long term 

treatment requires further investigation. 

 

1.6.5 Nanogels (NGs) 

Nanogels are nano-range particles from hydrogel family, also termed as hydrogel 

nanoparticles (Hamidi et al., 2008). These particles show characteristic features of 

both hydrogels and nanoparticles. As hydrogels, they possess hydrophilicity, 

swelling capability and biocompatibility (Ranjha et al., 2011, Mudassir and Ranjha, 

2008, Ranjha and Mudassir, 2008, Ranjha and Doelker, 1999). Like nanoparticles, 

they are of nano-size (Patel et al., 2011). Among the numerous classes of nanogels 

being utilized for oral peptide and protein delivery, only the vinyl and acrylic based 

nanogels are highlighted in the following discussion.  

 

1.7 Vinyl and acrylic based carriers for oral peptide and protein delivery 

There has been great interest in utilizing nanocarriers based on vinyl and acrylic 

polymers and copolymers in oral peptide and protein delivery. These polymers have 

been shown to have properties such as muco-adhesive, permeation enhancing and 

shielding against enzymatic degradation (Bernkop-Schnürch et al., 2003, Bernkop-

Schnurch and Clausen, 2002, Tamburic and Craig, 1995). Initially, the Poly(iso-

butyl cyanoacrylate) (PIBCA) nano-dispersions and poly(alkyl cyanoacrylate) 

(PACA) nanoparticles were reported for oral delivery of peptide and protein (Graf et 

al., 2009, Mesiha et al., 2005). Subsequently, pH-responsive delivery system based 

on vinyl and acrylic polymers were designed. Such nanocarriers were especially 

beneficial for delivery to the specific region of GIT. The approaches utilizing pH-

sensitive characteristics of materials in oral peptide and protein delivery are 

discussed below:  
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1.7.1 Polymers possessing pH-dependent swelling behaviour 

Researchers have developed pH-sensitive nanocarriers using polymers that exhibit 

pH-dependent swelling behaviour (Bell and Peppas, 1996). In this context, the poly 

(methacrylic acid)-poly (ethylene glycol) (PMAA-PEG) co-polymer is widely used 

to develop pH-sensitive nanocarriers. In acidic environment, these co-polymers 

remained in collapsed state due to the presence of hydrogen bonds between the 

carboxylic group of PMMA and oxygen in PEG. However, at basic pH the 

carboxylic group of PMAA become ionized and swells due to lack of hydrogen 

bonding and presence of electrostatic repulsion (Bell and Peppas, 1996). 

Subsequently, pH-sensitive polymethacrylic acid–chitosan–polyethylene glycol 

(PCP) nanoparticles were developed for oral delivery of proteins such as BSA and 

insulin. Authors reported good protein encapsulation efficiency (60 to 90 %) and pH 

responsive in-vitro release profile form PCP nanoparticles (Sajeesh and Sharma, 

2006b).  

 

1.7.2 Polymers possessing pH-responsive dissolution characteristics 

Co-polymers such as poly (methacrylic acid)-poly ethylacrylate (PMAA-PEA) or 

poly (methacrylic acid)-poly methacrylate (PMAA-PMA), which pH-responsive 

dissolution characteristics have been utilized in developing pH-sensitive 

nanocarriers. These nanocarriers remain in a collapsed state (un-swollen state) at 

acidic pH, while they are in a swollen state at basic pH (Dai et al., 2000). Eudragit is 

the most popular example of such polymers. The commercial formulations of 

Eudragit dissolve at particular pH and therefore are suitable for pH-sensitive 

delivery to particular region e.g  Eudragit
®
 L100-55 (consisted of PMAA-PEA) and 

Eudragit
®
 S100 (consisted of of PMAA-PMA) which dissolves at pH>5.5 

(duodenum) and at pH>7.0 (ileum), respectively.  The Eudragit
®
 L100-55, S100 and 
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other co-polymers which are soluble at basic pH have been investigated for oral 

delivery of peptide and protein therapeutics. These materials serve the purpose of 

protecting drugs from the acidic environment of the stomach as well as increasing 

intestinal uptake. Dai et al. (2004) prepared cyclosporine A (CyA) loaded 

nanoparticles using different pH-sensitive poly (methacrylic acid and methacrylate) 

copolymers. The authors selected Eudragit
®

 E100, Eudragit
®

 L100, Eudragit
®
 L100-

55 and Eudragit
®
 S100 as pH-sensitive polymers and studied bioavailability and 

pharmacokinetics of cyclosporine A (CyA) loaded nanoparticles in Sprague Dawley 

rats. The entrapped efficiency was approximately 99 % while the particle sizes with 

various pH-sensitive polymers ranged from 37.4 to 106.7 nm. The authors reported 

that relative bioavailability of CyA from CyA-S100, CyA-L100-55 and CyA-L100 

nanoparticles increased by 32.5%, 15.2 % and 13.6%, respectively.  

Zhang et al. (2012) prepared nanoparticles based on thiolated Eudragit L100 for oral 

insulin delivery. The nanoparticles possessed average size of 308.8 ± 35.7 nm, and 

loading efficiency (LE%) of 96.4 ± 0.5%. The nanoparticle showed pH dependent in 

vitro release behavior. The circular dichroism (CD) spectroscopy study revealed that 

the secondary structure of the insulin released from the nanoparticles was preserved. 

 

1.7.3 Vinyl and acrylic based nanogels 

pH-sensitive polymers or copolymers were synthesized starting from vinyl and 

acrylic based monomers or polymers. This approach is advantageous in terms of 

selecting monomers and obtained nanocarriers with desired pH-sensitive 

characteristics. The synthesized pH-sensitive nanocarriers are referred to as 

nanogels. Nanogels based on vinyl and acrylic monomers are of high interest 

because of their pH-sensitivity and the presence of carboxylic acid functional groups 
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(Elsaeed et al., 2012, Zha et al., 2011, Wu et al., 2010, Tan et al., 2007). A few 

examples of vinyl and acrylic monomers are given as follows: 2-hydroxyethyl 

methacrylate (HEMA), N-isopropylacrylamide (NIPAM), 2-hydroxyethyl 

methacrylate (HEMA), 2- hydroxypropyl methacrylate (HPMA), oligo(ethylene 

glycol) monomethyl ether methacrylate (OEOMA), acrylamide (AAm), acrylic acid 

(AA), methacrylic acid (MAA) and itaconic acid (IA) etc. These synthetic 

monomers have the added advantages of being cheap, abundant and of reproducible 

source. In this context, Nayak et al. (2011) prepared pH and temperature sensitive 

nanogels based on poly-N-isopropylacrylamide and acrylic acid (AA) using free 

radical polymerization. The nanogels were crosslinked using N, N-methylene 

bisacrylamide and were pH and temperature sensitive due to the presence of AA and 

poly-N-isopropylacrylamide, respectively. The average size of the nanogels was 150 

nm, while nanogels containing only AA showed slightly bigger size of 230 nm. It 

was suggested that the increase in nanogels size was due to ionization of carboxylic 

acid functional group of AA. The swelling ratio of nanogels was increased to 1.4 

when the pH of the medium was increased from 2.5 to 11.  

 

1.7.4  Nanogels composition and synthesis  

The building components of nanogels include synthetic or naturally occurring 

hydrophilic monomers or polymers. Figure 1.5 illustrates the diversity of nanogels 

composition based on building components (Mudassir et al., 2015). Nanogels being 

crosslinked structurally show ability to swell and thus can encapsulate higher 

amount of drugs. Some nanogels may be responsive to environmental changes such 

as temperature, pH and magnetic field depending upon building materials. They also 

show flexibility in adjusting the dose to be administered. Nanogels may be 

synthesized by association of amphiphilic block polymers with oppositely charged 
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chain, referred to as nano self-assembly method (Yallapu et al., 2010, Nomura et al., 

2005).  

 

Figure 1.5: Illustrative representation of the diversity of nanogels composition based 

on building components: (A) nanogels based on synthetic monomers or polymers; 

(B) based on natural monomers or polymers; (C) hybrid nanogels (Mudassir et al., 

2015).  

 

The polymeric nanogels are generally synthesized using polymerization of 

monomers. Different methods of free radical polymerization which may be involved 

in nanogels synthesis are described as follows: 

 

1.7.4 (a) Mass polymerization 

In mass polymerization, the monomers used are in liquid form. The initiators are 

dissolved in monomers, hence producing a homogeneous system. Polymerization is 

initiated via heat or radiation. There are two possible results in mass polymerization. 

In the first case, the polymer is not soluble in monomers, thus as the polymerization 
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process proceeds (e.g polymerization of acrylonitrile) a solid polymer is formed 

through precipitation. In the second case, the obtained polymer is soluble in the 

monomers. In this case, the viscosity of the polymer and its mass increases until they 

are converted into solid polymers (e.g. styrene or methyl methacrylate) (Nuyken and 

Lattermann, 1992). 

 

1.7.4 (b) Solution polymerization  

The polymerization is performed by dissolving the monomers in a suitable solvent. 

Beside that, the synthesized polymer should be dissolved in the selected solvent. The 

polymer is isolated either by evaporating the solvent or adding excess of non-solvent 

to precipitate  the polymer (Ahmad et al., 1998, Nuyken and Lattermann, 1992).  

 

1.7.4 (c) Suspension polymerization  

This process is used for free radical polymerization in which the initiator is first 

dissolved in monomers, then dispersed in water using a suspending agent. 

Polymerization takes place in monomer droplets dispersed in the aqueous phase 

(Nuyken and Lattermann, 1992, Yuan et al., 1991).  

 

1.7.4 (d) Emulsion polymerization 

The process of emulsion polymerization is quite similar to suspension 

polymerization.  However, it differs in that the initiator is insoluble in monomers, 

but soluble in water. In other words, the water insoluble monomers are dispersed in 

water which also contains initiator and emulsifying agent. Emulsifying agent is 

dissolved in water and forms a colloidal cluster also known as micelles at higher 

concentration. Polymerization takes place inside the micelles (Erbil, 2000, Nuyken 

and Lattermann, 1992). 
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1.7.5 Mechanism and characteristics of nanogels overcoming barriers to oral 

peptide and protein delivery 

 

Nanogels possess unique characteristics which may overcome oral peptide and 

protein delivery barriers. These characteristics include (i) pH sensitive swelling 

behavior (ii) ability to protect the peptide and protein drugs from the enzymatic 

degradation and (iii) capability to improve the intestinal permeability by facilitating 

the opening of intestinal TJs without posing significant toxic effects (Wang et al., 

2016, Feng et al., 2014). By possessing these characteristics, the nanogels no longer 

require separate addition of enzyme inhibitors or permeability enhancers. 

Furthermore, the nanogels no longer require additional enteric coatings, or filling 

into the enteric capsules. All the additional processes and incorporation of various 

chemicals would not only increase the cost of formulation but also pose many 

questions regarding the toxicity of incorporated materials and stability of the loaded 

peptide and protein. Figure 1.6 presents schematic digram of mechanism of pH-

sensitive nanogels overcoming the major barriers of oral peptide and protein 

delivery  (Mudassir et al., 2015).  

 

 

Figure 1.6: Overview of mechanism of pH-sensitive nanogels to overcome major 

barriers (Mudassir et al., 2015) 
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1.7.5 (a) pH-sensitive nanogels  

The most important characteristic of nanogels in oral peptide and protein delivery is 

their sensitivity to external pH (Elsaeed et al., 2012, Xiong et al., 2011). The pH-

sensitive behaviour of nanogels is due to the presence of certain pH-sensitive 

functional groups in the polymer chain. The pH sensitive nanogels can be either 

acidic or basic, which responds to either basic or acidic pH. The acidic functional 

groups include carboxylic acids (COOH) and sulfonic acids (-SO3), while the basic 

groups include primary amines and quaternary ammonium salts (Elsaeed et al., 

2012, Xiong et al., 2011). The carboxylic acid functional groups undergo 

protonation and deprotonation and result in the swelling and de-swelling of the 

nanogels. At pH below pKa, the carboxylic acid functional groups remain 

protonated and the network is in a collapsed state. However, above the pKa value, 

the carboxylic acid functional groups become de-protonated and result in the 

expansion of networks due to the repulsion of intermolecular charges. The reverse 

behaviour is observed in primary amine groups and quaternary ammonium salts 

(Ranjha et al., 2011, Mudassir and Ranjha, 2008, Ranjha and Mudassir, 2008, 

Ranjha and Doelker, 1999). Figure 1.7 presents the pH sensitive swelling behaviour 

of carboxylic acid functional groups containing nanogels (Mudassir et al., 2015).  

 

 

 

 

 

 

 


