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KESAN ASID ORGANIK DALAM DIET KE ATAS PRESTASI 

PERTUMBUHAN TILAPIA HIBRID MERAH, Oreochromis sp. DAN 

PERENCATAN PATOGEN IKAN TERPILIH 

 

ABSTRAK 

Asid organik yang berantai pendek berpotensi untuk menjadi pengganti 

antibiotik dengan berfungsi sebagai profilaktik kepada penyakit bakteria, dan juga 

meningkatkan pertumbuhan ikan. Tiga kajian yang berkaitan telah dijalankan. Kajian 

pertama direkabentuk untuk menilai kesan antibakteria bagi pelbagai asid organik 

yang berantai pendek terhadap Aeromonas hydropilia untuk menghasilkan satu 

campuran asid organik (OAB) yang unik bagi haiwan akuatik. Aktiviti in vitro 

antibakteria OAB terhadap A. hydropilia dan Streptococcus agalactiae telah 

dibandingkan dengan produk komersial asid organik, kalium diformate (KDF) dan 

antibiotik yang sering digunakan oksitetrasiklin (OTC). Semua asid organik yang 

dikaji dapat menghalang pertumbuhan A. hydropilia sepenuhnya pada kepekatan 

0.3% dan ke bawah. Asid formik merupakan asid yang paling cekap dalam merencat 

pertumbuhan A. hydrophila, diikuti oleh asid tartarik, asid laktik, asid propionik, asid 

sitrik dan asid malik. Hasil kajian juga menunjukkan bahawa OAB mempunyai 

aktiviti antibakteria yang lebih kuat daripada KDF atau OTC apabila kepekatan 0.2% 

atau lebih tinggi digunakan. OAB juga memaparkan aktiviti bakterisid yang kuat 

terhadap S. agalactiae. Dalam bahagian kedua kajian ini, dua ujikaji telah dijalankan 

untuk menyelidik aplikasi praktikal asid organik dalam industri akuakultur. Dalam 

ujikaji kedua, ikan diberi diet ujikaji selama 14 minggu untuk menentukan kesan 

pemakanan asid organik. Diet ujikaji telah ditambah dengan 0, 1, 2 atau 3 g kg-1 

OAB, atau dengan 2 g kg-1 KDF dan diberi makan kepada kumpulan triplikat ikan 

tilapia hibrid merah (Oreochromis sp.). Selepas 14 minggu, tilapia dicabar  melalui 

 xv



perendaman dengan S. agalactiae. Tiada perbezaan yang signifikan (P>0.05) 

diperhatikan bagi pertumbuhan atau pencernaan nutrien, walaupun ikan yang diberi 

diet asid organik menunjukkan trend keputusan yang lebih baik. Asid organik 

menurunkan pH diet, mengakibatkan penurunan pH dalam digesta perut dan usus. 

Jumlah bakteria dalam najis telah dikurangkan secara signifikan (P<0.05) bagi ikan 

yang diberi diet asid organik. Trend yang sama diperhatikan bagi bakteria yang 

terikat pada usus. Tambahan pula, ikan yang diberi diet OAB menunjukkan 

pertahanan yang lebih baik terhadap jangkitan S. agalactiae. Dalam ujikaji ketiga, 

satu kajian berjangka 20 minggu dengan keadaan yang lebih merupai penternakan 

komersial telah dijalankan untuk mengenalpasti pertumbuhan dan percernaan nutrien 

tilapia dengan pemberian makanan yang ditambah dengan 0, 5 atau 10 g kg-1 OAB II, 

atau dengan 5 g kg-1 OTC, dan seterusnya rintangan ikan terhadap jangkitan S. 

agalactiae. Tambahan OAB II dalam makanan meningkatkan berat badan ikan 

tilapia hampir 12% serta meningkatkan kecekapan pemakanan walaupun tidak 

berbeza secara signifikan. Lebih-lebih lagi, pencernaan fosforus ikan meningkat 

dengan signifikan apabila 10 g kg-1 OAB II telah ditambah kepada diet ikan tilapia. 

Seperti yang diperhatikan dalam ujikaji kedua, jumlah bakteria dalam najis dan usus 

telah dikurangkan secara signifikan bagi ikan yang diberi diet OAB II. Penambahan 

OAB II sebanyak 5 g kg-1 dalam diet mempunyai kesan seperti 5 g kg-1 OTC bagi 

melindungi ikan daripada jangkitan streptokokus. Tiada sisa antibiotik dikesan pada 

tisu ikan yang diberi diet OAB II berlawanan dengan ikan yang diberi diet OTC. 

Kajian in vitro dan in vivo yang dijalankan telah membuktikan bahawa asid organik 

dapat memberi kesan antibakteria yang kuat dan mempunyai potensi untuk memberi 

kesan yang baik ke atas pertumbuhan, penggunaan nutrien dan rintangan penyakit 

tilapia.  
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EFFECTS OF DIETARY ORGANIC ACIDS ON GROWTH 

PERFORMANCE OF RED HYBRID TILAPIA, Oreochromis sp., AND 

INHIBITION OF SELECTED FISH PATHOGENS 

 

ABSTRACT 

Short-chain organic acids have the potential to be viable alternatives to 

antibiotics by acting as a prophylatic to bacterial disease and enhance fish 

performance. To test this, three related experiments were set up. The first part of the 

research was designed to determine the antibacterial effects of various organic acids 

on Aeromonas hydropilia, in order to develop a tailor-made organic acid blend 

(OAB). The OAB was then compared with a commercial organic acid product, 

potassium diformate (KDF) and commonly used antibiotic, oxytetracycline (OTC) 

on in vitro antibacterial activities to A. hydrophila and Streptococcus agalactiae. All 

the tested organic acids could completely inhibit A. hydrophila at a concentration of 

0.3% or lower. Among the acids, formic acid was the most effective followed by 

tartaric acid, lactic acid, propionic acid, citric acid and malic acid. The OAB had 

stronger antimicrobial activity than KDF or OTC when used at 0.2% or higher. It 

also showed strong bactericidal activity against S. agalactiae. In the second part of 

the research, two feeding trials were conducted to investigate the practical 

applications of dietary organic acids in the aquaculture industry. In the second 

experiment, a 14-week feeding trial was conducted to determine the effects of dietary 

OAB. The experimental diets were added with 0, 1, 2 or 3 g kg-1 of OAB, or with 2 g 

kg-1 of KDF and fed to triplicate groups of red hybrid tilapia (Oreochromis sp.). 

Upon completion, tilapia were challenged by immersion with S. agalactiae. Results 

showed no significant differences (P>0.05) to growth or nutrient utilization, although 

a slight improvement was observed for tilapia fed the acidified diets. Organic acids 

 xvii



 xviii

decreased the pH of the diets, causing a reduction in the digesta pH of stomach and 

gut. Total bacteria per g of feces were significantly (P<0.05) reduced in fish fed 

organic acid diets. A similar trend was observed for adherent gut bacteria. Further, 

there was an improvement to the resistance of tilapia to S. agalactiae challenge when 

fed the organic acids-supplemented diets. In the third experiment, a long-term (20-

week) feeding trial under more commercial culture conditions was conducted to 

further elucidate the growth and nutrient utilization of tilapia fed diets supplemented 

with 0 (control), 5 or 10 g kg-1 of OAB II, or 5 g kg-1 of OTC and their subsequent 

resistance to S. agalactiae. Tilapia growth was improved by almost 12% while 

feeding efficiency slightly improved when fed OAB II diets, but these were not 

significant. Moreover, dietary OAB II at 10 g kg-1 led to significantly higher 

phosphorus availability for the fish. Significantly lower total bacterial counts in the 

feces and intestine were detected for fish fed the OAB II diets than the control diet. 

The inclusion of 5 g kg-1 OAB II was as effective as 5 g kg-1 OTC in protecting the 

fish against streptococcal infections. Unlike fish fed the OTC-based diet, no 

antibiotic residues were detected in tissue of fish fed the OAB-based diets. These in 

vitro and in vivo experiments showed that organic acids can exert strong antibacterial 

effects and have the potential to impart beneficial effects on growth, nutrient 

utilization and disease resistance in farmed tilapia. 

 
 



CHAPTER 1 

INTRODUCTION 

 

Fish are an excellent source of animal protein that contains a full range of 

essential amino acids required by the human body for growth and maintenance. 

Unlike livestock meat, fish are high in unsaturated fatty acids, especially omega-3 

fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), 

which can lead to good human general health (von Schacky, 2003). In 2009, fish 

accounted for 16.6% of the total animal protein intake of the human population and 

6.5% of all protein consumed (FAO, 2012). Due to the growing knowledge of the 

beneficial effects of fish consumption along with the global scarcity of capture 

fisheries, the demand of cultured food fish has become increasingly important in the 

world’s food supply.  

Over the last three decades, global aquaculture production has risen greatly 

with an average annual growth rate of 8.8%, reaching a plateau of 59.9 million 

metric tons (Mt) valued at USD 119.4 billion in 2010 (FAO, 2012). Approximately 

3.5 million Mt were tilapia, making this species the second most important farmed 

fish in the world after the carps. The total aquatic food supplies for human 

consumption reached 128 million Mt in 2010, of which aquaculture contributed 47% 

(FAO, 2012). As one of the fastest growing animal food-producing sector worldwide, 

aquaculture is anticipated to continue growing rapidly in the future. The rapid growth 

in modern aquaculture is fuelled by a variety of factors, which include the increasing 

use of formulated aquafeeds and intensification of culture systems. Total compound 

aquafeed production increased over 600% from 4 to 29.3 million Mt in the past 14 

years (1994 - 2008) and is estimated to increase to a value of 70.8 million Mt by 
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2020 (Tacon, 2010). However with the increasing intensification of fish-farming 

practices worldwide, one of the most limiting problems in the aquaculture sector is 

disease outbreaks (Bondad-Reantaso et al., 2005).  

Infectious diseases are caused by microorganisms and bacterial pathogens are 

by far the most significant constraints faced by the aquaculture industry (Thune et al, 

1993), which causes severe economical losses to farmers (Meyer, 1991). For 

example, Aeromonas hydrophila is one of the most common disease-causing 

bacterial pathogen of freshwater fish worldwide that causes haemorrhagic 

septicaemia in a variety of freshwater fish species, including tilapia (Austin and 

Austin, 1993). Similar to terrestrial livestock production, large amount of antibiotics 

are often used in the aquaculture industry to prevent and/ or control the infectious 

diseases caused by bacterial pathogens, following the discovery of the growth 

promoting and disease fighting capabilities of antibiotics (Hernández-Serrano, 2005). 

The extensive use of a wide variety of antibiotics in the aquaculture industry, both as 

therapeutic and growth-promoting agents, has increased the potential harmful effects 

on the human and animal health as well as the aquatic environment (Cabello, 2006). 

This practice has resulted in the development of antibiotic-resistant in fish pathogens 

that can be transmitted by horizontal gene transfer to bacterial pathogens of animal 

and human (Cabello, 2006). The emergence of antibiotic resistance in various 

bacterial pathogens associated with fish disease had been documented (De Paola et 

al., 1995; Schmidt et al., 2000; Miranda and Zemelman, 2002; Agersø et al., 2007). 

In addition, the extensive use of antibiotics in aquaculture also has the potential to 

threaten public health issues due to the residue bio-accumulation in consumer-ready 

aquaculture products.  
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Intensive public awareness regarding to the prophylactic use of antibiotics in 

animal feeds, which may lead to the transfer of bacterial immunity of species 

pathogenic to humans, has led to their ban in animal feed formulations. A worldwide 

effort to minimize and eventually eliminate the use of antibiotics for growth 

promoting purposes in the aquaculture and livestock industry started with the ban of 

sub-therapeutic antibiotics in 01 January 2006 in the European Union (European 

Parliament and Council Regulation (EC) No 1831/2003). The development of 

effective non-antibiotic compounds as an alternative to prophylactic antibiotics to 

control infectious disease and enhance growth performance is therefore paramount 

for the further development of the aquaculture industry. 

Among other compounds, short-chain organic acids (C1-C6) and their salts or 

mixtures appear to be the most promising alternatives for antibiotic growth 

promotants (AGP), and have been receiving growing attention from aquaculture 

researchers (Lückstädt, 2008a; Ng and Koh, 2011). Organic acids, such as benzoic, 

formic, lactic and propionic acids, have traditionally been used as storage 

preservatives in food and feed ingredients for preventing deterioration caused by 

fungi and microbes (Ricke, 2003; Van Dam, 2006).  Commercial mixtures of organic 

acids are widely used to control pathogenic bacteria such as Salmonella spp. and 

Escherichia coli in feed ingredients and terrestrial livestock feeds (Partanen and 

Mroz, 1999; Van Immerseel et al., 2003, 2006; Franco, et al., 2005). The mechanism 

of action of these weak acids in limiting microbial growth has been reviewed by 

Booth and Stratford (2003). The un-dissociated form of an organic acid is lipophilic 

and can passively diffuse through the cell wall of bacteria. Once inside the more 

alkaline cytoplasm, it dissociates and causes the internal pH to decrease, causing an 

inhibition of bacterial cell metabolism. Categories of bacteria that cannot tolerate 
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changes in trans-membranous pH gradients will undergo cellular stress and 

eventually die. Additionally, the subsequent accumulation of weak acid anions 

within the cytoplasm may also has detrimental effects, which eventually results in the 

cells death.  

Some organic acids have been shown to have strong antibacterial effects 

against important foodborne pathogens such as Listeria monocytogenes, E. coli and 

Salmonella spp. (Cherrington et al., 1991b; Vasseur et al., 1999; Van Immerseel et 

al., 2003; Skrivanova et al., 2006), and their mixtures are currently employed in 

terrestrial animal feeds to control bacterial pathogens (Van Immerseel et al., 2002, 

2003). Although many organic acids appear to have the potential to prevent bacterial 

outbreaks when incorporated into aquafeeds, first implementing a comprehensive 

screening process to quantify their antibacterial activities is important. Thus, 

Experiment 1 (Chapter 4) was designed to screen the in vitro antibacterial effects of 

various water-soluble weak organic acids, namely, formic, propionic, lactic, malic, 

tartaric, and citric acid at different concentrations, on A. hydrophila and thereby 

identify the most appropriate alternative to replace traditional antibiotics in 

aquaculture feeds.  

Since each organic acid has its own spectrum of antibacterial activity and it is 

generally accepted that one type of organic acid is not completely effective against 

all disease causing micro-organisms. In fact, combinations of organic acids are 

typically believed to be more effective against pathogenic bacteria compared to their 

single acids, and can have synergistic effects (Stonerock, 2007; Thompson and 

Hinton, 1997). Therefore, in order to maximise the antimicrobial effect of organic 

acids, a combination of various organic acids having different modes of action is 

necessary. Based on the data from the first in vitro study and comprehensive 
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literature review of organic acids in aquaculture, the most effective and cost-effective 

organic acid blend (OAB) was developed and tested in vitro for their antimicrobial 

activity. This novel OAB was also directly compared with a commercially available 

antibiotic and organic acid against bacterial pathogens which can be commonly 

encountered in commercial tilapia aquaculture.  

Even though the anti-microbial effects of organic acids are well understood, 

the explanation for the growth promoting effects of these compounds remains to be 

elucidated (De Wet, 2005). Nevertheless, poultry and swine fed organic acid-

supplemented diets have been reported to show improved feed intake, growth, feed 

utilization efficiency and health (Alp et al., 1999; Partanen and Mroz, 1999; Partanen 

et al., 2002; Kluge et al., 2006). There is currently great interest in the commercial 

use of organic acids in fish feeds, both to control disease and to enhance growth 

performance. Recently, several researchers have reported that some organic acids, 

their salts and/ or mixtures thereof can improve the growth, feed utilization, mineral 

availability and disease resistance in fish (Baruah et al., 2007; Hossain et al., 2007; 

Sarker et al., 2007; Lückstädt, 2008a). Despite the reported improvement in nutrient 

availability of organic acid-supplemented diets, contradictory results have been 

reported for the growth-promoting effects of dietary organic acids, which seems to 

depend on the fish species, physiology, age and/ or the type of organic acid used (as 

reviewed by Lückstädt, 2008a; Ng and Koh, 2011).  

Ramli et al. (2005) reported that hybrid tilapia (Oreochromis sp.) fed 

potassium diformate-added (KDF) diets showed significantly better weight gain, feed 

utilization efficiency and survival when challenged with Vibrio anguillarum. In 

contrast, Petkam et al. (2008) and Zhou et al. (2009) reported no significant 
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improvement in growth performance of tilapia fed an organic acid/ salt blend or KDF, 

respectively, at various dietary levels. However, the studies on the use of organic 

acid, particularly their blends, in tilapia diets have not been thoroughly investigated 

to date. The more time consuming and costly in vivo experiments were therefore 

conducted to assess the practical dietary use of the novel OAB in aquaculture using 

red hybrid tilapia, Oreochromis sp. as the experimental animal model. Thus, the 

objectives of Experiment 2 (Chapter 5) are: 

1) To evaluate the effect of dietary OAB and a commercially available 

organic acid product, potassium diformate (KDF) on growth performance 

and feed utilization of red hybrid tilapia. 

2) To investigate the apparent nutrient digestibility (dry matter, protein and 

lipid), and phosphorus (P) availability of red hybrid tilapia fed diets 

supplemented with various levels of OAB or KDF. 

3) To determine the impact of dietary OAB or KDF on the quantity and 

composition of the microbiota in fish gut (before and after challenge) and 

feces (before challenge). 

4) To determine the effect of dietary OAB or KDF on the resistance of red 

hybrid tilapia to Streptococcus  agalactiae challenge.  

Antibiotics profoundly impart beneficial effects particularly when the 

immunity of animals are compromised during periods of stress triggered by intensive 

husbandry or transportation (Halverson, 2000). Considering the antimicrobial 

mechanisms of organic acids, it is anticipated that under stressful, crowded and 

unhygienic culture conditions, a greater positive growth response in tilapia may be 

observed when they are fed organic acid-supplemented diets. A longer-term feeding 
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trial (Experiment 3; Chapter 6) under less-controlled commercial-like culture 

conditions was thus conducted and the aim was as follows: 

1) To further elucidate the mechanism(s) of the potential growth-promoting 

effects of dietary organic acids in tilapia aquaculture. 

2) To determine whether increased levels of the dietary OAB could 

significantly influence the growth performance, bioavailability of 

phosphorus and other major minerals in soybean meal-based diets. 

3) To compare the efficacy of long-term administration of dietary OAB and 

oxytetracycline (OTC) with respect to health and growth promotion, as 

well as their ability to withstand A. hydrophila and S. agalactiae 

challenge. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Farming of tilapia 

Tilapias are one of the most important cultured freshwater fish species with 

commercial production in more than 100 countries around the world. They are 

members of the Cichlidae family and native to Africa. The fish occur mainly in 

freshwater and occasionally brackish water environments in tropical and subtropical 

climates (Nandlal and Pickering, 2004). Because of their rapid growth rates, 

palatability, hardiness and adaptability to a wide range of culture systems, tilapia has 

become one of the most widely grown group of any farmed fish in the world (FAO, 

2012). Currently, Nile tilapia, O. niloticus is the most widely farmed tilapia species 

worldwide. Other commercially important species of tilapia include Mozambique 

tilapia (O. mossambicus), blue tilapia (O. aureus), three spotted tilapia (O. 

andersonii), Sabaki tilapia (O. spilurus), and their hybrids. 

Tilapia farming is a major global industry and are currently the second most 

important farmed fish in the world after the carps (FAO, 2012). In 1995, global 

tilapia aquaculture production (Figure 2.1) was only 703 thousand tonnes and not 

even in the top 10 farmed species. However in recent years, intensive farming of 

tilapia is growing vigorously with a global tilapia production of about 3.5 million Mt 

valued at USD 5.7 billion in 2010 (FAO, 2011) and is forecasted to reach 8.9 million 

Mt by the end of year 2020 (Tacon and Metian, 2008).  
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Figure 2.1 Total world production of farmed tilapia (million tonnes) from 1995 to 

2010 (FAO, 2011). 

 

 

In Malaysia, the total tilapia aquaculture production has risen by 

approximately 300% from 8,866 to 38,886 Mt per year in the past 15 years (Figure 

2.2). In contrast to other tilapia farming countries in the Asian region, where Nile 

tilapia (~ 89%) is the major cultured species, the red tilapia (Oreochromis spp.) is the 

dominant species cultured in Malaysia accounting about 85% of the total tilapia 

aquaculture production, due to its attractive red color and high marketability (Ng and 

Hanim, 2007). 
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Figure 2.2 Total production of farmed tilapia (tonnes) in Malaysia between 1995–

2010 (FAO, 2011). 

 

 

2.2 The prophylactic use of antibiotics in aquaculture and its potential hazards 

In intensive farming production, infectious diseases are a major problem that 

causes high economic losses to fish culturists (Bondad-Reantaso et al., 2005). 

Bacteria such as Streptococcus and Aeromonas are ubiquitous opportunistic 

pathogens that, when present in high numbers, are a major disease problem where 

mortality rates of over 50% in a matter of days are not unheard of (Yanong and 

Francis-Floyn, 2006). Thus, the inclusion of large amounts of various antibiotics in 

aquafeeds to control infectious diseases are not uncommon in the aquaculture 

industry, particularly in developing countries, following the discovery of the growth 

promoting and disease fighting capabilities of antibiotics (Hernandez-Serrano, 2005; 

Cabello, 2006). According to the World Health Organization (WHO), approximately 

2 to 700 g of antimicrobials have been used per ton of aquaculture product, 
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depending on the countries (WHO, 2006). In Malaysia, erythromycin and OTC are 

directly sprayed onto commercial tilapia pellets and fed to infected fish until 

mortality rates decrease (Musa et al., 2009). The major classes of antibiotics used in 

aquaculture worldwide are summarized in Table 2.1.  

 

Table 2.1 The major classes of antibiotics used in aquaculture worldwide (adapted 

from WHO 2006). 

Antibiotic class Example Administration 

Aminopenicillins Amoxicillin Oral 

 
Ampicillin 
 

Oral 
 

Amphenicols Chloramphenicol Oral/injection/bath 

 
Florfenicol 
 

Oral 
 

Macrolides 
 

Erythromycin 
 

Oral/injection/bath 
 

Aminoglycosides 
 

Streotomycin, neomycin 
 

Bath 
 

Nitrofurans Furazolidone Oral/bath 

 
Nitrofurantoin 
 

Oral 
 

Quinolones 
 

Oxolinic acid 
 

Oral 
 

Fluoroquinolones Enrofloxacin Oral/bath 

 
Flumequine 
 

Oral 
 

Tetracyclines 
 
 

Oxytetracycline, chlortetracycline, 
tetracycline 
 

Oral/injection/bath 
 
 

Sulphonamides Sulphonamides Oral 
 

The prophylactic use of antibiotics is also rampant in the livestock industry 

and these compounds are collectively called AGPs. The over-use of prophylactic 

antibiotics in aquaculture can eventually be detrimental to the health of the fish, but 

also that of animals, human consumers and the aquatic environment. This practice 

encourages bacterial resistance which could lead to increased antibiotic resistance in 
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the pathogens of fish and can also be transferred to bacteria of terrestrial animals and 

to human pathogens, leading to overall increased in infectious diseases that become 

harder to treat (Hernandez-Serrano, 2005; Cabello, 2006). Moreover, some 

antibiotics are non-biodegradable and can therefore remain in aquaculture systems 

for long periods of time, thereby further encouraging the growth of antibiotic-

resistant bacteria strains (Cabello, 2006). The emergence of antibiotic resistance in 

various bacterial diseases of fish has been documented for A. hydrophila, A. 

salmonicida, Edwardsiella tarda, V. anguillarum, and Pasteurella piscida, among 

others (De Paola et al., 1995; Schmidt et al., 2000; Miranda and Zemelman, 2002; 

Alcaide et al., 2005; Agersø et al., 2007). In addition, when antibiotics are mixed 

into fish feeds, residual antibiotics are often found in seafood products compromising 

the health of the human consumers (Nawaz et al., 2001).  

 

2.3 Organic acids 

Organic acids are organic compounds with one or more carboxyl groups (-

COOH) in their structure. These include saturated straight-chain monocarboxylic 

acids (chain lengths C1-C18) and their respective derivatives, such as unsaturated 

(cinnamic, sorbic), hydroxylic (citric, lactic), phenolic (benzoic, cinnamic, salicylic) 

and multicarboxylic (azelaic, citric, succinic) acids (Cherrington et al., 1991b), with 

a general molecular structure of R-COOH, where R represents the monovalent 

functional group. These acids are commonly referred to as short-chain fatty acids, 

volatile fatty acids or weak carboxylic acids.  

Organic acids are produced through the microbial fermentation of 

carbohydrates by various bacterial species under different metabolic pathways and 

conditions. Some lower-molecular-weight organic acids, for example, acetic, 
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propionic and butyric acids are also formed within the large intestine of humans and 

animals at high concentrations by anaerobic microbial communities (Cummings et al., 

1987; Macfarlane and Macfarlane 2003).  Many of these, particularly, short-chain 

organic acids (C1-C7), are naturally present as normal constituents of plants or 

animal tissue.  However, most of these substances commerically used in the food 

industry are produced synthetically. Organic acids may also form into single or 

double salts of their acid through combining with potassium, sodium, calcium, etc.  

Weak lipophilic organic acids and their salts are widely known as "Generally 

Regarded as Safe" (GRAS) substances, and have been used for centuries as food 

preservatives in foods and beverages (Russell and Gould 2003).  They also have long 

been listed in the EU regulations as permissible feed additives in food animal 

production.  For example, organic acids, their salts or combinations thereof, have 

been used in swine feeds for decades as potential alternatives to AGP's to prevent 

diarrhoea and improve the performance of weaned piglets, fattening pigs and 

reproductive sows as reviewed by Partanen and Mroz (1999). These acids, 

particularly, formic, fumaric and citric acid, seem to effectively enhance animal 

growth performance and feed efficiency (Partanen and Mroz, 1999).  Moreover, 

commercial mixtures of organic acids are widely used to control pathogenic bacteria, 

such as Salmonella species, in feed ingredients and terrestrial livestock feeds (Van 

Immerseel et al., 2002).  

The main advantages of using weak organic acids to control microbial growth 

are the absence of harmful residues in animal products (Chaveerach et al., 2002; 

Castillo et al., 2004), or cross-resistances to humans (Swick, 2011). For these reasons, 

among many others, explains why research efforts on weak organic acids as the 

alternative to AGP's are crucial. Table 2.2 presents a list of organic acids that are 
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currently being used in feeds for terrestrial livestock and typically, a blend of these 

acids or their salts are used as commercial livestock feed additives. Each organic acid 

has its own spectrum of antimicrobial activity due to their specific physical and 

chemical properties (Dibner and Buttin, 2002). Therefore, the advantage of using 

organic acids blend in animal feed is that it may have synergistic effects (Chaveerach 

et al., 2002), leading to a broad spectrum of antimicrobial activity against a wider 

range of disease-causing bacteria. Moreover organic acids blend allows an even 

further reduction of the dose used in animal feeds and reducing feed costs. 

 

Table 2.2 List of organic acids and their physicochemical properties (adapted from 

Mroz, 2005). 

Organic Mol. pKa value Mol. wt Physical Odour CR1 

acid formula   (g/mol) form     

Formic  CH2O2 3.75 46.03 Liquid Pungent +++ 

Acetic  C2H4O2 4.6 60.05 Liquid Pungent +++ 

Propionic  C3H6O2 4.88 74.08 Oily liquid Pungent ++ 

Butyric  C4H8O2 4.81 88.12 Oily liquid Rancid + 

Lactic  C3H6O3 3.86 90.08 Liquid Sour milk + 

Sorbic  C6H8O2 4.76 112.1 Solid Mildly acrid + 

Fumaric  C4H4O4 3.02, 4.76 116.1 Solid Odourless 0 to + 

Malic  C4H6O5 3.40, 5.1 134.1 Solid Apple + 

Citric C6H8O7 3.13, 4.76, 6.49 192.1 Solid Odourless 0 to ++ 
 

1CR= Corrosiveness rate: high (+++), medium (++), low (+), negligible (0). 
 

The strength/ acidity of an acid in solution is represented in its logarithmic 

constant (pKa) value, which is equal to -log10 (Ka = acid dissociation constant = 

[H+][A-]/[HA]). Therefore, the smaller the value of pKa, the stronger the acid. In 

general, since most organic acids are considered as weak acids, and only partially 

dissociates/ ionizes into their ions in aqueous solutions, the majority of organic acids 
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will remain in their undissociated form (i.e. free organic acid). In an aqueous 

solution, weak organic acids dissociate and form a pH-dependent dynamic equilibria 

between undissociated acid molecules and dissociated anions as in the chemical 

equilibrium below: 

HA   +   H2O   ↔   A-   +   H3O+  

where HA represents a weak acid, A- is a conjugate base (acid anion), and H3O+ is a 

hydroxonium ion. Organic acids change from undissociated forms to dissociated 

forms depending on the environmental pH and its pKa value. The proportion of the 

free acid molecules could be theoretically calculated by the Henderson-Hasselbalch 

equation (pH = pKa + log [A-]/[HA]).  

The pH at which 50% of the acid is dissociated is called its pKa value and is 

unique for each individual acid (Table 2.2). At a pH below their individual pKa 

values, organic acids will mostly be present in an undissociated form, thus, 

increasing the proportion of free acids that readily enter the bacterial cells by simple 

diffusion. Lower-molecular-weight organic acids, for example, formic, acetic and 

lactic acids are miscible in water, whereas higher-molecular-weight organic acids 

such as benzoic acid are insoluble in water due to their hydrophobicity. The physical 

and chemical characteristics of some organic acids that are commonly used in the 

feeds for monogastric animals are given in Table 2.2. 

 

2.4 Antimicrobials activities of organic acids 

The antimicrobial activity of lipophilic weak acids was traditionally 

explained by the perturbation of membrane function, which blocks the transport of 

substrate molecules (amino acids, organic acids, phosphate etc) into cells (Freese et 

al., 1973; Stratford and Anslow, 1998).  The cause to such an inhibition of necessary 
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substrates into cells is due to the partition of undissociated lipophilic weak acids into 

the cell membrane. However, there are other mechanisms believed to be responsible 

for the ability of organic acids to limit microbial growth and have been reviewed by 

Cherrington et al. (1991b) and Booth and Stratford (2003).  The most obvious mode 

of action of these lipid-soluble weak acids is via direct acidification of the extra-

cellular pH through its ability to dissociate into ions and release hydrogen ions 

(protons) to the surrounding medium. However, it is now currently accepted that the 

predominant mode of action of these acidifiers is mainly based on their ability to 

lower the cytoplasmic pH once they traverse across the cell membranes.  

 

2.4.1 Acidification of the external medium by releasing hydrogen ions  

The majority of bacterial species have specific pH requirements for optimal 

growth and are unable to grow under extreme acidic conditions (pH < 4.5). Thus, 

outside the bacterial cells, a significant amount of organic acids can exert their 

antimicrobial activity on microbes by directly lowering the pH of the environment 

via releasing hydrogen ions and thus preventing/ impeding the growth and 

proliferation of acid-sensitive bacteria. Weak organic acids such as acetic, citric, 

benzoic, sorbic and lactic acids, for example, have been employed for many years to 

lower the pH of foods or beverages in order to limit microbial growth (Stratford and 

Eklund, 2003).  

 

2.4.2. Acidification of the cytoplasm and its consequences 

It is now generally accepted that the antimicrobial efficacy, as both 

bacteriostatic and bacetericidal effects of these acidifiers, is mainly based on their 

ability to traverse across the semi-permeable membrane of bacteria and to dissociate 
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in the near neutral cytoplasm (Cherrington et al., 1991b; Booth and Stratford, 2003) 

as shown in Figure 2.3. Despite their various molecular structures as shown in Table 

2.2, all organic acids seem to have a similar mode of action against micro-organisms 

(Stratford and Anslow, 1998). Organic acids are believed to be more effective at low 

pH when the majority of these are present in the undissociated form, and are thus the 

most effective form in killing microorganisms (Salmond et al., 1984; Brul and Coote, 

1999; Lambert and Stratford, 1999; Thomas et al., 2002). This is because the 

undissociated form of an organic acid is lipophilic and can therefore passively 

diffuse through a bacterium’s cell membrane. Once inside the nearly neutral 

cytoplasm, it dissociates, releasing charged acid anions and protons that are 

impermeable back across the cell’s membrane (Eklund, 1985; Cherrington et al., 

1991b; Warth, 1991; Lambert and Stratford, 1999).  

 

  R-COOH ↔ R-COO- + H+ 

 
Figure 2.3 Mode of action of organic acids against microorganisms (Lambert and 
Stratford, 1999). The undissociated organic acids traverse across the cell wall of 
bacteria via passive diffusion and dissociate inside the cytoplasm, causing the 
cytoplasmic pH to decrease. Eventually the cell enzymes and nutrient transport 
systems are suppressed resulting in irreversible damage to the microbial cell, often 
causing death.   

 

 

                 

 

 

                R-COO-    +    H+  
 

 

                 

 

 

Passive diffusion 
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ATP 

ADP + Pi 

H+ 

Nucleus 

Bacteria cell 
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Such an accumulation of excess protons within the cell will lower the 

cytoplasmic pH, thereby causing an inhibition of bacterial cell metabolism through 

the suppression of cell enzymes (Warth, 1991), particularly, the pyruvate 

decarboxylase enzyme which contributes to energy metabolism (Sava, 2011). Cell 

death may occur when the cytoplasmic pH drops below the physiological optimal 

range for growth (Smigic et al., 2009). Lowering the cytoplasmic pH might also be 

expected to neutralize the electrochemical gradient, for example the pH gradient 

(ΔpH) across the plasma membrane, which is required for the active transport of 

necessary nutrients. Bacteria that do not tolerate changes in trans-membranous pH 

gradients such as E. coli, Salmonella and Campylobacter (Dibner and Buttin, 2002) 

will undergo cellular stress and eventually die (Jensen, 2001). The acidification 

within the cytoplasm of the cell may also inhibit the central metabolism at the 

expense of anionic metabolites from the cell. To restore the intracellular pH within a 

physiological optimal range for growth and sustain functional macromolecules, the 

cell is forced to pump out the excess protons, released by the acids, via the 

membrane-bound H+-ATPase. Proton pumping by the H+-ATPase requires 

substantial metabolic energy in the form of adenosine triphosphate (ATP) (Holyoak 

et al., 1996) and could therefore lead to depletion of cellular ATP, and the cells will 

eventually die of exhaustion (Warth, 1991; Ricke, 2003).  

ATP depletion is not the sole mechanism for inhibiting celluar growth or 

inducing death since proton removal also leads to an accumulation of weak acid 

anions within the cytoplasm, which is responsible for the growth inhibition 

mechanisms of organic acids at low pH (Russell, 1992; Brul and Coote 1999; 

Lambert and Stratford, 1999). This accumulation in turn inhibits the synthesis of 

macromolecules, e.g., nucleic acids (Cherrington et al., 1990), proteins, lipids and 
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carbohydrates (Jensen, 2001) as well as enzyme activity (decarboxylases and 

catalases) and nutrient transport systems within the cytoplasm (Roth and 

Kirchgessner, 1998; Russell and Diez-Gonzalez, 1998; Partanen and Mroz, 1999), 

and eventually results in cell death. A summary of the inhibitory mechanisms of 

some organic acid anions are shown in Table 2.3.  

 

Table 2.3 Inhibitory mechanisms of some organic acid anions (adapted from Van 

Dam, 2006). 

Acid anion Mode of action 

Formate - inhibits enzyme activity, specially decarboxylase and catalase 

Acetate - inhibits enzyme activity 

 - increases heat sensitivity 

Propionate - influences membrane transport 

 - inhibition on synthesis of some amino acids 

Lactate - inhibits enzyme activity 
 
Sorbate 
 

- inhibits a series of enzymes, amino acid uptake, and  
  synthesis of RNA/ DNA 

 - cell membrane-damage 

Benzoate - inhibits a series of enzymes and amino acid uptake 

 - cell membrane-damage 

 - changes membrane fluidity 
 

The substantial accumulation of weak acid anions in the cytoplasm may also 

cause hyper-osmotic stress on the cell, which may also contribute to growth 

inhibitory effects (Roe et al., 1998). The high anion concentration within the 

cytoplasm has the potential to increase the turgor pressure on the cell via increasing 

the osmotic pressure (Kroll and Booth, 1983). To maintain the turgor pressure at a 

constant level, the cell appears to reduce other anion pools, for example, intracellular 

glutamates to compensate this accumulation (Roe et al., 1998). Thus, perturbation of 
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anion balance may contribute to inhibitory effects on growth and eventually results 

in cell death (Roe et al., 1998). 

 

2.5 Effects of organic acids on nutrient availability 

Various hypotheses have been proposed to explain the effects of organic 

acids on enhancing nutrient utilization in terrestrial livestock which includes, among 

others, (1) lowering gastric pH leading to increased pepsin activation, (2) lowering 

diet and intestinal pH, which may increase mineral solubilization, (3) acting as 

chelating agents binding to various cations within the intestine, which results in 

increased mineral absorption or (4) inhibiting the colonization of harmful microbes 

in the intestine which may otherwise utilize nutrients and thus becomes spared for 

the host animal (Schöner, 2001; De Wet, 2005). In animal nutrition, organic acids 

and their salts can act as a growth promotant primarily in the feed and 

gastrointestinal tract of the animal (Freitag, 2007).  

 

2.5.1 Effects of organic acids in feed 

In the food animal production, organic acids have been used for decades as 

additives or preservatives to help prevent some diseases and protecting feeds and 

feed ingredients from the deterioration caused by bacteria, molds and yeasts 

(Thompson and Hinton, 1997; Ricke, 2003; Skrivanova et al., 2006; Van Dam, 2006). 

Even under favourable storage conditions, bacterial proliferation seems inevitable in 

the feeds, but particularly under high humidity conditions (≥ 14%). Inclusion of 

organic acids reduces the pH value of the feed and therefore prevents the growth of 

undesired microbes during storage that could lead to potentially harmful bacteria 

and/ or toxic metabolites (especially mycotoxins) produced by fungi (Schöner, 2001; 

 20



Freitag, 2007). The ingestion of even small amounts of mycotoxins from 

contaminated feedstuffs may cause serious nutritional and health problems during 

animal production (Müschen and Frank, 1989). Therefore, acidification enhances the 

hygienic quality of the feed, which prevents the loss of its nutritional value via a 

decomposition of proteins and carbohydrates, In addition to improving food hygiene, 

organic acids reduce the buffering capacity of the dietary feed ingredients. This is 

important since lowering the buffering capacity of feed containing organic acids 

ensures optimal intestinal pH, which results in better feed digestion and health status 

of livestock, especially in young animals (Metzler and Mosenthin, 2007).   

 

2.5.2 Effects of organic acids in gastrointestinal tract 

In the gastrointestinal tract, organic acids exert their effects on performance 

via two main mechanisms. Firstly, it reduces the pH within the stomach and possibly 

small intestine of farm animals (Schöner, 2001; Lückstädt, 2009), and secondly, 

through their ability to inhibit and kill harmful bacteria by disturbing their 

metabolisms, as described earlier.  

The addition of organic acids reduces the gastric pH, allowing a faster 

acidification of the digesta in the stomach, which favours proteolytic enzyme activity 

and thus stimulates protein digestibility and animal performance (Kirchgessner and 

Roth, 1988; Roth and Kirchgessner, 1998; Dibner and Buttin, 2002). Moreover, 

organic acids added in feeds may slow down the emptying rate of the stomach, 

therefore allowing more efficient hydrolysis of proteins in the stomach and 

absorption of nutrients in the small intestine. These effects are generally more 

pronounced in younger animals, where the pancreatic enzyme secretion and the 

 21



hydrochloric acid production are inadequate in the digestive tract compared to adults 

(Freitag, 2007).  

Another beneficial effect of lowering gastric acidity is an improvement of P 

bioavailability from phytate-P in the plant feed ingredients (Dibner and Buttin, 2002).  

The majority of organic P in plant feed ingredients exists in the form of phytic acid 

or phytate (salts of phytic acid) and it is generally not digestible to monogastric 

animals due to lack of phytase activity in the digestive tract (Hughes and Soares Jr, 

1998). The addition of organic acids can increase the phytate-P utilization by 

inducing microbial phytase activity, which is more efficient in lower pH values 

(Dibner and Buttin, 2002; De Wet, 2005). Lowering the intestinal pH by weak 

organic acids may also increase mineral solubility leading to improved absorption of 

minerals such as calcium and P. Furthermore, the anions of weak acids can act as 

chelating agents by binding up various cations to form mineral and acid complexes 

along the intestine, which results in increased mineral absorption by the intestinal 

cells (Ravindran and Kornegay, 1993).  

A further positive effect of organic acids on animal performance is through a 

direct stimulation of mucosa proliferation activity in the gastrointestinal tract. In rats, 

organic acids (acetate, propionate, and butyrate) stimulate the proliferation of 

gastrointestinal mucosal cells by inducing the expression of plasma glucagon-like 

peptide (GLP-2), ileal proglucano mRNA, glucose transporter (GLUT2), and c-myc, 

c-jun, and c-fos, which can potentially mediate mucosal proliferation (Tappenden 

and McBurney, 1998). It has been suggested that the positive effects of organic acids, 

particularly butyrate, in stimulating the growth of intestinal epithelium cells, leads to 

increased nutrient absorptive capacity (Topping and Clifton, 2001). Recently, Adil et 

al., (2010) reported that the dietary supplementation of organic acids showed 
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increases in villus height in the duodenum and jejunum of broiler chicken. Besides, 

the thickness of muscularis on the intestinal mucosa was also decreased in all the 

segments of small intestine. These alterations in structure of the gastrointestinal may 

facilitate the nutrient absorption in the small intestine, and thus improve the growth 

performance (Adil et al., 2010; Samanta, 2010).  

Finally, it is also thought that the improved nutrient utilization may be 

attributed to the strong antimicrobial activity of organic acids that inhibit the 

colonization of harmful microbes within the digestive tract (Kluge et al., 2006). The 

result of reducing harmful microbial counts is a healthier gut, and the energy or 

nutrients, which may otherwise be utilized by the microbes, are now spared for the 

host animal. Such a reduced competition for nutrients between microbes and the host 

animal is one of the mechanisms responsible for improved nutrient utilization 

(Partanen and Mroz, 1999; Dibner and Buttin, 2002; Adil et al., 2010). 

 

2.6 The use of organic acids as growth promotants and antimicrobials in 

aquaculture 

The potential benefits of organic acids in improving feed intake, growth, feed 

utilization efficiency and health of both poultry and swine have been well 

documented for decades (Alp et al., 1999; Partanen et al., 2002; Kluge et al., 2006). 

Despite the reported beneficial effects on improving the performance parameters and 

health of terrestrial livestock, limited comprehensive research has been done to 

elucidate the use of organic acids or their salts in farming of aquatic animals, until 

recently. Only a few studies have been published regarding the use of organic acids 

in aquafeeds prior to the ban of AGP use in livestock production (Bjerkeng and 

Storebakken, 1991; Ringø, 1991; Gislason et al., 1994, 1996; Vielma et al., 1999). 
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One of the earliest studies on the application of organic acids in aquaculture was 

about 31 years ago by Rungruangsak and Utne (1981). However, in this 140 day trial, 

moist diets acidified with formic acid-preserved fish silage seemed to depress growth, 

feed utilization and proteolytic activities in the digestive tract of rainbow trout, 

Oncorhynchus mykiss. More recently, several studies have also been conducted to 

determine the effects of organic acids and their salts on growth performance, nutrient 

utilization and disease resistance in several commercially important farmed fish 

species, such as rainbow trout (Pandey and Satoh, 2008; Gao et al., 2011), salmon 

(Christiansen and Lückstädt, 2008), carp (Baruah et al., 2005, 2007) and tilapia 

(Ramli et al., 2005; Zhou et al., 2009; Liebert et al., 2010; Lim et al., 2010). The 

major organic acids and their salts tested in aquafeeds to date are presented in Table 

2.4 – 2.8. 

 

2.6.1 Citric acid and its salt 

Citric acid or its salts are by far the most investigated organic acid in 

aquaculture. Numerous studies have reported that citric acid can improve growth and 

feed utilization in various fish species (Sarker et al., 2005, 2007; Baruah et al., 2007; 

Pandey and Satoh, 2008), while some showed contradictory findings (Fauconneau, 

1988; Vielma et al, 1999). The earliest study regarding the use of citric acid was 

conducted on O. mykiss by Fauconneau (1988). In this study, citric acid at 120 g kg-1 

was supplemented in a fishmeal-based diet to partially replace the protein content in 

trout diets.  While acidification of the diets appeared to lower the voluntary feed 

intake, this did not affect the efficiencies of protein and energy utilization. Since 

then, several studies with more promising results have been reported in O. mykiss, 

red sea bream, Pagrus major and Indian major carp, Labeo rohita (Table 2.4). 
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