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REKA BENTUK, FABRIKASI DAN PENCIRIAN TANPA LABEL PENDERIA DNA 

BERASASKAN FR4 BERSAMA LITAR BACAAN BERSEPADU BERSAIZ POKET 

 

ABSTRAK 

 

Silikon, kaca dan seramik adalah substrat yang biasa digunakan sebagai bahan 

asas dalam fabrikasi filem SU8 dan bidang penderia bio asid deoksiribonukleik (DNA). 

Semua substrat ini adalah bahan bukan serasi bio, mahal, keras dan rapuh, sekali gus 

sukar untuk penggerudian dan pemotongan, memerlukan peralatan yang mahal dan 

teknik fabrikasi yang kompleks. Retakan mikro sering ditemui pada filem SU8 kerana 

jurang besar pada nilai pekali pengembangan haba (TEC) antara silikon/kaca dan 

SU8. Di samping itu, peralatan dan aksesori bersaiz besar yang memerlukan antara 

muka dengan perkakasan dan perisian melalui ‘central processing unit’ (CPU) 

menghadkan kemudahalihan keseluruhan sistem pengesan bio. Oleh itu, matlamat 

kajian ini adalah untuk menyelidiki kesesuaian ‘polymethylmethacrylate’ (PMMA) 

sebagai substrat bahan asas untuk pembikinan filem SU8 dan aplikasi bahan bukan 

serasi bio, ‘flame retardant 4’ (FR4) sebagai substrat bahan asas untuk pengesan bio 

DNA tanpa label. Satu litar bacaan mudah alih, dua pemuka papan litar bercetak dan 

bersaiz poket untuk pengesanan DNA melalui kaedah pengukuran arus voltammetri 

berkitar (CV) telah dibangun untuk disepadukan dengan pengesan berasaskan FR4. 

Emas (Au) telah difabrikasi kepada seluruh permukaan FR4 dan pencirian pengesan 

berasaskan FR4 untuk melaksanakan proses berbalik CV telah disahkan oleh 

beberapa siri analisis. Kumpulan thiol pada akhir 3'-ssDNA digunakan untuk 

memegunkan DNA dengan permukaan Au dan bertindak sebagai DNA prob. Dua jenis 

DNA sasaran yang terdiri daripada urutan asas nukleo pelengkap dan urutan asas 

nukleo bukan pelengkap telah digunakan untuk menyiasat mekanisme hibridisasi 

dengan DNA prob. Hasilan daripada kajian ini mendapati kejayaan penggunaan PMMA 

sebagai bahan asas untuk fabrikasi acuan SU8 apabila dibakar di dalam oven pada 
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suhu 90°C dan 70°C. Ianya juga mendapati bahawa fabrikasi Au boleh dilakukan 

dengan penggunaan Cu yang bebas oksida sebagai lapisan lekatan pada FR4. Saiz 

kawasan elektrod kaunter (CE), elektrod kerja (WE) dan elektrod rujukan (RE) masing-

masing perlulah berkeluasan 6.25 mm2, 0.581 mm2 dan 1.04 mm2 demi mencapai 

hubungan pasangan redoks berbalik bersamaan dengan satu dan memastikan 

keutuhan pengesan ini untuk digunakan dalam cecair 10 mM K3Fe(CN)6 yang 

dilarutkan dalam cecair 0.1 M KCl. Bahan berasaskan FR4 untuk pelekatan dengan 

PDMS didapati menghasilkan kekuatan yang paling kuat iaitu 55 kPa, apabila dibiarkan 

kering dalam suhu bilik pada 25°C selama 6 jam. Fabrikasi bahan pengesan 

berasaskan FR4 menunjukkan perbezaan pada nilai arus puncak bagi hanya 

permukaan Au, pemegunan DNA dan penghibridan DNA dengan menggunakan 

peralatan CV komersil dan litar bacaan mudah alih dan bersaiz poket yang telah 

dibangunkan didalam kajian ini. Oleh itu, seluruh sistem yang lengkap terdiri daripada 

pengesan barasaskan FR4 dan litar bacaan bersaiz poket telah berjaya dibangunkan 

dalam kajian ini untuk tujuan pengesanan DNA.   
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DESIGN, FABRICATION AND CHARACTERIZATION OF FR4-BASED DNA LABEL 

FREE SENSOR INTEGRATED WITH POCKET-SIZED READOUT CIRCUITRY 

 

ABSTRACT 

 

Silicon, glass and ceramic are commonly base substrates used in SU8 film 

fabrication and DNA biosensor. All these substrates are biocompatible, expensive, hard 

and brittle, difficult for drilling and dicing, requires expensive equipments and complex 

methodology of fabrication. Microcracks are often found on SU8 film due to the large 

gap of thermal expansion coefficient (TEC) between silicon/glass and SU8. In addition, 

the use of bulky equipments and accessories that must be interfaced with hardware 

and software through a central processing unit (CPU) limits the portability of the whole 

biosensor system. Hence, the aim of this work is to investigate on the suitability of 

polymethylmethacrylate (PMMA) to be used as a base substrate for SU8 film 

fabrication and the application of a non-biocompatible material, flame retardant 4 (FR4) 

as a base substrate for a label free DNA biosensor. A portable and handy readout 

circuitry with double-sided pocket-sized of PCB for DNA detection through current 

measurement cyclic voltammetry (CV) method has been developed and integrated with 

the FR4-based fabricated sensor. The Au is fabricated throughout all conducting tracks 

on the FR4 and the characterization of the fabricated FR4-based sensor to perform CV 

reversible process is confirmed by a series of analysis. The thiol group at the 3’-end of 

ssDNA is used to link the DNA with the Au surface and act as probe DNAs. Two types 

of target DNAs which consist of complementary nucleobase sequence and 

noncomplementary nucleobase sequence are used to investigate on the hybridization 

mechanism with the probe DNAs. The outcome of this work found that the use of 

PMMA as a base substrate for SU8 mold fabrication is successfully achieved when it is 

hard-baked and soft-baked in the oven at 90°C and 70°C, respectively. It is found that 

the fabrication of Au has been made possible by the use of oxide-free Cu as an 
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adhesion layer on the FR4 substrate. The area sizes of CE , WE and RE are found to 

be 6.25 mm2, 0.581 mm2 and 1.04 mm2, respectively, in order to achieve the unity 

reversible redox relationship and to ensure the sensor’s reliability for 10 mM K3Fe(CN)6 

solution in 0.1 M KCl. The FR4-based PDMS adhesive bonding is revealed to produce 

the strongest strength, 55 kPa, when left to dry in room temperature of 25°C for 6 

hours. A fabricated FR4-based sensor denoted differences in the values of peak 

currents for bare Au, DNA immobilization and DNA hybridization using commercialized 

CV apparatus and a portable, pocket-sized readout circuitry that is developed in this 

work. Hence, the whole complete system consists of fabricated FR4-based sensor and 

the pocket-sized readout circuitry, which is successfully developed in this work for the 

DNA detection purpose. 
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CHAPTER 1 

INTRODUCTION 

 

1 Background 

 Cancer and cardiovascular diseases rank as the top three conditions of 

hospitalisation worldwide (Anderson & Chu, 2007). Globally, breast cancer is the most 

common cancer among women, comprising of 23% of all female cancers that are 

newly diagnosed in more than 1.1 million women each year (Parkin et al., 2005). More 

than 411,000 deaths result from breast cancer annually (Stewart & Kleihues, 2003). In 

Malaysia, the statistical data for the year 2006 reflects that breast cancer is a major 

disease that leads to fatality and affected 39.3 per 100,000 populations (Female Breast 

Cancer, 2006). Diet, stress, lack of exercise, obesity, high blood pressure, diabetes 

and high cholesterol are among factors attributed to this disease (Chong, 2010). 

Unfortunately, many patients are unaware that they are suffering from these diseases 

until it is too late. Thus, the best solution is through early detection. Early detection 

mechanism can be used to greatly reduce the cost of patient care associated with 

advanced stages of many diseases (Morrison et al., 2008). As an example, early 

detection of cancer will increase the rate of 5-year relative survival to 95 percent 

(American Cancer Society, 2013).  

 Early detection mechanism involves a routine of laboratory tests on small 

samples of urine and blood (Guller, 2006). Currently, cancer can be detected by 

monitoring the concentration of certain antigens present in the bloodstream other than 

bodily fluids or through tissue examinations (Morrison et al., 2008). This can reassure if 

there are any early signs of diseases such as kidney problems, diabetes and 

cardiovascular problems. Early detection enables the patient to be given the correct 

and optimal treatment which includes determining and avoiding substances that are 

causing the diseases to become more severe (The Star, 2012).         



2 
 

Conventional diagnostic methods are expensive, burdensome to patients and 

time consuming in which they require separated steps, highly trained personnel for 

laboratory analysis, costly laboratory equipments and circumscription to state-of-the-art 

laboratories (Belluzo et al., 2007). The emergence of biosensors abolished all these 

drawbacks of conventional diagnostics. A biosensor is a device that utilizes specific 

biochemical reactions mediated by isolated enzymes, immunosystems, tissues, 

organelles or whole cells to detect chemical compounds usually by electrical, thermal 

or optical signals.  

 

 

1.1 Problems and Motivations  

The use of silicon or glass as a base substrate for SU8 film fabrication has been 

widely reported (Wong et al., 2005) and (Edwards et al., 2000). However, it has been 

reported that microcracks are often found on fabricated SU8 film (Truong & Nguyen, 

2003) due to large gaps of thermal expansion coefficients (TEC) between silicon/glass 

and SU8. The TEC of silicon is 3.2 ppm/°C (Watanabe et al., 2004), glass plate is 8.6 

ppm/°C (Makishima & Mackenzie, 1976) and SU8 is 52 ppm/°C (Chronis & Lee, 2005). 

Silicon, glass and ceramic are common materials used as a base substrate for 

gold (Au) fabrication by the means of immobilization with thiol group at the 5’-end of 

probe DNAs (Choi et al., 2005, 2006a), (Lee & Lee, 2004), (Choi, et al., 2006b) and 

(Cho & Pak, 2002). These substrates are biocompatible and not readily available in the 

market. Other than that, silicon and glass are hard and brittle, thus difficult for drilling 

and dicing. It requires complex methodology and equipments such as deep reactive ion 

etching (DRIE) and diamond-coated cutter for dicing.    

Commercialized biosensor screen printed electrode (SPE) i.e; model 220AT 

produced by DropSens® utilizes different types of metals between sensing electrodes 

and terminal electrodes. DropSens® utilizes silver at the exposed terminal layer and Au 

at the sensing electrodes. The Material International Anneal Copper Standard (IACS) in 
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Metal Statistics claimed that the silver conductivity is 105%, whereas the conductivity of 

Au is 70%. The Chemical Rubber Company (CRC) Handbook has listed the electrical 

resistivity for silver and Au to be 15.87 nW.m and 22.14 nW.m, respectively. The 

differences in this conductivity and resistivity data proved that there is a possibility of a 

correlation of current measurement for different metals fabricated on the same 

electrode from the sensing chamber to the terminal.       

The DNA-based biosensor system incorporates the sensor device and 

measurement readout circuitry. Biosensor companies are selling their parts separately 

and therefore, users have to purchase extra accessories to integrate with the sensor 

strips. Thus, it will cause an increase in the budget for the biosensor system. Moreover, 

the use of bulky accessories that must be interfaced with the computer limits the 

portability and in-situ measurement on the biorecognition elements (Esteban et al., 

2011).   

.     

 

1.2 Research Objectives  

    Based on the problem statements that have been identified, it is clear that there 

are gaps in the development of biosensor technologies. Therefore, the objectives of 

this work are: 

(i) To study on the suitability of polymethylmethacrylate (PMMA) to be used 

as a base substrate to replace silicon and glass for SU8-10 mold and 

polydimethylsiloxane (PDMS) fabrication.  

The PMMA characterization via different grayscale values ranging from 

0% (solid black) to 100% (solid white) is used to evaluate the 

percentage on the square structure formed through the mask and mold 

perimeter and area measurement.    

(ii) To evaluate the suitability of non-biocompatible material, Flame 

Retardant 4 (FR4) for gold (Au) fabrication using thermal evaporator and 
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wet etching techniques throughout all conducting tracks from the 

sensing layer to the terminal layer.  

The analysis is conducted in relation to the CV reversible redox analysis 

and Randles-Sevcik equation.  

(iii) To develop a portable, pocket-sized of double-sided printed circuit board 

(PCB) readout circuitry. 

The readout circuitry is able to be used for current measurement and 

acts as a voltage controller to be interfaced with FR4-based sensor for 

the application of cyclic voltammetry (CV) method. 

(iv) To test and validate the integrated system for DNA detection through 

DNA immobilization and hybridization process. 

 

 

1.3 Originality of the Research Works  

 A total of 3 main contributions have been carried out in this work. First, the use 

of polymethylmethacrylate (PMMA) as a base substrate for the SU8-10 mold 

fabrication. The PMMA has been chosen due to its properties that can be easily cut or 

drilled, biocompatible, transparent and its TEC value which is near to SU8-10 

compared to silicon wafer or glass slides. The fabrication technique of SU8 mold on 

PMMA substrate has been carried out and demonstrated in details in this work. 

Secondly, the use of FR4 as a base substrate in the biosensor development has been 

demonstrated in this work. None of the published works reported on the application of 

FR4 in the biosensor fabrication. A standard fabrication of Au throughout the FR4 

surface from the sensor layer to the terminal layer has been implemented by using a 

cost effective technique of thermal evaporation and wet etching. The characterization 

of fabricated FR4-based biosensor was further investigated using the CV analysis via 

the commercialized micro(µ)AutolabIII from Metrohm, KM Utrecht, The Netherlands, 

using the software package NOVA 1.4. Finally, the pocket-sized readout circuitry is to 
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be integrated with the fabricated FR4-based biosensor that has been developed in this 

work. A complete biosensor system from the sensor device to the readout circuitry 

system is the final outcome of this research work. The incorporation of a stable, 

efficient and portable biosensor system encourages the possibility of commercial 

applications significantly.  

 

 

1.4 Thesis Organization  

This thesis is organized in 7 chapters. Chapter 1 presents an overview of flame 

retardant and their applications. A review on the DNA labelling and label free sensor is 

presented in section 1.1. It is then followed by problem statements, research objectives 

and ends with the highlights on the originality of the current work.  

Chapter 2 reviews in detail the fundamental concepts, current works that have 

been carried out and comparisons among biosensor techniques specifically in 

electrochemical biosensors. Then, section 2.3 discusses on the basic biochemical 

terms of redox and ferricyanide mediator. In this section, the theoretical interpretation 

of electrons’ movements towards the Au surface reaction during bare Au, DNA 

immobilization and DNA hybridization is explained. Section 2.4 reviews on the 

materials that have been employed in biosensor fabrication; i.e., glass, silicon, ceramic, 

PMMA, SU8 and PDMS. The following sections outline the current development of 

PDMS adhesive bonding methodology, materials that have been used in electrode 

fabrication and screen printing technique that has been applied in the commercialized 

screen printed electrodes from previous works. Section 2.8 signifies on the readout 

circuitry which is designed and developed to be interfaced with the fabricated 

biosensor. The electronic component functionalities and circuit operation are also 

explained and presented.   

Chapter 3 identifies the design methodology that will be carried out in this work. 

This includes apparatus and techniques for sensor fabrication which will utilize FR4 as 
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a base substrate, apparatus and chemical analysis techniques for the DNA, fabrication 

of portable readout circuitry and ends with the research flowchart.       

Chapter 4 briefly discusses on the materials and methods for common reported 

techniques and substrates, glass and the proposed FR4-based fabrication technique 

that has been implemented in this work. The sensor fabrication technique begins with 

the mask design, mask preparation, substrate preparation and sensor patterning. This 

technique includes software that will be used in film processing, substrate cleaning 

procedures and soft lithography methodology on the sensor patterning. Then, the mold 

preparation technique will be elaborated. A technique on the use of PMMA as a based 

substrate for SU8 fabrication will be presented. The procedures include the PMMA 

preparation, SU8 coating and soft lithography on ultra violet (UV) exposure. A 

fabrication on PDMS relief and adhesive bonding technique performed in this work is 

straightforward and simple, yet produces a strong irreversible seal. The fabrication 

techniques of various adhesion metals such as the Ti/Au, Cu/Au with oxide/sulphide 

layer, Cu/Au without oxide/sulphide layer and Cu/Ni/Au have also been investigated for 

its suitability with FR4-based.    

Chapter 5 studies on the adhesive bonding on PDMS relief in terms of the 

quality and shear strength test for 3 types of substrates; i.e., glass, FR4 and FR4 

coated with a solder mask. The American Standard Test Measurement (ASTM) will be 

conducted in order to determine the stress value. The discussion on the results will be 

presented in detail. The effect of surface roughness will be concluded in the last 

section. The experiments will be carried out for 3 types of surface to prove the 

influence on the surface roughness towards PDMS to trap air bubbles. Section 5.2 

reports on the CV analysis that has been performed on the well known DNA label free 

sensor of glass/Titanium (Ti) which has been reported in many works and journals. The 

analysis includes a review on the fabrication technique, effect on the area size of 

electrodes and effect of the insulated layer towards bare Au, DNA immobilization and 

DNA hybridization. All the results obtained from these analyses will be utilized for the 
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proposed FR4-based substrate sensor. The reliability test has been performed on the 

proposed FR4-based sensor. 3 types of CV characterization; i.e., peak potential 

separation, peak current ratio and peak current function in relation to the Randles-

Sevcik equation which have been conducted and presented in this chapter. Chapter 5 

ends with the application of fabricated FR4-based sensor for DNA detection analysis in 

which the oxidation peak current and reduction peak current have been performed in 4 

conditions; i.e., bare Au, after DNA immobilization, after DNA complementary 

hybridization and after DNA non-complementary hybridization.  

Chapter 6 explains on the built-in op-amps that will be utilized as a potentiostat 

to be able to integrate with the fabricated FR4 sensor and will be applied as an 

electrochemical measurement for the CV analysis. The flow on the proposed portable 

readout circuit operation and all the block diagrams will be inferred in this chapter. The 

ORCAD version 9.1 software is applied for the circuit design and fabrication. 

Comparisons between the fabricated FR4 based sensor and the commercialized model 

220AT DropSens® on CV analysis by using the fabricated portable circuit will be 

presented. The comparisons include the mediator of distilled water (dH2O) and 

ferricyanide redox reagent. In the last section, the experimental analysis and results of 

the proposed FR4 based sensor integrated with the portable readout circuitry towards 

all the conditions of DNA immobilization, the control analysis by using non-

complementary DNA target of DNA non-hybridization and finally, the complementary 

DNA target of DNA hybridization.          

Finally, conclusions are drawn and contributions of this work are highlighted in 

Chapter 7. A number of recommendations are listed for future research in improving 

this current work at the end of this chapter. 
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CHAPTER 2 

THEORY AND LITERATURE REVIEW 

 

2 Introduction 

This chapter reviews on the previous works and research activities that have 

been conducted in the biosensor field. The focuses are mainly on the theoretical DNA, 

DNA detection methods, the growth of biosensor technologies, the properties and 

applications of common materials used for biosensor fabrication, polydimethylsiloxane 

(PDMS) adhesive bonding methods, other common substrates used for biosensor 

electrodes, measurement methods, types of transducer and readout circuitry. Sections 

2.1 and 2.2 describe the DNA theory and detection methods. Section 2.3 elaborates on 

the property of flame retardant 4 (FR4) and its application whereas Section 2.4 

explains in detail the biosensor and its history from as early as 1960s to date. 

Meanwhile, Section 2.5 views the definition of biosensor technology and its 

classification and types of system while Section 2.6 demonstrates the chemical 

reaction on ferricyanide redox reaction which focuses on the electron transfer 

mechanism and its mediator, DNA affixation method on the transducer biolayer and 

surface barrier morphology. Section 2.7 highlights on the materials that have been 

utilized in sensor fabrication mainly on the reported materials that have been used for 

base substrate. Section 2.8 explores the well-known method for polydimethylsiloxane 

(PDMS) sealing that required the use of oxygen plasma to change the PDMS surface 

characteristic from hydrophobic to hydrophilic. Recently, the use of oxygen plasma has 

been eliminated. The trend of using the adhesive bonding has changed to the use of 

chemical substances. Section 2.9 views on the materials that are commonly used as 

an electrode surface. Section 2.10 lists a few names of commercialized companies that 

produced sensor electrodes based on the screen printing technology. These screen 
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printing electrodes have been utilized as non-biological materials for their electrode. 

Section 2.11 deals with the electronic circuit used for the current measurement by 

using CV method known as potentiostat. The function of the potentiostat circuit 

diagram is explained in details in order to comply with the concept of redox reaction. 

Section 2.12 ends with discussion. 

 

 

2.1 DeoxyriboNucleic Acid (DNA)  

Nucleic acids interaction of DNA strands or known as DNA detection has been 

a major scientific interest due to its accuracy (Schiffman et al., 1995) and (Park et al., 

2011), cheap (Hoogendoorn et al., 2000), fast (Ansorge, 1985) and reliability (Quint et 

al., 1995) and (Schiffman et al., 1995). DNA detection has been widely applied in the 

field of paleontology (Pereira, 2008) and (Kapitonov & Jurka, 2004), archaeology 

(Suzuki et al., 2010), molecular biology (Brown, 2001) and (Saghatelian et al., 2003), 

medical diagnostics (Li et al., 2011) and (Mathur et al., 2008) and forensic analysis 

(Heller, 2002).  

 Advances in DNA detection technology allow these nucleotides sequence to be 

investigated through the hybridization on base-pairing method of DNA probing and 

target. DNA sample contains white blood cells which are synthesized using detergent 

and all the useable DNA is separated from the extra cellular material (Luftig & Richey, 

2001). These DNA must be denatured using heat or chemicals. Denaturing is a 

process by which the hydrogen bonds of the original double-stranded DNA are broken, 

leaving a lot of DNA stranded in which their bases are available for hydrogen bonding 

(Basu, 1968).       

 Scientists use this stranded DNA as probes or known as markers DNA to 

investigate on the other single stranded DNA as targets and hydrogen binding which 

will be formed to a complementary DNA sequence in the sample. Human DNA is 
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different from other living organisms in terms of sequence and characteristics. Another 

useful application on DNA profiling is the genetic fingerprints of parents and children. A 

child’s genetic fingerprint is made of 50% of the father’s genetic information and 50% of 

the mother’s genetic information (Balding, 1995).  

Another field that had attracted researchers to enhance the biosensor device 

system is in terms of readout circuitry and system identification for the fabricated 

sensor. Ayers et al. (2007) developed a complementary metal oxide semiconductor 

(CMOS) silicon based potentiostat circuit and Lee et al. (2010) applied DNA sensor 

chip with capacitive readout circuitry. However, all these previous works (Ayers et al., 

2007) and (Lee et al., 2010) required the use of micromachining process and 

complexity of fabrication which are not typically available in the low-cost standard 

microelectronic processes. This work aims to develop a simple structure of Flame 

Retardant 4 (FR4) based substrate DNA label free sensor and integrated with the 

pocket-sized readout circuitry, in which the current output reading will be able to be 

detected via multimeter.        

 

 

2.2 DNA Detection Methods 

  DNA detection method can be classified into 2 types, DNA labelling and DNA 

label free. The differences and details on these DNA are described in Sections 2.2.1 

and 2.2.2.   

 

2.2.1 DNA Labelling 

 DNA labelling enables the location of a particular DNA molecule i.e., on a 

nitrocellulose or nylon membrane, in a chromosome or in a gel to be determined by 

detecting the signal emitted by the marker. Some of the examples for DNA labelling 

are:  
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(i) southern hybridization,  

(ii) fluorescent in situ hybridization (FISH),  

(iii) DNA sequencing and  

(iv) chemiluminescent.  

Radioactive markers are frequently used for labelling DNA 

molecules. Nucleotides are synthesized when one of their phosphorus atoms is 

replaced by 32P or 33P, one of the oxygen atoms in the phosphate group is replaced 

with 35S and one or more of the hydrogen atoms are replaced with 3H (Brown, 2002) as 

shown in Figure 2.1. However, radioactive markers are hazardous to the human health 

and environment. Therefore, fluorescent markers such as FISH, DNA sequencing and 

chemiluminescence have become popular as alternatives for DNA labelling. One major 

disadvantage of chemiluminescence is that the signal must be formed by treatment 

chemical substances i.e., the use of dioxetane towards enzyme alkaline phosphatise to 

produce chemiluminescent emission (Dodeigne et al., 2000).  

 

 

(a) 
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(b) 

Figure 2.1: The structure of radioactive markers displacement and four bases 
in DNA for nucleotides arrangement (Brown, 2002). (a) A structure 
of radioactive markers displacement in nucleotides. (b) The original 
structure of four bases nucleotides in DNA. 

   

2.2.2  DNA Label Free  

On the contrary, label free DNA requires no tagging or labelling in the 

nucleotides arrangement. Recently, a lot of reported works in DNA detection are 

focusing on the development of “label-free” or “self-labelled” in which the detection 

readouts can be measured directly from the analyte without additional target 

manipulation. Some of the reported works carried out by using these methods were 

optical sensors employing the molecular beacons (Tyagi & Kramer, 1996), (Dubertret 

et al., 2001), (Steemers et al., 2000), (Tsourkas et al., 2002) and (Fang et al., 1999), 

electrical (Fan et al., 2003), (Pan & Rothberg, 2005), (Drummond et al., 2003) and 

(Erdem et al., 2006), surface plasmon-based (Mannelli et al., 2005) and (Yao et al., 

2006) and microgravimetric DNA detection systems (Janshoff et al., 2000) and (Su et 

al., 2005). This technique of label free DNA immobilization and hybridization has been 

utilized in this work.   
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2.3 Flame Retardant 4 (FR4) and Their Applications  

FR4 is a composite material comprises of woven fiberglass cloth with an epoxy 

resin binder that is flame resistant. FR4 glass epoxy is a versatile with a high-pressure 

thermoset plastic laminate. FR4 glass epoxy possesses a good dielectric strength  

with a value of 20 MV/m (Colotti, 2005) with nearly zero water absorption (0.15%) 

(Colotti, 2005). FR4 is an electrical insulator with mechanical shear strength of 22k psi 

(Colotti, 2005).  

FR4 is the most commonly used as a printed circuit board (PCB) material. The 

FR4 has also been used as electromagnetic energy harvesting for body-worn sensor 

(Hatipoglu & Urey, 2010) or body implantable devices (Fischell et al., 2003) due to its 

low Young’s modulus (15-20 GPa) which is ten times smaller than silicon (130-188 

GPa) (Hopcroft et al., 2010). FR4 is also a broadband due to its high intrinsic damping 

and these criteria make it suitable for energy scavengers to operate in a broadband 

environment (Hatipoglu & Urey, 2010). Figure 2.2 depicts a scanning electron 

micrograph (SEM) of FR4 board cross-section.  

 

 

 

Figure 2.2: SEM of FR4 board cross-section (‘The secret life of FR4 boards’, 2011). 

 

Resin Fiberglass 



14 

 

   

2.4 Biosensor 

  Early definition of the biosensor refers to any device that uses specific 

biochemical reactions to detect chemical compounds in biological samples. One of 

such examples is the first biosensor which is used to monitor glucose concentration in 

blood samples by using an enzyme-coated oxygen electrode by Clark and Lyons 

(1962). The diagram on this biosensor is illustrated in Figure 2.3.  

      

 

 

Figure 2.3: Biosensor schematic diagram on the first biosensor invented by 
Clark and Lyons (Newman & Turner, 2005). 

 

 According to the International Union of Pure and Applied Chemistry (IUPAC) in 

1999, a biosensor is a self-contained integrated device that is capable of providing 

specific quantitative or semi-quantitative analytical information using a biological 

recognition element which is in direct spatial contact with a transduction element as 

shown in Figure 2.4. In other words, a biosensor is a device that uses specific 

biochemical reactions mediated by isolated enzymes, immunosystems, tissues, 
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organelles or whole cells to detect chemical compounds usually by electrical, thermal 

or optical signals.  

 

 

 

Figure 2.4: Principle of biosensor as defined by IUPAC (IUPAC, 1999). 

 

The biosensor component defined by IUPAC is illustrated in Figure 2.5 

(Maheshwari et al., 2010). A transducer (b) is the key part of a biosensor which makes 

a physical change accompanying the reaction from either one of the followings: 

1. the heat output (or absorbed) by the reaction; such as thermistor 

biosensors, 

2. changes in the distribution of charges causing an electrical potential to 

be produced; such as potentiometric biosensors, 

3. movement of electrons produced in a redox reaction; such as 

amperometric biosensors,  
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4. light output during the reaction or a light absorbance difference between 

the reactants and products; such as optical biosensors, 

5. effects due to the mass of the reactants or products; such as piezo-

electric biosensors.  

 

   

 

Figure 2.5: Schematic diagram showing the main components of a biosensor  
(Maheshwari et al., 2010). Biocatalyst (a) converts substrate (S) to  
product (P). Transducer (b) converts it to electrical signals. The                         
output from the tranducer is amplified (c), processed by electronic                         
microprocessor (d) and display (e). 

    

An amperometric biosensor is the leading biosensor which is extensively used 

in the current research development and the most popular applications in biosensor 

systems due to its high sensitivity and wide linear range (Maheshwari et al., 2010). It 

combines the selectivity of the enzyme for the recognition of a given target analyte with 

the direct transduction of the rate of the biocatalytic reaction into a current signal, 

allowing a rapid, simple and direct determination of various compounds (Wang, 1999). 

Table 2.1 summarizes all the listed materials that have been implemented for the 

transducer.  
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Table 2.1: Materials and Substrate for Transducer Biolayer (Lee, 2000). 

No 
 

Types of 
Biosensor 

Materials and substrate that have been used and 
reported in published journals 

1 Amperometric 
 

Electrode : Carbon, Platinum (Pt), Gold (Au), 
Nickel (Ni), Silver (Ag), Silver Chloride (AgCl) 
 
Receptor : Carbon paste, Electron Mediator, Lipid, 
Conducting Polymer 
 
Coated Wire : Pt, Cu, Fe, Polyvinyl chloride (PVC) 
 

2 
 

Potentiometric Ion-selective Electrode : Glass, PVC, Ionopore 
 
Field Effect Transistor : Polymeric Encapsulant, p-
n junction, Silicon Dioxide (SiO2), Silicon Nitrate 
(Si3N4) 

3 
 

Piezo-electric Surface Acoustic Wave/Gravimetric Detector : 
Silicon (Si), Platinum (Pt), Gold (Au), Quartz 
 
Surface Plasma Detector : Quartz, Glass, Silver 
(Ag), Gold (Au)  
 

4 Optical Optical Fiber Waveguide : Quartz, Glass 
 

5 Calorimetric Thermistor : Metal Couple, Oxide, Cantilever 
 

 

2.4.1 Three Generations of Biosensors 

  Biosensors can be classified into three generations according to the attachment 

method of bio-receptor to the transducer. These three generations are illustrated in 

Figure 2.6. These three generations are described below: 

(i) The first generation biosensor consists of the reaction diffuses to the 

transducer and causes an electrical response.  

(ii) The second generation biosensor involves specific ‘mediators’ between 

the reaction and transducer in order to amplify response.  

(iii) The third generation biosensor denotes the reaction itself causing the 

response and no product or mediator involved. This third generation is 

also known as direct electron transfer (DET) between the redox-active 

bio molecule and electrode surface.  
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Figure 2.6: Three biosensor generations (Lee, 2000).  
 

Three generations of amperometric biosensors are described in Figure 2.7. 

Figure 2.7(a) shows schematically the first generation of amperometric biosensor which 

utilizes the hydrogen peroxide (H2O2) and oxygen (O2) to produce reaction. Figure 

2.7(b) reflects the second generation in which the ferrocene acts as mediator to 

transfer electrons that have been produced to the electrode’s surface. Finally, Figure 

2.7(c) displays the third generation of direct electron transfer (DET) process that 

utilizes the electrons produced in the reaction.    

BIOCHIP 
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(a) 

 

(b) 

 

(c) 

Figure 2.7: Three generations of amperometric biosensors (Mousty, 2004). 
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2.5 Biosensor Technologies 

  Biosensor technologies comprise of four basic systems: 

1. biological or physiological system in which refers to the analyte; 

2. instrumentation or sensing system in which it refers to the instrument; 

highly accurate sensors; 

3. electrical system in which it refers to the battery and circuitry; 

4. electronic system in which it manages the conversion to an analog or 

digital display. 

 From this basic platform, different technologies have been constructed to 

develop biosensors for specific application. Figure 2.8 describes the key biosensor 

technologies that are currently in use. From Figure 2.8, the electrochemical, 

piezoelectric and optoelectronic biosensors have been proven to show growth in 

technology improvement.  

  

 

Figure 2.8: Different types of biosensor technologies (Thusu, 2010). 
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2.5.1 Electrochemical Biosensors 

  Majority of the reported biosensor technologies are based on electrochemical 

biosensors (Meadows, 1996). Electrochemical-based has been reported in literature by 

Tothill (2001), D’Orazio (2003), Bakker & Telting-Diaz (2002) and Bakker (2004). 

Stefan et al., (2000) and Warsinke et al. (2000) reported that the electrochemical-

based biosensor was the most commonly cited method not only in the research 

literature but also in the application of clinical analysis. They claimed that the 

increasing application of electrochemical-based device was due to its improved design, 

stability and promising alternative as compared to the existing laboratory equipments. 

Wang (2002) recommended the application of electrochemical-based device for future 

large-scale generic testing. Gooding (2002) stated that the advantages of 

electrochemical based devices include low cost; high sensitivity; independence from 

solution turbidity; able for miniaturisation; portable and low power consumption. 

Guilbault et al. (2004) added the advantage of electrochemical in terms of response 

time which is almost the same as optical but faster than piezoelectric biosensors. 

Interestingly, Spichiger-Keller (1998) reported that electrochemical biosensor 

performance in terms of response and sensitivity is better when miniaturised (i.e., micro 

dimensions such as microelectrodes) which is contrary to the performance of optical 

biosensors.  Electrochemical biosensors can be classified into amperometric (current 

measured); potentiometric (voltage measured); impedance (resistance and 

capacitance measured) and conductometric (conductivity measured). 

     

2.5.1(a) Amperometric 

  Amperometric involves three electrodes system consisting of working electrode 

(WE), reference electrode (RE) and counter electrode (CE), which are well-known and 

extensively used in electrochemistry. An appropriate value of potential is applied at WE 
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to facilitate the transfer of electrons, RE measures and controls the WE potential 

whereas CE supplies the appropriate current needed by WE.   

The fundamental principle of all electrochemical sensors is the transfer of 

electrons to or from the conduction band of an electronic conductor (usually metal or 

carbon) to or from a redox active species at the electrode surface (Patel et al., 2007). 

Oxidation involves the loss of electrons from the highest occupied molecular orbital 

whereas reduction involves electrons being injected into the lowest unoccupied 

molecular orbital. Figure 2.9 denotes the transfer of electrons to or from the gold (Au) 

surface as applied in this research. 

 

 

 

 

 

 

Figure 2.9: Oxidation and reduction of electrons from gold (Au) surface. 

  

Au is used as a single layer for all three electrodes, i.e., WE, CE and RE. Gau 

et al. (2005) in his work reported on the use of Au as the reference electrode due to its 

low voltage difference which can be maintained for short periods of time and its 

properties of malleability and durability simplify fabrication and allow the use of 

extremely thin electrodes.  

An electrochemical measurement method called cyclic voltammetry involves 

cycling the potential of an electrode and measuring the resulting current. The 

controlling potential applied across these two electrodes is an excitation signal. 

 Cost effective methods such as soft lithography by using thin film of photoresist 

mask expands the micro size design and Au fabrication technique on various material 

e- 

e- e- 

oxidation 

reduction e- e- 
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substrates. Morita et al. (1988) reported on the use of Chromium (Cr) as an adhesive 

layer for Au evaporation on the silicon wafer substrate and Triroj et al. (2006) 

introduced the adhesion layer of Titanium (Ti) for Au evaporation on the glass 

substrate.      

 

2.5.1(b) Comparison Among Electrochemical Biosensors Techniques  

Table 2.2 summarizes the comparison of commonly used biosensor 

technologies as listed previously in Figure 2.8. As shown in Table 2.2, amperometric 

provides the best solution and approach compared to other methods of biosensors.  

 

Table 2.2: Comparison on various biosensor technologies as described in 
Figure 2.8 (Parkinson & Pejcic, 2005). 
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Amperometric  
 

Cheap Yes Very 
Good 
 

Excellent Indirect Free from 
sample 
turbidity & 
versatile 
 

Potentiometric 
 

Cheap Yes Very 
Good 
 

Very 
Good 
 

Indirect Free from 
sample 
turbidity 
 

Fluorescence Expensive Difficult Very 
Good 

Excellent Indirect Time 
consuming 
 

Electrochemical 
Impedance 
Spectroscopy 
 
 

Expensive No Good Good Direct Free from 
sample 
turbidity & 
versatile 
 

Surface Plasmon 
Resonance 
 

Expensive No Good Good Direct Versatile 

Chemilu 
minescence 

Expensive Difficult Very 
Good 
 

Excellent Indirect Limited to 
certain 
samples 
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Piezoelectric Expensive  
 

No Good Very 
Good 
 

Direct Free from 
sample 
turbidity 
 

Thermometer / 
calorimeter 

Cheap Yes Poor Good Direct Limited 
capability 
 

 

 
2.6 Redox Reaction 

Redox reaction is the reaction that involved with electrons transfer between 

species. It is formed by the concepts of reduction and oxidation. An oxidation reaction 

and reduction reaction occur simultaneously to form a whole redox reaction. Figure 

2.10 illustrates the process.  

· Oxidation is the loss of electrons or an increase in oxidation state by a 

molecule, atom or ion. 

· Reduction is the gain of electrons or a decrease in oxidation state by a 

molecule, atom or ion. 

 

 
Figure 2.10: Passage of electrons from compound A to compound B (Purvis et 

al., 2003). 
 

Reduction 
Oxidation + e- → Product 

(Electrons gained;  
Oxidation number decreases) 

 

Oxidation 
Reductant → Product + e- 

(Electrons lost;  
Oxidation number increases) 

 

Reduced compound A 
(reducing agent) Oxidized compound B 

(oxidizing agent) 
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