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PENGENALPASTIAN MELALUI MOLEKULAR, MORFOMETRIK 

GEOMETRIK DAN HUBUNGAN FILOGENETIK NEMIPTERIDAE YANG 

PENTING DARI SEGI KOMERSIAL DI PERAIRAN MALAYSIA DAN 

PERAIRAN BBERJIRAN (KEJIRANAN) DISIMPULKAN OLEH mtDNA 

DAN GEN NUKLEAR 

ABSTRAK 

Kajian ini menggunakan pendekatan genetik dan morfometrik untuk menilai 

perbezaan molekul dan morfometrik serta hubungan filogenetik spesies komersial 

yang penting dalam kalangan famili Nemipteridae. Penyiasatan molekul telah 

dijalankan berdasarkan dua gen mitokondria dan satu gen nuklear pada 210 individu 

dalam 13 spesies yang diandaikan famili Nemipteridae dari tujuh wilayah laut; 

Lautan Hindi, Selat Melaka, Laut China Selatan Timur (ESCS), Laut China Selatan 

Barat (WSCS), Laut China Selatan Utara (NSCS), Laut Sulu (SS) dan,  Laut Celebes 

(CS). Pada bahagian pertama kajian ini, kaedah barkod DNA dengan menggunakan 

kawasan mitokondria sitokrom oksidase c (COI) (647 bp) telah digunakan untuk 

mengenal pasti dan untuk menemui potensi spesies baru. Semua sampel dianalisis 

secara statistik menggunakan perisian MEGA v7.0 dan kesemua sampel terkelompok 

ke dalam spesies putatif masing-masing. Jarak genetik intraspesifik sebanyak >2% 

mencadangkan kemungkinan terjadinya spesies kriptik dalam individu N. japonicus 

dan S. vosmeri. Perbezaan purata jarak genetik sebanyak 10X telah dicerapi antara 

purata inter dan intraspesifik pada kesemua taksa kecuali N. japonicus dan S. 

vosmeri. Pada bahagian seterusnya dalam kajian ini, data kuantitatif berdasarkan 

teknik geometrik morfometrik pada 19 petanda homologus ke atas 150 individu yang 
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merangkumi 13 spesies telah dikaji dengan lebih mendalam dengan menggunakan 

Analisis Variat Pelbagai (MANOVA) dalam pelbagai program tps dan perisian 

Morpho J. Analisis Komponen Prinsipal (PCA) telah menjana 34 komponen dengan 

nilai eigen yang sangat rendah iaitu <1, dan oleh itu boleh diabaikan. Walau 

bagaimanapun, Analisis Variat Berkanonik (CVA) telah menghasilkan 12 variat 

kanonik, sembilan variat mempunyai nilai eigen >1, CV1 dengan nilai eigen tertinggi 

menjelaskan 76% adalah variasi bentuk jasad dan boleh mendiskriminasi secara 

berkesan dalam kalangan 13 taksa yang dianalisis. Walau bagaimanapun, tiada 

penunjuk spesies kriptik telah dikesan dalam Nemipterus japonicus dan Scolopsis 

vosmeri melalui pendekatan ini berbanding dengan analisi barkod DNA. Dalam 

bahagian akhir, analisis data gen secara individu dan data gabungan daripada dua gen 

mitokondria (COI dan Cyt b) dan satu gen nuklear (RAGI) ke atas 210 individu 

dalam 13 spesies telah dianalisis dalam perisian MEGA v7.0 dan perisian MrBayes 

untuk menjana pohon Kebolehjadian Maksimum dan pohon Inferens Bayes untuk 

menyelesaikan hubungan filogenetik famili Nemipteridae. Keputusan menunjukkan 

bahawa semua taksa daripada famili ini secara asalnya adalah monofiletik. Kedua-

dua topologi pohon ML dan BI adalah sama dengan hanya sedikit perbezaan pada 

kedudukan taksa.  Set data molekul untuk semua gen (set data individu dan 

gabungan) jelas menunjukkan bahawa genus Nemipterus dan Pentapodus adalah 

berkait rapat manakala genus Scolopsis berkait rapat dengan Parascolopsis. 

Gabungan ciri meristik dan ketiga-tiga gen telah mengesahkan bahawa beberapa 

individu spesies S. vosmeri dari Lautan India dan populasi N. japonicus dari Laut 

Cina Selatan adalah spesies kriptik. Data gabungan juga jelas menunjukkan 

kumpulan kriptik N. japonicus dan S. vosmeri dan juga mencadangkan rekod baru 

untuk S. torquata, salah satu ahli dalam kompleks S. vosmeri di Lautan Hindi dan 
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Laut China Selatan. Kami mendapati bahawa morfometrik geometri bersamaan 

dengan barcoding DNA dari segi pengenalpastian spesies. Kegagalan kaedah 

morfometrik geometrik berbanding kejayaan analisis molekul untuk menemui 

kepelbagaian spesies kriptik boleh dikaitkan dengan kadar tekanan pemilihan 

berlainan antara gen dan ciri fenotip dan ekpresi gen (mutasi) tertunda sebagai 

tindakbalas terhadap perubahan sifat morfologi. Gabungan morfometrik dan data 

molekul dari kajian ini telah memberikan maklumat yang berguna untuk pengurusan 

dan pemuliharaan spesies yang penting dari segi komersil dari famili Nemipteridae 

di perairan Malaysia and perairan kejiranan dengannya. 
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MOLECULAR IDENTIFICATION, GEOMETRIC MORPHOMETRICS AND 

PHYLOGENETIC RELATIONSHIP OF COMMERCIALLY IMPORTANT 

NEMIPTERIDAE FROM MALAYSIAN WATERS AND NEIGHBORING 

SEAS INFERRED BY mtDNA AND NUCLEAR GENES 

 

ABSTRACT 

This study employed genetic and morphometric approaches to assess the 

molecular and morphometric differentiation as well as phylogenetic relationships 

among commercially important species of family Nemipteridae. Molecular 

investigations were conducted based on two mitochondrial and one nuclear genes on 

210 individuals within 13 presumed species of family Nemipteridae from seven 

marine regions; Indian Ocean, Straits of Malacca, East South China Sea (ESCS), 

West South China Sea (WSCS), North South China Sea (NSCS), Sulu Sea (SS) and 

Celebes Sea (CS). In the first part of the study, the DNA barcoding method was 

employed using the standard region of barcoding mitochondrial cytochrome oxidase 

c (COI) (647 bp) to identify and potentially discovered new species. All samples 

were statistically analysed in MEGA v7.0 and clustered into fourteen respective 

putative species. Intraspecific genetic distance of > 2% suggested the potential 

occurrence of cryptic species within the presumed N. japonicus and S. vosmeri 

individuals. An average of 10X differences was observed between mean inter and 

intra specific genetic distance among all taxa except N. japonicus and S. vosmeri. In 

the next part of this study, quantitative data based on geometric morphometrics 

technique of 19 homologous landmarks were analyzed on 150 individuals within 13 

presumed species with Multivariate Analysis of Variance (MANOVA) in various tps 

programs and Morpho J software. Principal component analysis (PCA) generated 34 
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components with very low eigenvalue of < 1 and thus of negligible significance. 

However, Canonical Variate analysis (CVA) generated 12 canonical variates, nine 

had eigenvalue of >1 with the highest eigenvalue from CV1 that explained 76% of 

body shape variations and could efficiently discriminate among the 13 taxa analysed. 

However, no indication of cryptic species was detected in Nemipterus japonicus and 

Scolopsis vosmeri in this approach in contrast to the DNA barcoding analysis. In the 

final section, individual gene analysis and combined (concatenated) data from two 

mitochondrial (COI and Cyt b) and one nuclear gene (RAGI) were analyzed on 210 

individuals within 13 presumed species using Maximum likelihood (ML) and 

Bayesian Inference methods (BI) to resolve the phylogenetic relationships of the 

family Nemipteridae. The results showed that all taxa of this family are 

monophyletic in origin. Both ML and BI tree topologies were similar with only slight 

differences in positioning among taxa. The molecular dataset of all genes (individual 

and combined datasets) clearly showed that genera Nemipterus and Pentapodus are 

closely related while genus Scolopsis is closely related to Parascolopsis. Combined 

meristic characters and the three genes confirmed that several individuals of S. 

vosmeri from the Indian Ocean and N. japonicus residents of South China Sea were 

cryptic. The concatenated data also highlighted the cryptic groups within N. 

japonicus and S. vosmeri and also suggested a new record of the newly described S. 

torquata, a member in S. vosmeri complex in the Indian Ocean and South China Sea. 

We found that the geometric morphometrics corresponded with DNA barcoding in 

terms of species identification. The failure of geometric morphometrics versus 

success of molecular data to uncover cryptic species diversity may be attributed to 

different rates of selection pressure between genes and phenotypic characters and 

also delayed gene (mutations) expression in response to changes in morphological 
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traits. The combination of morphometric and molecular data from the current study 

has provided beneficial information for the management and conservation of 

commercially important species of family Nemipteridae in Malaysian waters and 

neighboring seas. 
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CHAPTER 1 

GENERAL INTRODUCTION 

 

1.1 Introduction 

 

Malaysia is a biodiversity hotspot with large numbers of endemic and unique 

fish diversity. Above all, being part of the Indo Malay Archipelago and Sundaland, 

the Malaysian waters are diverse in both marine as well as freshwater fish fauna. 

Marine fish is the main protein source of food among peoples in Malaysian region, 

harvested throughout the year and contributing to 75% of the annual fish catch 

(Iliyasu et al., 2016), Malaysia becomes the 12
th

 major global contributor with 

1,458,126 tons of marine fish (FAO, 2016). Tan et al. (2015) reported that household 

use of fish products is 24.7% in Malay communities, 7.4% in Indians and 13.2% by 

Chinese and other communities (e.g Iban, Kadazan etc). According to the Malaysian 

National Agro Food Policy (2011-2020), it is projected that the annual fish demand 

will increase by 13% from 1.74 million tons in year 2013 to 1.93 million tons in year 

2020. Therefore, steps are already being taken for a sustainable commercial fisheries 

production (Yusoff, 2014) but a lot more needs to be done.  

The demand of seafood products has increased in recent years giving rise to 

the flow of more players and introduction of value added fisheries products to attract 

wider consumer market in the fisheries industry (Surathkal et al., 2017). 

Unfortunately, this has also provided opportunities for unhealthy market practices 

such as fish species misbranding and false labelling of costly fish species with lower 

priced species (Rasmussen et al., 2009; Miller and Mariani, 2010). This mislabelling 

of fish has also raised human health concerns. For example, Wong and Hanner 
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(2008) reported the case of toxic puffer fish being mislabelled as headless monkfish 

in Chicago, North America. Likewise, Cohen et al. (2009) also reported such similar 

case in fish markets of Thailand. The illegal catching, trade and use of endangered 

marine fish such as sharks, eels and rays in seafood products show that fisheries 

conservation and sustainability has been neglected to the point of commercializing 

overexploited endangered species like eel (Rahman et al., 2015; Asis et al., 2016).  

In addition to the above, absence of recognisable morphological features in 

processed fish products or fish fillets make seafood frauds highly prevalent as 

reported by Wong and Hanner (2008) in North American fish market survey. Cases 

of substitution of closely related commercially important species have also been 

reported in the Southeast Asian region attributed to confusion in nomenclature.  For 

instance, some range of species have multiple nomenclatures while on the other 

hand, a group of species may be labelled with only a single name such as ‘tuna’ and 

‘kerisi’ (Barbuto et al., 2010). The high demand of fish protein diet and exposure of 

marine fish to a challenging marine environment has increased the importance of 

advanced fisheries research especially in Malaysian waters, particularly research 

related to taxonomy, biology, diversity, population structure as well as phylogenetic 

histories of commercially important marine fish species to ensure continuous supply 

of fish and fish products. Malaysians are beginning to be conscious about the 

nutritional value of the food they consumed including fish, and to this end, the 

correct identification of particular species with its characteristic value is very 

important.  

In like fashion, stock identification of a particular harvested fish group is 

essential for sustainable fisheries as this attribute is compulsory for evaluating the 

status of harvested fish. Taylor et al. (2011) used the telemetric and otolith count 
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methods and applying the maximum likelihood model for stock identification of tuna 

populations in Eastern Mediterranean and Western Gulf of Mexico. Multidisciplinary 

fields of stock identification focus on life history, genealogy, morphology as well as 

phylogenetics and can be assessed by traditional morphometric methods and also 

advanced techniques such as geometric morphometrics (GM) (Cardin, 2000) as well 

as molecular data. Morphological identification technique such as geometric 

morphometrics is easy, low cost and applicable to clarify not only the differences 

among species but also differences within population due to various environmental 

changes (Ibanez et al., 2017: Marquez et al., 2017). 

The family Nemipteridae is a commercially important tropical and 

subtropical marine food fish group inhabiting the Indo Malayan Archipelago region. 

The commercial species of this family are locally known by using a single name 

‘kerisi’ in Malaysia. It is widely used in the preparation of some popular dishes in 

Malaysia such as surimi, sushi and fish meatballs due to their good lipid and protein 

contents besides being used as bait for farmed fish (Galal-Khallaf et al., 2016). 

Commonly known as threadfin breams, they are also commercially important in the 

Gulf of Suez (FAO, 2011; El-Halfawy and Ramadan, 2014). The Annual Statistics of 

Malaysia (2014) categorize family Nemipteridae among the highest landing fish and 

is exported to other countries including Singapore, Japan, China, Italy and Australia.  

Many studies have reported on global decrease in population stocks of marine 

fish (Pontecorvo and Schrank, 2014; Golden et al., 2016) including South East Asia 

(Teh et al., 2017). Thus, fish management is crucial to replenish fish resources and 

this requires the identification of fish populations as a discrete units or fish stocks. 

The management of fish without stock identification and assessment can lead to 

severe consequences of depletion in spawning performance, loss of genetic diversity 
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as well as ecological issues (Hilborns and Walter, 2013). Fish in family 

Nemipteridae are also facing many challenges including environmental pollution, 

stock depletion and over catching for productions of seafood products (Shyam et al., 

2017; Zeller et al., 2017). Hence, understanding stock identification, stock 

assessment and genetic structure are needed for management and conservation of this 

family. 

For whole fish specimen, traditional morphometric methods based on 

meristic counts and conventional morphometric is important and quick for fish 

identification in the field but the more recent morphometric approach of geometric 

morphometrics (GM) provides a quantitative approach to differentiate taxa in detail 

(Bonhomme, 2014). However, difficulties arise when traditional morphometric 

methods fail to identify samples that are without complete morphological 

characteristics such as in processed fish and fillet products (Chin et al., 2016). To 

identify these types of fish samples, several protein based analyses methods have 

been developed specifically for fish species identification (Westermeier, 2016). 

However, these analytical methods are inefficient in identifying processed fish 

products because thermolabile fish proteins undergo irreversible denaturation due to 

heat (Dooley et al., 2005). Moreover, it is difficult to differentiate very closely 

related fish species as they have common protein profiles (Barik et al., 2013). The 

need for a faster approach in taxon delimitation is amplified due to the decreasing 

number of taxonomists and the limitations of morphological based identification. 

This is now being partially addressed through advanced molecular identification 

technique such as DNA barcoding. This approach utilises a standard segment of the 

mitochondrial DNA as a marker to identify organisms from tissue samples 

circumventing the need for complete and fresh organisms (Ward et al., 2005). 
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Genes from mitochondrial DNA have the unique ability to track the historical 

lineages of taxa and their applications have been documented in various research; 

taxonomy (Henderson et al., 2016), cryptic species identification (Azuma et al., 

2017), population genetics (Lim et al., 2016) and stock identification (Shen et al., 

2016). Cytochrome oxidase c I (COI) and cytochrome oxidase b (Cyt b) sequences 

from mitochondrial DNA are two of the most frequently used molecular markers 

now a days (Ward et al., 2008; Hubert et al., 2012). The COI gene is typically used 

in DNA barcoding and helps in refining species by identifying unknown specimens 

using probabilistic algorithms when a set of known species barcode is already 

established and available in the DNA barcode database called Barcode of Life 

Database BOLD (Abdo, 2007). Cytochrome oxidase b (Cyt b) has proven to be a 

robust evolutionary marker among mtDNA protein coding genes, uncovering 

phylogenies at various taxonomic levels in fishes (Lakra et al., 2011). A cytochrome 

b code is a functionally conserved protein and can be phylogenetically informative in 

both inter and intra specific studies as it has fast as well as slow evolving segments. 

However, it is probably most suited for closely related taxa as the nucleotide 

sequence variation is less saturated by multiple substitutions (Satoh et al., 2016).  

Equally important, phylogenetic trees are the near exclusive option to relate 

among species in systematics and taxonomy. Today, the phylogenetic interpretations 

are the main area of concern for taxonomists and evolutionists in order to search for 

missing links that can complete the tree of life. Mitochondrial and nuclear genes are 

molecular markers that are widely applied and successfully proven for phylogenetic 

inference of vertebrate relationships (Chen et al., 2014; Near et al., 2014). The 

choice of gene is very critical for obtaining a successful outcome of the issue being 

addressed due to the different evolutionary rates of the various genes as i.e. 
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mitochondrial COI gene is an authentic barcoding gene that is fast evolving and is 

helpful only for family level phylogenetic comparisons while mitochondrial Cyt b 

gene is moderately evolving and is efficient for intergeneric and interspecific level of 

phylogeny comparisons (Hajibabaei et al., 2007). Being mitochondrial genes, COI 

and Cyt b genes have limitations due to maternal inheritance. Therefore, there are 

risks of incomplete lineages due to missing genetic data from paternal genes. In this 

regard, the nuclear genes can complement. An example is Recombinant Activating 

Gene I (RAGI), a slow evolving nuclear gene that can interpret phylogenies 

efficiently at interspecific level (Chen et al., 2014). The utilisation of combined 

mitochondrial and nuclear markers with different and complementary specific 

advantages (and weaknesses) will provide a more holistic presentation of the 

phylogenetic relationships of this all-important fish group. 

 

1.2 Problem Statement 

 

Food safety concerns, environmental (i.e. pollution, seasonal changes) and 

socio-economic factors (i.e. use of a single name ‘kerisi’ in fish markets, illegal fish 

trade, over catching practices) are among the few challenges in sustainable utilization 

of commercial fish of family Nemipteridae to retain their original genetic stocks in 

biodiversity rich region like Malaysia where fish and rice are ultimate source of food. 

The stock identification, phylogenetic history and detailed study of species 

distribution pattern of this family is urgently needed by using recent and authentic 

approaches for management and conservation of original parental gene stock.   
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For all the reasons above, the current study is aimed at investigating species 

diversity including hidden diversity, phylogenetic relationships and morphometric 

variability on the commercially important family Nemipteridae collected from 

landing sites of Malaysia and neighbouring oceans.  The information obtained from 

this study will provide the first molecular and morphometric data records for the 

commercially important family Nemipteridae. This study also gives insights into the 

stock structure, genetic variations, species complexes and phylogenetic histories of 

family Nemipteridae and is very valuable to use for long-term management and 

conservation strategies for the species. 

 

 

1.3 Objectives 

  

Based on the current issues of Nemipteridae fisheries in Malaysian and 

surrounding waters the objectives of the project were; 

1. To identify commercially important species of family Nemipteridae in 

Malaysia and its surrounding waters using DNA barcoding of COI gene. 

2. To use geometric morphometrics for discrimination among taxa of family 

Nemipteridae on basis of body shape variations. 

3. To determine phylogenetic relationships and distribution of commercially 

important species of family Nemipteridae by using mitochondrial and nuclear 

genes. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 South East Asia as a Biodiversity Hotspot  

 

 

South East Asia is rich in biodiversity, both aquatic and terrestrial. However, 

it also ranks high in the IUCN red list in terms of endangered species. 

Geographically located in one of the greatest biodiversity center, Malaysia is the 

focus of attention for many taxonomists (Marchese, 2015). Surrounded by several 

seas merging at the junction of the Pacific Ocean and Indian Ocean, the region 

therefore unsurprisingly supports a plethora of marine organisms including fishes 

(Bellard et al., 2014). Malaysia is divided into two landmasses: Peninsular Malaysia 

and Borneo (Sabah and Sarawak).  

Peninsular Malaysia is an important part of the biogeographical region of 

Sundaland that was periodically exposed in the past 2-2.5 million years due to 

lowering of sea level, reaching a low of 30-40 m at some point (Voris, 2000). 

Sundaland extends over an area of 1,800,000 km
2
 including Sumatra, Java and Gulf 

of Java, Thailand and Gulf of Thailand, Borneo and parts of South China Sea. The 

Southern and Western boundaries of Sundaland are bordered by the Indian Ocean, 

the eastern boundary at the Wallace Line, and the northern boundary (although not 

easy to define is approximately at 9
o
N). The Wallace line was described in 19

th
 

century for the very first time by Alfred Wallace in his book entitled ‘Indo Malayan 

Archipelago’ (covering an area of 2 million km
2
) as an area which divided the warm 

g pool of Indo Pacific Ocean of the Southeast Asian region from the cooler pool of 

the Pacific Ocean of the Australian region (Veron et al., 2009). Many studies have 
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confirmed that the marine biodiversity present in both regions never crossed their 

territories except at the transition zone located at the Eastern boundary of Indo 

Malayan Archipelago in which mixed biodiversity from the Malayan and Australian 

region can be found (Grudinski et al., 2014; Muir et al., 2015). The tropical 

environments of historic Sundaland with high rainfall and the presence of warm pool 

of Indian Ocean supports the highly renowned ‘biodiversity hotspot’ status of this 

region.  

Contemporary Peninsular Malaysia is linked to the great landmass of Asia at 

its northern boundary through Thailand, while Malaysian Borneo is part of the 

Borneo island, both of which are home to immense coral reef fish diversity (Allen, 

2008). Marine coral reef biodiversity tails off further to the West because of increase 

in turbidity and unavailability of suitable sea shore for reef fringe attachment 

(McClanahan, 2000). Two major hypotheses have been postulated about patterns of 

species richness in this important marine zone. Firstly, the ‘Centre of Origin’ 

hypothesis.  This refers to the sympatric speciation concept about the divergence of 

species from Indo Malayan Archipelago. In summary, this concept postulates that the 

origin of speciation occurs at the centre of the Sundaland and then disperses to the 

periphery. Thus, the expectation of this concept is for the presence of shallow genetic 

structure at the midpoint ranges of species due to dispersal towards more peripheral 

regions of the Indo Pacific Ocean as compared with the central region. Secondly, the 

‘Centre of Overlap’ hypothesis, which postulates that vast amount of speciation, 

occurred during the Pleistocene. At that time, the Indian and Pacific Oceans were 

intermittently connected and disconnected. During the period of sea level rise, the 

two areas overlapped resulting in species overlap in the Indo-Malayan region 

forming an enormous pool of diversity (Gaither and Rocha, 2013) including fish 
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species. Thus, understanding present-day fish distribution is an important indicator to 

assess the connections between landmasses that were historically connected and in 

this regard research on the phylogenetics and phylogeography on many species of 

fish are important tools to achieve this.. 

The genetic variability within a species plays a key role in a survival and 

sustainability of trophic levels in marine habitat (Hiddink et al., 2007), the higher the 

diversity, the higher the resilience. This genetic makeup provides the evolutionary 

potential in a group (Schindler et al., 2010). Genetic diversity is mainly influenced 

by environmental factors, genetic drift and selection pressures (Kovach et al., 2013). 

There have been many reports of the influence of overfishing practices that have 

resulted in decline of fish populations and hence genetic decline. For example, the 

Atlantic cod was a commercially important marine fish that was highly caught during 

the twentieth century that resulted in a decrease of its sexual maturity from >5 years 

to <3 years and finally collapsed the fish stock (Sterner, 2007). McCain (2015) 

reported that the decline in Atlantic cod (Gadus morhua) was also affected the 

populations of other fish due to the unavailability of prey. Following that, Mirimin et 

al. (2016) reported the presence of low genetic diversity and low trends of population 

differentiations in Argyrosomous japonicus due to overfishing practices in its 

distributional range of 2000 km along the coastline of South Africa. 

Variations in marine environment can severely lead to decline in coral reef 

fish especially those distributed in the hotspot regions (Descombes et al., 2015). Arai 

(2015) stated that the environmental and man-made pressures on marine habitat has 

resulted in 35 marine fish families and 86 marine fish species being categorized as 

threatened or extinct and further reported that methods of fish practice (blast fishing, 

trawl fishing, poison fishing) are constant threats along with other anthropogenic and 
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natural pressures for the South China Sea fisheries within the Malaysian water. Thus, 

it is important to conserve the genetic diversity along with conservation and 

management of dwindling coral reef diversity in biological hotspot regions.  

 

2.2 Taxonomy and Phylogenetic Considerations in Fish  

 

 

 According to FAO report (2015), more than 50,000 fish species are globally 

distributed, of which 33,100 fish species have been documented as valid fish species 

untill April, 2015. The marine fish documentation rate is only 100-150 species per 

year (Eschmeyer et al., 2010) due to limited expertise in this field. The 

environmental (i.e. seasonal changes, greenhouse effect, acid rain) and man-made 

pressures (i.e. overfishing, pollution) are major threats for marine fisheries. The 

discovery, identification and documentation of marine fish resources are of utmost 

urgency before the extinction of important yet undiscovered and undocumented fish 

species. The two reliable web resources, FishBase and Catalog of Fishes provide a 

growing documentation of global fish and fisheries (Eschmeyer and Fong, 2016; 

Froese and Pauly, 2016). The documentation, identification and exploration of new 

fish species are important fields in taxonomy that need rapid research but along with 

these perspectives, understanding the evolutionary relationships among marine fish 

taxa is also equally important for insights into the historical dispersal of marine taxa 

during changes in ocean landscape during geological events and climatic oscillations.  
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The demand of fish products has increased in recent years giving rise to the 

flow of more players into this business. This has encouraged economic deception 

that involves fish species misbranding and false labelling of costly fish species with 

lower priced species (Rasmussen et al., 2009; Miller and Mariani, 2010). This 

mislabelling of fish species has also raised food safety concern such as cases of toxic 

puffer fish samples that mislabelled as ‘headless monkfish’ or other harmless 

products (Cohen et al., 2009). Fisheries conservation and sustainability has also been 

neglected to the point of commercializing overexploited species (Jacquet and Pauly, 

2008). There are many cases of substitution of closely related species from other 

countries or continent among commercialized fish due to an ambiguous 

nomenclature. Some species are grouped into a single name such as tuna 

(Lowenstein et al., 2009) while there are also singular species with multiple 

nomenclatures (Barbuto et al., 2010). 

Difficulties can arise with sole dependence on morphological diagnosis for 

sample identification in the absence of diagnostic characteristics such as in processed 

fish and fillet products (Sotelo et al., 1992; Unlusayin et al., 2001; Smith et al., 

2008). To identify these types of fish samples, several protein based analytical 

methods have been developed specifically for fish identification (Tepedino et al., 

2001: Ochiai et al., 2003). However, these analytical methods can only be applied 

for identification of raw fish sample because thermo labile fish proteins undergo 

irreversible denaturation due to heat in a processed fish products (Dooley et al., 

2005). Furthermore, it is difficult to differentiate closely related fish species as they 

have common protein profiles (Bartlett and Davidson, 1991; Smith and Rayment, 

1996). Determination of fish population structure is even more challenging because 

the differences among populations of the same species are substantially minor or 
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even negligible. To address these limitations and to enable precise fish species 

identification, phylogenetic assessment and population genetic studies, new 

approaches in morphometrics and DNA based techniques with high thermal stability 

is successfully used these days (Hajibabaei et al., 2007; Dor et al., 2014). 

 

2.3 Morphometric approaches in fish identification 

   

 In the marine environment, the term ‘stock study’ is used for two types of 

groups; i) randomly mating intraspecific group that is living in the same habitat 

constitutes stock identification study, ii) interspecific group of morphologically 

similar and with non-significant differences living in the same habitat constitutes 

stock differentiation study (Ihssen et al., 1981; Tzeng, 2004). The identification 

methods are usually based on differences in phenotypic characters.  In a biological 

context, morphometrics and meristic is the analytical technique to address variations 

and co-variations in biological forms. Meristic and morphometrics are traditional 

approaches to identify taxa at species level but are still widely used today due to their 

ease of application, absolutely no cost once the equipment is available (callipers or 

the more advanced equipment such as image analyser) and generate very useful data. 

Meristic approach for species identification uses countable variable of external 

features (such as fins counts, caudal fin shape, body colour, body shape) whereas 

morphometrics uses absolute measures, ratios and proportions such as total length, 

standard length, dry and wet body mass (Russell, 1990; Kumar et al., 2015). Russell 

(1990) used meristic and a few morphometric characters (body length, eye diameter, 

body depth etc.) to identify marine fishes and his morphological identification key 

are still referred for identification and discovery of a new species. It is also a fact that 
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the identification of fish species through morphological keys is a time consuming 

process and also the phenotypic similarities in fish species can lead towards 

misidentification.  

           The late 20
th

 century was a momentous period in the history of 

morphometrics. A more advanced morphometric method known as geometric 

analysis was introduced or revitalised in the late 1990’s (Bookstein, 1985, 1991; 

Rohlf, 1993; Rohlf and Marcus, 1993; Adams et al., 2004) and combined with 

powerful statistical analyses and comprehensive approaches of data collection 

(Sidlauskas et al., 2011) facilitated improvement in understanding of morphological 

evolution. This was developed through the advancements in statistical analysis in 

combination with images and geometric methods that analyze variation in coordinate 

systems in 1980s (Bookstein, 1991; Adams et al., 2004). The use of digitized image 

(Cadrin and Friedland, 1999), in place of actual specimens was another innovation in 

morphometrics and combined with traditional multivariate morphometric analysis 

further revolutionised the field of morphometrics (Collar et al., 2013). Cardin and 

Friedland (1999) reported that although ontogenetic assessments of taxa are difficult 

to interpret but use of geometric morphometrics could enhance the traditional species 

identification techniques.  

              Geometric morphometrics is based on landmarks geometry and is aimed to 

understand among species, the ecological and evolutionary changes among species 

that are the precursors of shape variability in biological forms (Adams and Otárola-

Castillo, 2013). Landmarks are homologous points associated with the geometry of 

the organismal body of closely related taxa (Bookstein, 1991; Gunz et al., 2005). For 

each specimen, landmarks are chosen on its digital image at specific homologous 

positions and are expressed on two dimensional or three-dimensional coordinates. 
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All the specimens should have the same landmarks and incomplete specimens or 

missing landmarks will be eliminated before further analysis to overcome the 

misinterpretation of results. The GM analysis allows size and shape to be 

independently evaluated in the investigation of morphological variation and co-

variation.  

 Geometric morphometrics can efficiently address shape variations because 

the landmark coordinates are similar in a single (or related) type of taxa and any 

significant variation in specific range of landmarks help to address the changes in 

structure (Mitteroecker and Gunz, 2009). Through effective statistical analyses and 

values generated such as means, principal components, covariate analysis and 

regression, it is proposed that GM could be useful in evolutionary investigations of 

ontogeny (Zelditch et al., 2012; Polly et al., 2016). The use of GM methods in 

morphological and functional studies became increasingly popular at the turn of the 

century (Adams and Rohlf, 2000; Gunz et al., 2005; Adams et al., 2011).  

 Costa and Cataudella (2007) explored relationships in body shape and trophic 

ecology in juveniles of nine species of family Sparidae by GM study on body shape 

and deduced that mean body shape is different in terms of mouth gap. In carnivore 

the mouth gap is large and also long body with narrow caudal peduncle. Herbivore is 

associated with small mouth gap while omnivorous species has a deep body with 

small mouth gap.. 

 Ibanez et al. (2012) differentiated species, genera and populations of family 

Mugilidae from different locations on the basis of differences in ctenoid scales by 

use of geometric morphometrics. They used discrimination function analysis and 

PCA on landmarks data but found GM analysis of form variations of ctenoid scales 

less effective in discrimination of taxa but most effective to differentiate 
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geographically dispersed populations (collected from Gulf of Mexico and Aegean 

Sea). However, although, morphology will remain as the foundation of taxonomy, 

four major limitations have been highlighted by Hebert et al., 2003); 1) Incorrect 

identifications resulting from both phenotypic plasticity and genetic variability in the 

characters employed for species recognition, 2) cryptic taxa that are common in 

many groups could be overlooked, 3) often only for a particular life stage or gender 

those morphological keys are effective and 4) misidentifications are common, as the 

use of keys often requires a very high level of expertise. In complement with 

morphological data, these problems have been efficiently addressed by the discovery 

of molecular methods in species identification. 

 

2.3.1    Statistical methods in morphometric analysis 

 

 

Several statistical methods are widely employed to describe differences in 

size and body shape. These include univariate analysis such as ANOVA and 

multivariate statistical approaches such as Principal Component Analysis (PCA) and 

Discriminant Function Analysis (DFA).  

PCA is a quadrate analysis in biostatistics that is used to convert or reduce 

large sets of variables in the form of principal components that contain all 

information about the variables and thus determine the maximum amount of 

variation. The PCA uses total covariance matrix to transform into 2D or 3D 

visualization in such a way that the first component usually represents the maximum 

variation that subsequently reduces in succeeding components (Klingenberg et al., 

2003). In morphometrics, whether traditional or geometric morphometrics, the total 
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variation along all axes of principal components is assessed by eigenvalues. 

Eigenvalue > 0.30 shows significance, eigenvalue > 0.40 shows higher significance 

and eigenvalue > 0.50 shows that a highly significant correlation is present 

(Nimalathasan, 2009; Lombarte et al., 2012). Moran et al. (2017) stated that PCA is 

a comparatively less effective method as compared to DFA to address the phenotypic 

differences between species because principal components can measure differences 

at only highly diverged axis. Furthermore, PCA analysis does not require any pre-

grouping unlike DFA analysis, the latter facilitating magnification of differences 

among groups (species). The values from PCA can be used to determine the shape 

models and to construct a tree or dendrogram to visualize relationships. Many studies 

have reported the success of PCA to address population structure in marine fish. Lim 

et al. (2016) used PCA analysis to observe population variations in N. japonicus at 

various locations in Malaysia.Similarly, Duong et al. (2017) used PCA analysis to 

differentiate three wild and hybrid species of bighead carps and also reported that the 

first two PCs accounted for 55% differences that explained the anterior parts of the 

body (head size, fin lengths and distance between dorsal and caudal fin). Claverie 

and Wainwright (2014) reported that the body elongation is the main factor of shape 

variations in the evolution of reef fish that diversified after undergoing through the 

process of diverse changes in body orientations. This was explained by the first two 

principal component axis that accounted for 58.3% of total body variations of the 

reef fishes.  

PCA is traditional method of multivariate analysis in statistics that reduces 

dimensions of dataset and transforms data into new coordinates that are linear 

combination of old datasets. McGarigal et al. (2000) reported that the principal 

components in PCA are uncorrelated to each other and have been aligned according 
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to order so that the first few principal components in PCA represents maximum 

variations present in the original dataset. The principal components are based on 

empirical observations so that the variations in body size are mostly inferable from 

variations in samples and is the main reason for the high value of the first principal 

component which shows maximum amount of allometric relation between body 

shape and body size (Slice and Stitzel, 2004). 

 The discriminant function analysis (DFA) is also a multivariate analysis. It 

was introduced by Fisher (1936) for the very first time on one morphotype of iris 

plant and used four measurements to create discriminant functions that could 

differentiate three species. The DFA is an authentic analysis in geometric 

morphometrics that can successfully record variations among two or more different 

species, geographically isolated populations and also two groups of a species in a 

clade (Zelditch et al., 2004; Klingenberg and Montriro, 2005; Mitteroecker and 

Bookstein, 2011).  

In the past, DFA was confused in terminology with another multivariate 

analysis, which is Canonical Variate Analysis (CVA) but Klingenberg and Monteiro 

(2005) referred the use of DFA to discriminate between two groups (two species) 

and CVA to discriminate between more than two groups in the same analysis. DFA 

is also based on eigenvalue and covariance matrix like PCA. However, in contrast to 

PCA, DFA used the covariance matrix among groups with a priori defined groups to 

discriminate within and among groups by use of Procrustes distances and 

Mahalanobis distance. Strauss (2010) stated that the eigenvalues in DFA address 

variance among groups in components of Discriminant Functions and Canonical 

Variates. 
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Many studies have addressed the efficiency of DFA to discriminate among 

and between species from the same or different geographical locations. Pérez 

Quiñónez et al. (2017) discriminated three species of Opisthonema in a combined 

molecular and geometric morphometrics study and reported that the first component 

(with eigenvalue 85.5%, Wilks Lambda 0.26, P < 0.001) in CVA consisted of three 

times more discriminating power than the second component (eigenvalue 14.5%, 

Wilks Lambda 0.75, P < 0.001). Klingenberg et al. (2003) documented in a study of 

Amphilophus species complex (A. citrinellus, A. zaliosus, A. labiatus) that three 

coloured morphs showed significant morphological variations due to body shape 

(Wiliks Lambda = 0.35, p = 0.046). 

 

2.4 Molecular approach in species discovery and documentation  

 

 

 The challenges of using traditional morphometric methods to identify fish 

species in consideration of factors such as phenotypic plasticity, developmental 

stages (egg and larvae), sexually dimorphic taxa, cryptic species as well as sibling 

species have motivated taxonomists to use molecular approaches for species 

identification. The effectiveness of various DNA based, immunological based and 

protein separation as well as characterization based techniques has been widely 

reviewed in the past.  

 Allozymes was extensively used during the early 1990’s and play a major 

role in the description of species diversity in fishes (Ward and Grewe, 1994; Utter, 

1998). RNA and DNA blotting techniques were also at some point popular to blot 

specific DNA/RNA sequence in DNA/RNA sample and are still in use but are 
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restricted to genetic engineering (Brown, 2001; Josefsen and Nielsen, 2011).   

 In quantitative method of immunological assays, the binding of antibodies 

with specific antigens from different species was used to calculate the 

immunological distance where the binding capacity was inversely proportional to the 

genetic distance between taxa (Asensio et al., 2008). However, all these methods do 

not work well in samples acquired from dead organisms because the protein starts to 

denature soon after death (Telechea, 2009). In this regard, the use of DNA markers is 

an advanced molecular approach that works equally well on dead and live body cells. 

Examples of DNA based molecular markers and approaches include randomly 

amplified polymorphic DNA (RAPD) (Kazan, 1993), amplified fragment length 

polymorphism (AFLP) (Maldini et al., 2006), single nucleotide polymorphism (SNP) 

(Jones et al., 2013), mitochondrial DNA and nuclear markers (Hebert et al., 2003; 

Zhang and Hanner, 2012).  

 

2.4.1     DNA barcoding 

 

 One of the increasingly important taxonomic tools for species detection is 

DNA barcoding. Hebert et al. (2003) initiated this method that enables almost any 

form of organisms worldwide to be identified by using a system that exploits a 

mitochondrial DNA sequence as a taxon ‘barcode’. Mitochondrial genes in fish 

species are promising markers for their identification (Teletchea, 2009) as compared 

to the nuclear genes. This is because of several special features inherent in the 

mitochondrial DNA (mtDNA). This small closed circular DNA with the size range 

of 15-20 kb that occurs in high copy number in each cell is easily recovered through 

various extraction methods (Hubert et al., 2008). Its maternal inheritance pattern, 
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lack of recombination, rapid mutation rate and small effective population makes it an 

effective tool for studying phylogeny and genealogy of taxa through multi lineage 

(Moore and Dowhan, 1995; Sangthong and Jondeung, 2003). Moreover, the 

evolution rate of mitochondrial genes is fast and hence it exhibits great potential as a 

barcoding gene to delineate species. Mitochondrial genes have been widely utilized 

in various applications such as in identification, seafood control (Yancy et al., 2008; 

Miller and Mariani, 2010), fisheries management (Holmes et al., 2009; Pinhal et al., 

2012), and species delineation (Ward et al., 2009; Hubert et al., 2015). Due to these 

positive features, mitochondrial genes were used extensively for DNA barcoding, 

also known as molecular tagging. However, there are several limitations of 

mitochondrial markers; 1) The mitochondrial genome is small (15-20 kb) in fish 

compared with nuclear genomes, and therefore only represent a small proportion of 

the genetic material, 2) While the maternally inherited allows tracing of maternal 

contributions, the non-Mendelian inheritance makes it unsuitable for many genetic 

studies, 3) Due to the high mutation rate and small size of mitochondrial genomes, 

back mutation could readily happen that does not reflect the phylogenetic 

relationship or evolutionary history. 

 

Cytochrome Oxidase C Subunit I Gene (COI) 

 

According to Kress and Erickson (2008), in order to be qualified as a DNA 

barcode the selected gene region must first meet three requirements; possess 

considerable species level genetic variation and divergence, presence of conserved 

flanking sites and features only short sequence length. Generally, mtDNA 
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cytochrome oxidase subunit I (COI) has been accepted as the barcoding gene for 

animals while (Hebert et al., 2003) a two-locus barcode (rbcl and matK) is the 

accepted DNA barcode (Hollingsworth et al., 2011; Cowan and Fay, 2012) for 

plants. Researchers have resolved many taxonomic ambiguities in identification and 

classification of various vertebrate groups using the COI gene (Ward et al., 2005; 

Rach et al., 2008; Rock et al., 2008).  

DNA barcoding is not only useful in species identification but could also be 

applied in assessment of population structure for example for studies in Snakehead 

fishes (Jamaluddin et al., 2011), for studies in threadfin breams (Lim et al., 2016), 

for conservation and management of amazonian commercial fish (Ardura et al., 

2010) and coral reef fish species (Hubert et al., 2012). It can also aid in identifying 

invasive species, for example for studies in Jpanese bluegill sunfish (Takahara et al., 

2013) and also to unveil new taxa or cryptic species (Bucklin et al., 2011).  

Mitochondrial COI gene was used to study 207 species of marine fishes in 

Australia (Ward et al., 2005). The vast majority of species were unequivocally 

identified with clear phylogenetic signals in their data. Further, they categorized the 

sequence samples into four major taxonomic (higher order) groups comprising of 

chimaerids, rays, sharks and teleost. Intra-generic species clustered together as did 

intra-familial genera. The study contributed in the precise identification of Australian 

fish species, a prerequisite for fish biodiversity conservation and fisheries 

management. Lakra et al. (2011) used DNA barcoding technique to identify 115 

marine fish species and used NJ method to infer their phylogenetic relationships that 

clustered 115 fish species into 79 genera.  

The DNA barcoding method has been further refined by development of Next 

Generation Sequencing (NGS) platforms. For instance, mini-barcode fragments that 



23 

 

are shorter fragments (between ~ 100 bp) compared to 650 bp in standard barcodes 

of the COI gene are easily available (Hajibabaei et al., 2011). Its resolution 

efficiency (at 90% species resolution) (Muirhead et al., 2008) is comparable to the 

97% species resolution using full-length DNA barcode sequences (~650 bp) 

(Hajibabaei et al., 2005; Hajibabaei et al., 2007; Muirhead et al., 2008). 

Furthermore, archival specimens and processed biological materials such as canned 

food, which generally do not have the full-sequence of DNA barcode intact can 

benefit from the mini-barcode development (Hajibabaei et al., 2006; Muirhead et al., 

2008).   

DNA Barcode Libraries 

 

 DNA barcoding is a golden bullet in delimiting species boundaries and is part 

of global species documentation project ‘the Barcode of Life’ (BOL) launched to 

record global biodiversity in a dedicated platform. The Consortium for the Barcode 

of Life (CBOL) was inaugurated in 2004 to develop standard protocols of DNA 

barcoding techniques, statistical analyses and documentation that could be applied 

worldwide in molecular taxonomic laboratories to form a global DNA library. CBOL 

was later extended with the launching of International Barcode of Life, (iBOL) 

(http://www.ibol.org) where an initial of 26 countries collaborated to document 

eukaryotic biodiversity with a preset target of cataloguing 5 million species barcodes. 

Various DNA extraction protocols, bioinformatics software for sequence analysis 

and a global data library have been developed in iBOL.  

 Specific thematic barcode projects were also launched such as FishBOL (Fish 

Barcode of Life) to barcode all fish life forms, MarBOL (Marine Barcode of life) to 

barcode marine biodiversity, BeeBOL (Bee Barcode of Life) to barcode all bee 

http://www.ibol.org)/
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species, MBI (Mosquito Barcode of life) to barcode all species of mosquitoes, 

Lepidoptera BOL to barcode all species in order Lepidoptera along with some 

regional projects such as Mexico (MexBOL) to barcode whole biodiversity 

distributed in Mexico, Norway (NorBOL) to barcode biodiversity in Norway, Europe 

(ECBOL) to barcode biodiversity of Europe etc.  

 The world heritage site in Costa Rica (The Área de Conservación 

Guanacaste) is also part of DNA barcode project that is working on insect barcodes 

in association with iBOL project (Janzen et al., 2005; Hajibabaei et al., 2006; Janzen 

et al., 2009). All DNA barcode data are submitted to the Canadian Centre for DNA 

Barcoding (CCDB) for uploading in the database called BOLD (Barcode of life 

database System) (Ratnasingham et al., 2007). This is a public database consisting of 

barcodes of global biodiversity and is freely available on line via webpage ( 

http://www.boldsystems.og/index.php/Login/page?destination=MAS_Management_

User Console). The user friendly interface of BOLD gives information about location 

of samples, pictures, barcode sequence and sequence resemblance where researchers 

can also download barcode sequences for statistical analysis and phylogenetic tree 

construction (Ratnasingham and Hebert, 2007). BOLD database also provides online 

statistical barcode analysis and inter and intraspecific genetic differences graphical 

and tabulated representations (Ratnasingham and Hebert, 2007). Malaysian 

laboratories are actively participating in this global DNA Barcode initiative building 

database for the biodiversity of various taxonomic groups and locations in this 

hotspot region that are available online on BOLD website ( 

http://www.boldsystems.og/index.php/Login/page?destination=MAS_Management_

User Console).  

http://www.boldsystems.og/index.php/Login/page?destination=MAS_Management_User
http://www.boldsystems.og/index.php/Login/page?destination=MAS_Management_User
http://www.boldsystems.og/index.php/Login/page?destination=MAS_Management_User
http://www.boldsystems.og/index.php/Login/page?destination=MAS_Management_User

