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PEMBANGUNAN PENTAFSIR CERDIK UNTUK ALIRAN
GAS-MINYAK BERDASARKAN KEPADA ELEKTROD UTAMA
GENERIK PENDERIA TOMOGRAFI KEMUATAN ELEKTRIK

ABSTRAK

Tomografi Kemuatan Elektrik (ECT) adalah teknik yang digunakan bagi mendapatkan maklumat

taburan bahan-bahan dalam paip tertutup dengan cara mengukur variasi dalam sifat-sifat dielek-

trik taburan bahan-bahan tersebut. Beberapa penyelidikan ECT terdahulu telah dijalankan bagi

mengklasifikasi rejim aliran dan menganggar pecahan bahan menggunakan kaedah Rangkaian

Neural Buatan (ANN) yang hanya tertumpu kepada parameter penderia ECT yang tetap, lantas

menghasilkan sistem-sistem pentafsir proses yang tidak cekap. Oleh itu, penyelidikan ini bertu-

juan membangunkan sistem pentafsir pintar yang dapat berfungsi untuk suatu julat nilai elektrod

utama penderia ECT. Bagi tujuan ini, ANN Perceptron Berbilang Lapisan (MLP) telah dilatih

dengan pelbagai set data ECT bagi tujuan menyiasat kaedah terbaik bagi menghasilkan penge-

las regim aliran gas-minyak dan penganggar pecahan minyak pintar. Teknik Analisis Komponen

Utama (PCA) juga digunakan untuk mengurangkan dimensi data masukan, mengurangkan masa

latihan dan meningkatkan prestasi pengelas dan penganggar. Keputusan kajian menunjukkan

pengelas gas-minyak pintar yang dibangunkan mampu memberikan purata ketepatan penge-

lasan sehingga 93.93% ke atas data ECT daripada elektrod utama generik. Nilai ketepatan ini

adalah lebih tinggi daripada purata nilai ketepatan pengelasan daripada pengelas pintar yang

dilatih dengan saiz elektrod utama yang tetap, iaitu 37.45% menggunakan set data ujian yang

sama. Sistem penganggar pintar yang telah dibangunkan pula mampu menganggar pecahan

minyak dengan ralat mutlak purata sebanyak 3.05%, bagi data ECT generik pelbagai jenis regim

aliran. Nilai ralat ini adalah 3.25% lebih rendah berbanding ralat mutlak purata yang diperoleh

oleh penganggar pecahan minyak pintar tidak generik yang terbaik, daripada set data ujian yang

sama. Keputusan kajian yang memuaskan mendedahkan bahawa pencapaian pengelas dan

penganggar pintar generik adalah lebih baik berbanding pengelas dan penganggar aliran tidak

generik bagi tugasan mentafsir proses aliran.
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DEVELOPMENT OF INTELLIGENT GAS-OIL FLOW PROCESS
INTERPRETER BASED ON GENERIC PRIMARY ELECTRODE OF

ELECTRICAL CAPACITANCE TOMOGRAPHY SENSOR

ABSTRACT

Electrical Capacitance Tomography (ECT) is a technique used to obtain information about the

distribution of materials inside a vessel by measuring variations in the dielectric properties of the

material distributions. Previous research works on ECT flow regime classification and material

fraction estimation have employed Artificial Neural Networks (ANNs) approach focusing on fixed

ECT sensor parameters, and hence producing inefficient process interpreter systems. Therefore,

this research aims to develop intelligent process interpreter systems which function to accommo-

date a range of ECT primary electrode sensor sizes. For the purpose, Multilayer Perceptron

(MLP) ANNs have been trained with different types of datasets to investigate the best method in

producing generic intelligent gas-oil flow regime classifier and oil fraction estimator. The Principal

Component Analysis (PCA) technique has also been used to reduce the dimensionality of input,

reduce training time and improve the systems’ performances. The developed intelligent gas-oil

classifier has given 93.93% average correct classification accuracy from ECT data of generic

primary electrode. This accuracy value is higher than the average classification accuracy of intel-

ligent classifier trained with fixed ECT primary electrode size which is 37.45%, for the same test

dataset. The developed intelligent oil fraction estimator has produced 3.05% mean absolute er-

ror (MAE) for generic ECT data of various flow regimes. This MAE is 3.25% lower than the MAE

produced by the best non-generic intelligent oil fraction estimator, based on the same dataset.

The satisfactory research results reveal that the performances of generic intelligent gas-oil clas-

sifier and oil fraction estimator are better than the non-generic gas-oil classifier and estimator for

process interpretation tasks.
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CHAPTER 1

INTRODUCTION

1.1 Background

In many industries, information on material flow such as flow regimes (Yan et al., 2004; Li-Feng

and Hua-Xiang, 2008; Yu et al., 2010), vector velocity (Hayes et al., 1995; Xue et al., 2012),

mass flow rate (Mosorov, 2008; Zheng and Liu, 2011) and component concentrations or mate-

rial fraction (Wang, 2007; Wenli et al., 2007), are important process interpretation parameters

to enact the safety and efficiency of industrial processes. These information are also useful for

developing new process equipment and enhancing process operation. For instance, in oil pro-

duction, information on flow regime inside a pipeline is essential as an indicator of overall oil

production rate (Meglio et al., 2010). Meanwhile, information on material concentration or frac-

tion, and velocity of flowing material is important in mining and environmental sectors as these

could provide better understanding of corrosion and erosion effects in a pipeline (Bozzini et al.,

2003). However, obtaining information for such process operation, control and safety within an

oil pipeline is impossible and impractical due to concealed pipes. Also, insertion of normal sen-

sors could disturb the flow of materials. Hence, Electrical Capacitance Tomography (ECT) which

is a non-invasive method has been used to obtain various process measurements regarding

multi-component flows in process equipment. ECT is a sensing technique suitable for concealed

industrial processes involving non-conducting mixture such as gas-oil.

In ECT, several electrodes are mounted around a process equipment. These electrodes

measure the changes in the capacitance between all possible pairs of electrodes with regard

to various material distribution. From these measurements of capacitance differences, a cross-
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sectional image can be reconstructed with the aid of an image reconstruction algorithm. In turn,

intrepretation of process flow parameters can be determined from the cross-sectional image

based on particular calculation and analysis. Figure 1.1 illustrates the ECT process interpretation

work stages for obtaining information that is useful for process operation and control.

 

ECT 

Measurements
Algorithm

ECT 

sensor

Reconstructed 

image

Process 

interpretation of :

- oil fraction

- void fraction

- flow regime

- mass flow rate

- concentration

Calculation 

& analysis

Figure 1.1: Process interpretation work stages

Image reconstruction is carried out using ECT image reconstruction algorithm. The Linear

Back Projection (LBP) algorithm (Xie et al., 1989) was the first and simplest reconstruction al-

gorithm ever proposed for ECT. However, images produced by LBP algorithm appear distorted

due to the soft-field effect (Su et al., 2000). This fact has prompted many researchers to opt for

different image reconstruction methods. The work by Nooralahiyan et al. (1994) was the first to

show the capability of Artificial Neural Network (ANN) technique in reconstructing accurate tomo-

graphic images for different flow regimes from which, flow regime classification and void fraction

were determined. Besides an ANN approach, a number of improved as well as new algorithms

have also been introduced to obtain more accurate reconstructed images. These include the

Landweber (Yang et al., 1999; Lu et al., 2005; Li and Yang, 2008) and Tikhonov algorithms (Lee

et al., 2006; Lei et al., 2006; Jing et al., 2009). Although the advanced reconstruction methods

have shown to be able to produce slightly more accurate images for some flow regimes, dis-
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tortion of images is still a problem for few other regimes. Furthermore, the process of image

reconstruction followed by process interpretation has been found to be time-consuming.

Image reconstruction method maybe tolerable for off-line works. Nevertheless, for on-line

control and monitoring purposes, the approach is not suitable due to its long computational time.

Hence, in some works, it is more appealing to utilise a direct process interpretation method. The

work by Xie et al. (1992) was the first to employ a direct method for oil concentration estimation

based on the average of normalised capacitance measurements. The method was simple and

fast (i.e. did not require image reconstruction) but it was flow regime dependent in that different

calibration methods were required for different flow regimes. Due to that, ANN method was then

proposed as a method for direct process interpretation from ECT data (Mohamad-Saleh et al.,

2001). The emergence of the method has been able to overcome the problems of soft-field

effect, long process interpretation processing time and flow regime dependency. Since then,

ANN has become a renowned artificial learning tool which is robust at solving numerous ECT-

based problems. Its applications range from direct flow pattern recognition (Sun et al., 2002;

Yan et al., 2004; Barbosa et al., 2010; Yu et al., 2010) to direct estimation of material fraction in

pipelines without recourse to image reconstruction (Duggan and York, 1995; Williams and York,

1999; Mohamad-Saleh et al., 2001; Mohamad-Saleh and Hoyle, 2002). All these works have

shown the superiority of ANN at direct process interpretation tasks based on ECT data.

1.2 Problems and Motivation

Despite the successes of works that employed ANN for direct ECT process interpretation, the

intelligent system only worked for fixed ECT sensor parameters. The intelligent neural classifier

and estimator were not generic in nature because they were trained with ECT data of fixed sensor

parameter values. Mohamad-Saleh and Hoyle (2002) noticed that the employed ANNs were

trained based on fixed ECT sensor parameters making them limited in "intelligence" and hence
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they could not give more accurate process interpretation for data of different sensor parameter

values. Therefore, it would be desirable to have an intelligent system which can accommodate a

range of sensor parameter values.

In order to build a generic neural estimation system, various ECT parameters must be con-

sidered. Several previous works by Yan et al. (1999); Somerville et al. (1999), and Ahmed and

Ismail (2008) had been carried out to analyse the sensitivity and resolution of the ECT sensor.

The analyses have found that ECT primary electrode size plays an important role in influencing

the sensing area sensitivity and resolution towards producing better tomograms. Reducing the

size of primary sensors increases the resolution but decreases the sensitivity, and vice versa.

From these findings, it can be deduced that a generic intelligent system can be developed by

varying ECT primary electrode sizes. The main question is how to develop one. Therefore, an

investigation on developing an intelligent generic process interpreter seems necessary.

1.3 Research Objectives

This research work aims to develop intelligent generic flow regime classifier and oil fraction esti-

mator systems. As previous literature works have shown that primary electrode size is the most

significant sensor parameter, this work focuses on genericity in terms of ECT primary electrode

sizes. The objectives of the research are as follows:

(i) To develop an intelligent gas-oil flow regime classifier using ANN based on ECT data of

various primary electrode sizes.

(ii) To develop an intelligent oil fraction estimator using ANN based on ECT data of various

primary electrode sizes.

(iii) To assess the capability of the intelligent process interpreter systems at classifying gas-
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oil flow regime and estimating oil fraction by comparing their performances with intelligent

process interpreter trained with fixed-size primary electrode.

(iv) To design and implement a Graphical User Interface (GUI) for use with the developed intel-

ligent classifier and estimator based on generic primary electrode.

In this research, a variant of Multi-Layer Feed-Forward (MLFF) ANN known as Multi-Layer Per-

ceptron (MLP) has been used due its simple structure and its established capability at solving

many ECT problems. All stages of the work have been carried out using the tools supported in

MATLAB. The works have been done using a personal desktop computer having Core i7 (2.93

GHz) processor with 8 GB RAM.

1.4 Thesis Outline

This chapter introduces the research work. It briefs on the background, problems and motivation,

objectives and the scope of the research.

Chapter 2 gives a brief overview of Electrical Capacitance Tomography (ECT), as it is the

main subject of the research. Artificial Neural Networks (ANN) is also briefly reviewed. The

training algorithms and activation functions used in this research are explained in this chapter.

Then, a discussion on Principal Components Analysis (PCA) technique and its use in solving

ECT problems are discussed.

Chapter 3 explains the methods employed towards developing intelligent classifier gas-oil

and oil fraction estimator systems based on generic primary electrode. The proposed models

for the tasks are first presented and briefly described. This is followed by explanation on the

ECT sensor design used and how ECT data are collected. Then, the chapter explains how

the proposed models are developed based on several investigations. The process of employing
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the PCA is later explained. Finally the work stages involved in developing the Graphical User

Interfaces (GUI) for use with the developed flow process interpretation systems are explained.

Chapter 4 presents the results of developed intelligent flow process interpretation systems.

This includes discussion on the optimum number of training data, suitable normalisation method,

the best baseline, the best training algorithm and the best activation function. The effects of PCA

technique on the systems’ performances and training times are also presented and discussed.

Chapter 5 gives a brief summary on the research work. This is followed by the conclusions

of the investigation based on the obtained results. The final section of this chapter outlines the

possible future works that can be carried out based on the foundation of this work.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter briefly discusses Electrical Capacitance Tomography (ECT), one of the tomographic

sensing techniques. The ECT sensor design and its general principles are addressed. This

is followed by a discussion on Artificial Neural Network, and it then focusses on Multi-Layer

Perceptron (MLP) which is used in this research. Next, discussion on flow regime classification

and oil fraction estimation are presented. Finally, an overview of Principal Component Analysis

(PCA) method for obtaining the uncorrelated input components is explained.

2.2 Electrical Capacitance Tomography (ECT)

The origin of the word "tomography" is from Greek words; “tomos” meaning slice or section and

“graphe” meaning drawing. Tomographic measurement technique was first applied to medical

imaging in 1970s. A Computerised Tomography (CT) machine uses radiation source (such as x-

ray or γ-ray) that rotates around a human body to obtain a set of measurements. These measured

data are used to reconstruct a cross-section of the human body.

In the 1980s, tomographic technique was introduced for industrial processes. Known as Pro-

cess Tomography (PT), it has become increasingly popular with its adoption and implementation

based on various modalities and techniques. However, the most conspicuous PT techniques are

those based on measurement of electrical properties through utilization of capacitive, conductive,

or inductive nature of materials under investigation. Of these electrical tomographic techniques,
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capacitance tomography is in the most advanced state of research and development for industrial

process applications. Electrical Capacitance Tomography (ECT) is a sensing system which uses

capacitive measuring technique. It normally consists of copper electrode plate sensors which

are sensitive to differing dielectric constants of materials. The sensors are mounted equidistantly

around the periphery of an insulating process equipment at a point of interest. Different materi-

als have different values of dielectric constants also known as relative permittivities. Hence, the

distribution of two-component flows within an ECT sensing region produces a change in the ca-

pacitance measurements between two electrodes. The effective capacitance that occur between

pairs of electrodes inside a pipe vessel are measured. Then, an appropriate image reconstruc-

tion algorithm is used to reconstruct an image of such material distribution using the capacitance

measurements. The tomographic images obtained from the imaging process are not only useful

in determining the flow regime but also the vector velocity and component concentration in pro-

cess vessels and pipelines. ECT has been applied in various industrial control operations such

as imaging of two-component flow of gas-oil in pipelines (Wang, 2007; Ahmed and Ismail, 2008),

gas-solid flows in pneumatic conveyer (Arko et al., 1999; Mosorov, 2008; Zheng and Liu, 2011)

and separation of oil, water and gas in plant vessel (Bukhari and Yang, 2006; Jaworski and Meng,

2009).

Figure 2.1 illustrates an ECT system consisting of the sensor system, the data acquisition

system (DAS) and the computer system. The sensors produce differential voltage between all

possible electrode combinations. These measurements are taken by the DAS which is also

responsible for converting the ECT measurements into digital signal and sending the signal to

the computer system. The computer has two main functions. First, it controls the measurement

operations performed by the DAS through the sensors. Second, by means of an appropriate

algorithm, it uses the measured capacitance data to produce useful information represented

either qualitatively in the form of a reconstructed image of flow process and/or quantitatively in
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the form of flow parameter estimations.

Figure 2.1: A schematic diagram of an ECT system

2.2.1 ECT Sensor Design and Parameters

Basically, an ECT sensor consists of primary electrodes, guard electrodes and an outer screen as

shown in Figure 2.2. Figure 2.3 gives an illustration on typical ECT sensor design and parameters

for an oil pipeline. From the figure, R1 is the inner radius within the sensing region.R2 is the outer

radius which extends from the middle point of a pipe to the ECT sensor system.R3 is the radius

of electrode screen which shields the whole sensor system. The primary electrode angular size,

θ is one of the important parameters affecting the system’s sensitivity. The guard electrode size,

β most often depends on the size of θ . The sizes of these parameters play important role in an

ECT system (Yang, 2010; Mohamad et al., 2011).

The primary electrodes are used to accumulate charges to generate electric field in order

to create capacitance effect to measure capacitance values. The outer screen placed around

the electrodes shields the sensor system from the effects of extraneous variations in the stray

capacitance to earth. Stray capacitance is an undesirable capacitance that usually occurs within

the CMOS switches in the measuring circuit, within the cables connecting the electrodes to the

measuring circuits and the sensor screen (Yang, 1995). The earthed guard electrodes placed

between adjacent primary electrodes are used to reduce the standing capacitance between ad-

jacent electrodes. They are also used to confine the electric field lines within the pipe regions
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Figure 2.2: A 3-D schematic of ECT sensor array

Figure 2.3: A typical 2-D schematic diagram of an ECT sensor model attached around a
pipeline (adapted from Mohamad-Saleh and Hoyle, 2002)
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referred to as positive sensing area. Thus, the electric field lines cannot travel between adjacent

primary electrodes as shown in Figure 2.4.

Figure 2.4: Electric field lines being confined by the earthed guarding electrodes (adapted from
Martinez et al., 2006)

As illustrated in Figure 2.4, the field lines traveling from the source electrode through the pipe

wall, crossing the equi-potential lines vertically, die at the grounded guard electrode before they

can reach the adjacent electrode. The external field lines are neutralised by the grounded outer

screen. Consequently, the capacitance measured between these electrodes is due only to the

field lines that cross the region under study (i.e. the interior of the pipe).

A vital step in planning a successful ECT application is the design of the capacitance sensor

unit. Various design parameters of ECT sensors interact and affect the overall sensor perfor-

mance and various design rules (Yan et al., 1999; Alme and Mylvaganam, 2006; Yang, 2010)

have been developed which allow an effective ECT sensor to be constructed for a specific appli-

cation. For instance, the number and the size of measuring electrodes are two design parameters

of a sensor unit which are application dependant. With the increase in the number of electrodes,

the number of independent measurements increases and a higher resolution image can be ob-

tained. However, too many electrodes results in smaller electrode size which leads to lower

measurement sensitivity compared to a sensor unit with fewer electrodes. Sensitivity can be
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increased by using bigger electrodes though this will decrease resolution and therefore, a good

image cannot be obtained.

Until now, most applications have used ECT sensors with 8, 12 or 16 electrodes (Flores et al.,

2005). Currently, 8 or 12 electrodes are commonly used in an ECT sensor for various applica-

tions. This is because the number is a good compromise between sensitivity and resolution. Six

and 16 electrodes are less commonly used in applications. Table 2.1 summarises the use of

different numbers of electrodes in various applications.

Table 2.1: Example applications of ECT sensors with various number of electrodes and their
application

Number of electrodes Application
6 Visualising combustion flame in an engine cylinder with an attempt

to achieve 36000 frames per second (Waterfall et al., 1996)

Imaging of gas-water flows (Worasawate and Klongpramong, 2007)

Monitoring high-shear mixing and high-shear granulation
processes (Rimpilainen et al., 2011)

8 Imaging wet gas separator (Yang et al., 2004)

Imaging oil-water flows (Chen et al., 2008)

Imaging gas-solid flows in horizontal pipe (Daoye et al., 2009)

12 Measuring gas-oil-water three components flows (Ismail et al., 2005)

Imaging of shallow bubble columns in air-kerosene mixture
(Al-Masry et al., 2010)

Imaging pharmaceutical fluidized beds (Wang and Yang, 2011)

Measuring void fraction in an air-water co-current
bubble column (Ismail et al., 2011)

16 Estimating metal fill profile in lost foam casting (Deabes et al., 2008)

Imaging of processes in a bubble column (Smolik, 2010)

Imaging water and dicholoromethane droplets of low concentration in
the encapsulation chamber (Rezvanpour et al., 2012)

2.2.2 General Principles of ECT Measurement

ECT systems are used to measure permittivity distribution of pipe contents by measuring the

inter-electrode capacitances. ECT systems work well for a two-component system, which is

modeled as a combination of two substances having different relative permittivities. For an ECT
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system, air has a relative permittivity of 1. Assuming the other component have a dielectric

constant εk, the capacitance between any two electrodes is given by (Alexander and Sadiku,

2012)

C =
Aε0εr

d
(2.1)

where A is the area of electrode cross-section, ε0 is the permittivity of free space and d is the

distance between the electrodes. The dielectric constant εr is the relative permittivity.

Each time measurement is made, one of the primary electrodes acts as an excited electrode

(an electrode which is excited at a potential voltage) and the remaining electrodes become the

sensing electrodes (held at the potential ground). For instance, for a 12-electrode ECT sensor,

if electrode 1 is the excited electrode, all other 11 electrodes become the sensing electrodes.

As such, measurement protocol in the data acquisition system first measures the difference in

capacitance between electrodes 1 and 2 (C1,2), then between electrodes 1 and 3 (C1,3), and so

forth up to 1 and 12 (C1,12). Then, the measurement procedures continue with the differences in

capacitance between electrodes 2 and 3 (C2,3), and so forth up to 2 and 12 (C2,12). These mea-

surements continue until the differences between all possible pairs of electrodes are measured.

The excited electrodes and the capacitance measurements produced are shown in Table 2.2.

Table 2.2: Capacitance measurements produced from pairs of excited and other electrodes,
which form a set of ECT data for a flow

Excited Electrode Pairs of Capacitance Measurements
1 C1,2 C1,3 C1,4 C1,5 C1,6 C1,7 C1,8 C1,9 C1,10 C1,11 C1,12
2 C2,3 C2,4 C2,5 C2,6 C2,7 C2,8 C2,9 C2,10 C2,11 C2,12
3 C3,4 C3,5 C3,6 C3,7 C3,8 C3,9 C3,10 C3,11 C3,12
4 C4,5 C4,6 C4,7 C4,8 C4,9 C4,10 C4,11 C4,12
5 C5,6 C5,7 C5,8 C5,9 C5,10 C5,11 C5,12
6 C6,7 C6,8 C6,9 C6,10 C6,11 C6,12
7 C7,8 C7,9 C7,10 C7,11 C7,12
8 C8,9 C8,10 C8,11 C8,12
9 C9,10 C9,11 C9,12

10 C10,11 C10,12
11 C11,12
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The total number of capacitance measurements N can be calculated using (Alme and Myl-

vaganam, 2006)

N =
n(n−1)

2
(2.2)

where n is the number of electrodes used in an ECT sensor system. Therefore, for a 12-electrode

sensor, there are 66 possible values of inter-electrode capacitances.

2.2.3 ECT Data Normalisation Model

The relation between two sensing electrodes can be linear or nonlinear in nature depending on

the normalisation models; series or parallel, used to characterise the way in which the contents

occur (Yang and Byars, 1999; Dong and Guo, 2008). From equation (2.1), it can be seen that the

capacitance measured depends on the relative permittivity of the materials, the size of electrodes

and the distance between two electrodes. However, it is an undeniable fact that the electrode

capacitances are also strongly depend on the electrodes geometric configuration whereby the

capacitance responses between different electrode combinations present a great distinction in

magnitude and distribution profile. In order to eliminate the effect and reduce systematic errors

in the measurement system, the measured capacitances need to be normalised either based

on a series or parallel model. Both models treat each pair of measuring electrodes as an ideal

parallel-plate capacitance sensor (Dong and Guo, 2008) and assume that the distribution of the

two types of materials is in parallel or series arrangement. Figure 2.5 shows a parallel-plate

capacitor with c1 and c2 representing the thickness (i.e. volume fraction) of the high permittivity

material for parallel and series models, respectively.

For the parallel model shown in Figure 2.5(c), the measured capacitance between electrode

pair i-j can be expressed as the sum of the two capacitances:

Ci, j = (1− c1)Cl
i, j + c1Ch

i, j (2.3)
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Figure 2.5: Schematic diagram of ECT sensor cross-section of (a) an emptied pipe (b) a pipe
filled with highly permittivity material (c) parallel model, and (d) series model

where Cl is the capacitance of lower permittivity material and Ch is the capacitance of higher

permittivity material.

For series model, it is given by

1
Ci, j

=
1− c2

Cl
i, j

+
c2

Ch
i, j

(2.4)

Rearranging equations (2.3) and (2.4), the parallel and series normalised capacitances C1
i, j

and C2
i, j can be obtained as (2.5) and (2.6), respectively,

C1
i, j =

ci, j − cl
i, j

ch
i, j − cl

i, j
(2.5)

C2
i, j =

1
ci, j

− 1
cl

i, j

1
ch

i, j
− 1

cl
i, j

(2.6)
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Equation (2.5) is also referred to as the conventional normalisation (Xie et al., 1992) whereby

the normalised capacitance is a linear function of the measured capacitance in contrast to the

series normalised capacitance being a nonlinear function (Yang and Byars, 1999).

2.3 Artificial Neural Network

Human’s brain ability to make decision in solving very complex tasks, which are difficult for the

conventional step-by-step computer programming method to solve, has led to the development

of artificial neural network (ANN). ANN has been widely accepted and become a successful

computational elements due to its advantages over the conventional algorithms. ANN has the

ability to represent any simple or complex, and linear or nonlinear functions; that it is also called

universal approximator (Kim et al., 2011). In addition, ANN is also more fault-tolerant than other

algorithms because small changes in the input values normally cause no changes in the output

values at all. The fault tolerance also allows ANN to adapt to failure of single or multiple neurons

due to its information-distribution characteristic. This allows the whole system to still be efficient

enough although some neurons fail (Sifaoui et al., 2008; Anastassiou, 2011). Furthermore, due to

its massive network structure and inherently parallel nature, very high computational rate can be

achieved when ANN is implemented directly into hardware or simulated using parallel algorithm

(Yammenavar et al., 2011). Due to these reasons, ANN has been applied in wide ranging areas of

human interests including medicine (Ecke et al., 2012), business and finance (Falavigna, 2012),

robotic control (Kimn et al., 2012), signal processing (Yang et al., 2012), data processing (Sun

et al., 2012) and non-linear control (Wahab et al., 2011).

An artificial neuron is a mathematical function conceived as a crude model of biological neu-

ron. Figure 2.6 shows a basic model of artificial neuron. The computational element is often

called a unit or node. The node receives input from some other nodes or from an external

source. Each input x has an associated weight w that can be modified which corresponds to the
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brain learning through the modification of the chemical information through the synapses. The

node calculate some function f of the weighted sum of its input:

yi = f (
n

∑
j=1

wi jy j) (2.7)
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Figure 2.6: Artificial neuron

The weighted sum ∑ j wi jy j is called the net input while the function f is the node’s activation

function. yi is the output of the node which in turn can serve as input to other nodes.

An ANN can be classified by the type of learning scheme; either supervised or unsuper-

vised. Each learning scheme can be categorised into its architectural types. Supervised learning

involves training ANN by providing it with inputs and matching output patterns. Unlike the super-

vised learning, unsupervised learning, involves presenting an ANN with only inputs. The system

must then develop its own representation of the input stimuli. Unsupervised learning has been

reported to be less efficient at classification and approximation tasks (Saboori et al., 2010). This

work adopts supervised learning and hence only this learning scheme is discussed.

Basically, there are three types of supervised ANN architectures; Single-Layer Feed-Forward

(SLFF), Multi-Layer Feed-Forward (MLFF) and recurrent. SLFF is a linear ANN which can only

solve linear problems. MLFF is one of the universal approximators, capable of solving linear and
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non-linear problems. Recurrent ANN is similar to the MLFF with more complex structural links,

and hence may be more computation-intensive. This work considered the use of MLFF ANN.

2.3.1 MLP Structure

MLP is a variant of the supervised MLFF. It has simple structure and hence it is fast, but yet

capable of solving most nonlinear problems. Classification and estimation are among the most

successful applications that have been solved with MLP (Pham et al., 2012; Mirjalili and Sadiq,

2011).

The basic architecture of MLP consists of three types of neuronal layer: input, hidden and

output. Figure 2.7 shows a three-layer feedforward MLP. Each layer consists of neurons which

Figure 2.7: A schematic diagram of Multi-Layer Perceptron (MLP) for neural network (adapted
from Saboori et al., 2010)

act as the processing elements. Input signals, x1, x2, . . . , xn are fed to an MLP via its input

neurons. Then, these input neurons pass the signals to the hidden neurons via the input weight

connections, w11, w21, . . . , w4n. The hidden neurons execute some computations and transmit

the results to the output neurons via the output weight connections, w211, w221, . . . , w2m4. The

output neurons then carry out further computation and present the final results, y1, . . . , ym. The
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number of input, hidden and output neurons in a MLP is problem dependent. The number of input

neurons usually corresponds to the number of available measurements or parameters related to

a problem. The number of output neurons correspond to the number of solutions required. For

example, in a classification problem, the number of output neurons equal the number of classes

involved. The number of hidden neurons for solving a task is to be determined. Determining

the optimum number of hidden neurons in an MLP is very crucial. An MLP with too few hidden

neurons will not have enough capability to represent the input-output mapping. An MLP with too

many hidden neurons on the other hand, leads to a problem of data over-fitting where the MLP

simply memorises the training data and ends-up with a poor generalisation capability.

2.3.2 MLP Learning

Training of a MLP involves adjustment of its weights to match the actual outputs to desired outputs

of the MLP. A weight specifies how strong a connection is between two artificial neurons. Usually,

initial MLP weights are simply set to small random numbers and they can be positive or negative

values. This provide the training algorithms with a good starting point to work towards a solution.

Hence, as a MLP training process proceeds its weights are adjusted to produce accurate results

to an associated.

An activation function, which is also known as threshold function or transfer function, is a

function that described the output behaviour of a neuron (Karlik and Olgac, 2011). It is used to

limit the output amplitude of a neuron to some finite or bounded value. The choice of activation

function is important for the performance of a training algorithm towards achieving good output

accuracy. Some of the most commonly used activation functions to solve non-linear problems

using MLP are the logarithmic sigmoidal and hyperbolic tangent sigmoidal (Dixit and Dixit, 2008;

Isa et al., 2010).
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Figure 2.8 shows the logarithmic sigmoidal function which saturates to either near 0 or 1.

These two values are used to indicate the membership of an output class. The expression for

this function is given by

f (x) =
1

1+ e−kx (2.8)

where x is the sum of weighted inputs and k is the slope constant commonly set to 1. The input

x for this function varies from −∞ to +∞. The output is within (0,1).

Figure 2.8: Logarithmic sigmoidal activation function

Another most common activation function used in MLP is the hyperbolic tangent sigmoidal

activation function. This function is similar to the logarithmic sigmoidal activation function in

transforming the net weighted input to saturate output class to between -1 and +1. Figure 2.9

shows the plot of this function and the expression is

f (x) =
1− e−kx

1+ e−kx (2.9)
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Figure 2.9: Hyperbolic tangent sigmoidal activation function

2.3.3 MLP Training Algorithm

The Back Propagation (BP) algorithm is a preferred algorithm used to train a MLP. Its original

version was proposed as early as 1960s (Rosenblatt, 1962) and later improved by Werbos (1974);

Parker (1982) and finally by Rumelhart and McClelland (1982).

Not-withstanding its popularity, the traditional BP algorithm, which uses the Gradient Steepest

Decent mehod suffers from two major shortcomings; it converges slowly to the optimal solution

and it may yield a poor solution as it can be trapped at a locally optimised solution. This algo-

rithm is obviously too slow for a practical problem and hence several researches on methods to

accelerate its learning process have been carried out.

The faster algorithms can be divided into two categories. The first one uses heuristic methods

which involves optimising various BP algorithms parameters such as varying the learning rate,

using momentum and rescaling the variables as well as BP’s topology. Although the modifications

of these two aspects significantly influence the speed towards achieving a solution, they do not

guarantee convergence towards a globally optimal solution.

The second category of fast BP algorithms adopts stochastic numerical optimisation tech-

niques. These techniques include the Conjugate Gradient, Quasi-Newton and Levenberg-Marquardt
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methods. Conjugate Gradient methods are rarely used as a primary method to solve various

problems because they require time-consuming line search method (Butt, 2009). MLP training

is normally considerably faster when Quasi-Newton (QN) and Levenberg-Marquardt (LM) are

utilised but they tend to be less efficient for MLP training with several thousand of weights. This

is because they require more memory and longer computation time (Demuth and Beale, 2010).

Nevertheless, problems involving thousands of weights are rare. The LM algorithm has been

a commonly used training method for various applications (Khajeh et al., 2012; Keçebaş and

Yabanova, 2012; Nadimi et al., 2012; Kana et al., 2012; Aghbashlo et al., 2012).

Bayesian Regulation (BR) training algorithm is an extended or modified version of LM training

algorithm. Although, this training algorithm updates weight and bias values according to LM op-

timisation, it has a different performance function from the LM training algorithm. The difference

being that it minimises MLP error along with the weights and biases. Then, it determines the best

combination so as to produce a network that generalise well (Thakare and Singhal, 2011). This

method has shown its capability to produce MLP with smaller and smoother weights and biases

that over-fitting of training data can be prevented (Ni et al., 2009; Chamjangali and Ashrafi, 2013).

The process of selecting the best training algorithm depends on the nature of a problem. To

select an efficient training algorithm for a certain problem, a number of training runs are performed

using different training algorithms. Then, the best one is chosen based on the best-performed

MLP. The work involves extensive MLP training runs.

2.4 ECT Process Interpretation

In ECT, the changes in the capacitance between all possible combinations of electrodes are mea-

sured when dielectric materials such as a mixture of oil and gas is introduced into the sensing

region of process equipment. From these capacitance measurements, an image based on the

22



variation of material permittivity within a cross-section can be obtained using sophisticated algo-

rithms. The images are analysed to compute and interpret the parameters related to the process

such as spatial distribution, volume ratios of fractions of the materials, types of flows (i.e. flow

regime) and the velocities of the flow inside the pipe. This process is referred to as process

interpretation.

2.4.1 ECT Flow Regime Classification

Classification, which is the task of assigning objects to one of several predefined categories, is

a pervasive problem that encompasses many diverse applications. This type of information is

certainly useful in numerous industrial applications such as petroleum extraction and processing,

nuclear power plant and various chemical reactors. It is also one of the most important subject

to enact the efficiency and safety in aggressively fast-moving fluids in multiphase mixture in a

process equipment (Zong et al., 2010). Although there various techniques can be employed to

identify flow regimes, ECT measuring technique is a highly attractive technique due to its capa-

bility at obtaining measurements non-invasively, non-intrusively and with no radiation involved,

unlike other conventional technique.

Two methods that can be adopted for the task of process interpretation; ECT image recon-

struction and direct methods. A cross-sectional image can be reconstructed using ECT data with

an aid of an image reconstruction algorithm. Meanwhile, the direct method is a rather straight-

forward method of classifying flow regime using the capacitance measurements based on some

statistical manipulation or intelligent system.

The classification of flow regimes using an image reconstruction algorithm was first developed

by Xie et al. (1989). However, images produced by the algorithm appear distorted due to the soft-

field effect. Later many other more robust image reconstruction methods such as Landweber,
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Tikhonov and iteration methods have been proposed, but with few other associated problems

particularly flow regime dependent (Mohamad-Saleh et al., 2001). This fact has prompted many

researchers to opt for different reconstruction methods to overcome the problems associated with

the conventional image reconstruction algorithms.

In 1994, Nooralahiyan et al. (1994) was the first to carry out work on flow regime identification

using ANN replacing the conventional image reconstruction algorithms. Based on an 8-electrode

ECT system, a Single Layer Multi-Output ANN (SLMONN) with 28 input neurons (corresponding

to 28 capacitance measurements) fully connected to a grid of 100 neurons in the output layer

(corresponding to the spatial image) was developed. The SLOMNN was trained to learn differ-

ent features of four different flow regimes (i.e. bubble, core, annular and stratified flows) to their

respective output patterns. Given a set of capacitance measurements and superimposing the

associated output patterns, the SLMONN learned to construct tomographic images by extracting

features and mapping them onto the 100 grids of neurons. The results showed that ANN pro-

duced more accurate tomograms compared to the conventional image reconstruction algorithms.

However, the process of image reconstruction is very time-consuming, hence direct method have

been employed by many researchers to get fast results.

In a research by Sun et al. (2002), ECT data in a form of differential pressure signal was pro-

cessed using wavelet analysis to extract six significant features. Then, a Multi-Layer Perceptron

(MLP) ANN model was employed to learn the features and classify four different flow regimes,

namely annular, bubble, plug and slug flows. The correct flow regime identification percentage

obtained was 86.76%. Yan et al. (2004) presented ten features extracted from ECT measure-

ments to a MLP ANN and trained them to classify eight different flow regimes. The MLP attained

an average of 93.7% correct identification percentage. Barbosa et al. (2010) studied flow regime

identification gas-solid and gas-liquid using a Self Organizing Map (SOM) neural network. The

data used not only contain ECT measurements but also values of pressure drop and fluctuating
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