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PENDEKATAN PERANCANGAN BERASASKAN
HEURISTIK UNTUK MENINGKATKAN LIPUTAN

TANPA WAYAR DALAM BANGUNAN BERTINGKAT

ABSTRAK

Tesis ini menilai Rangkaian Tempatan Tanpa Wayar (WLAN) dari segi liputan, kadar data,

dan gangguan pertindihan bersama saluran. Matlamat penyelidikan ini ialah untuk meningkatkan

liputan WLAN dengan melaksanakan simulasi perancangan rangkaian tanpa wayar dalam ban-

guanan bertingkat. Kerja terlibat dalan tesis ini dilaksanakan dalam tapak uji sebenar dan

secara simulasi. Model kehilangan jalan berdasarkan teori yang diubahsuai telah diberi untuk

menganggar kehilangan jalan antara pemancar dan penerima dalam simulasi. Keputusan model

empirikal telah dibandingkan dengan model teoritikal dan keputusan dipaparkan dalam visu-

alisasi kontur. Reka bentuk ini terhad kepada titik akses (AP) WLAN yang beroperasi pada

frekuensi 2.4 dan 5 Gigahertz (GHz) yang menyokongi standard 802.11n. Kajian ini men-

cadangkan satu pendekatan baru dengan kombinasi Kepintaran Buatan (AI) yang berdasarkan

Teori Resonance Bersesuaikan Diri 1 (ART1) dan Algoritma Genetik Berbagai Objektif (MO-

GA) untuk pemberian saluran yang lebih efektif, dan kedudukan peralatan titik akses yang

lebih baik dalam simulasi. Dengan cara yang dicadangkan ini, penyelesaian yang lebih baik

untuk letak-atur WLAN dapat dicapai. Daripada keputusan simulasi, liputan yang lebih baik

telah dicapai dengan sekurang-kurangnya perletakan tiga AP, dan liputan meningkat dari -85

Desibel Dirujuk kepada Milliwatts (dBm) hingga -70 dBm dan ke atas untuk lokasi yang dikaji

(makmal NAv6), sebagaimana dibandingkan dengan lokasi perletakan AP yang asal.
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HEURISTIC BASED PLANNING APPROACH FOR
IMPROVING WIRELESS NETWORK COVERAGE

OF MULTI-STOREY BUILDING

ABSTRACT

This thesis evaluates Wireless Local Area Network (WLAN), in terms of coverage, data

rate, and overlapping co-channel interference. The aim of this research is to improve the

WLAN coverage by implementing a wireless network planning simulation in multi-storey

building. The work presented in this thesis was conducted on both on-site measurement and

simulation. A modified theoretical path loss model was presented to estimate the path loss

between the transmitter and receiver in the simulation. The results of empirical model were

compared with the results of theoretical model and display them in the form of contour vi-

sualization. This design is limited to WLAN Access Points (APs) that operate at 2.4 and 5

Gigahertz (GHz) frequencies, supporting 802.11n standard. This research proposed a new ap-

proach to combine Artificial Intelligence (AI) using Adaptive Resonance Theory 1 (ART1)

and Multi-Objective Genetic Algorithm (MOGA) for more effective channel assignments and

better equipment placements of simulated APs. By means of this proposed approach, better

solution for WLAN deployment can be achieved. From the simulation results, better coverage

was achieved by deploying at least three APs, and the coverage value was increased from -85

Decibel Referenced to milliwatts (dBm) to -70 dBm and above for the test location (NAv6

laboratory), as compared to the original AP placement locations.
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CHAPTER 1

INTRODUCTION

1.1 Introduction to Wireless Network

The wireless networks are expanding rapidly as the benefits of access without cables are dis-

covered. Over the past decades, wireless network technologies have been used for data, voice

and video. Now, they are the mainstream internet connectivity solution for business, education

and personal usage.

There are a few types of wireless Radio Frequency (RF) networks, including the Institute

of Electrical and Electronics Engineers (IEEE) 802.11 Wireless Local Area Network (WLAN),

Wireless Personal Area Network (WPAN), and High Performance Radio LAN (HIPERLAN)

(Pahlavan and Krishnamurthy, 2002). These wireless networks operate on Industrial, Scien-

tific and Medical (ISM) and Unlicensed National Information Infrastructure (UNII) frequency

domains, such as ISM 900 Megahertz (MHz), ISM 2.0 Gigahertz (GHz) to 2.5 GHz, UNII 5.1

GHz to 5.8 GHz, and 60 GHz to 66 GHz. The IEEE created a working group called the 802.11

working group to set the 802.11 wireless standards. The 802.11 WLAN Standard, also known

as Wireless Fidelity (Wi-Fi), is one of the most active areas of research and development in

recent years. Originally, the research of wireless networks was driven primarily by the demand

of cost effectiveness for Personal Computer (PC) related usages, and this led to the develop-

ments of other kinds of services such as video transmission, Internet telephony, gaming and

music streaming (Somolinos, 2009). All necessary considerations for deployment of a WLAN

are difficult compared to the wired networks due to varying factors, including multipath fad-
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ing and interference. Thus, research activities on wireless networks are becoming the primary

focus of designers to ensure wireless network reliability and good performance.

1.2 Background of the Research

Designing a WLAN, especially an enterprise computer network, can be a daunting task. It

requires an understanding of how the 802.11 standards work, the differences between vendor

implementations, the varying obstructions of both indoor and outdoor environments, as well as

sources of interference that affect a WLAN’s performance.

Before an initial WLAN deployment, many network administrators are not aware that there

is a need to invest enough time to identify the best locations for the base stations or Access

Points (APs) to be deployed and to be monitored for optimum WLAN performance. While a

wireless system will enable mobility, the supporting infrastructure is not mobile and its place-

ment for performance and coverage must be carefully planned. The exact design steps needed

depend on the organization’s critical requirements for performance coverage and future growth.

According to Smith et al. (2000), it is essential to classify hierarchical cellular infrastruc-

ture supporting different cell sizes for wireless networks. There are three types of cells for

both outdoor and indoor channel allocations of radio propagation: macrocell, microcell, and

picocell. These different types of cells are categorized for different sizes of propagation cells.

The macrocell covers the radius from 2 Kilometers (km) to about 30 km, whereas microcell

has the radius between 200 Meters (m) and 2 km. The picocell, which is referred as the indoor

WLAN propagation cell in this thesis, has less than 200 m radius.
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1.3 Problem Statement

Although a picocell is not influenced by weather conditions like the rain, smoke and fog,

WLAN performance can be affected by the surrounding obstructions inside a building. The

varieties of in building materials and structures, such as walls, windows and floors are obstruc-

tions and they can create a phenomenon called path-loss (Saunders and Aragon-Zavala, 2007).

Therefore, it is important to place each Access Point (AP) in a strategic place. The phenomenon

of radio propagation degradation such as reflection, diffraction and scattering that are caused

by the mentioned obstructions also must be considered. Most office environments and mod-

ern homes are constructed with materials that are relatively translucent to radio waves at 2.4

GHz, so the range will not be greatly limited (Blaunstein and Christodoulou, 2007). However,

some materials do tend to present very reflective and refractive environments, and the ultimate

limitation will probably be some severe multipath problems.

A good WLAN coverage is definitely essential, but nowadays, users are demanding for

good WLAN capacity as well. According to Huang et al. (2005), a good WLAN coverage with

good capacity is hard to be achieved concurrently. Due to the capacity demand, the WLAN

deployment must be planned carefully for good coverage and capacity.

Surprisingly, the channel assignment strategy is mostly neglected when wireless designers

are deploying WLAN, especially the 2.4 GHz band. Due to the limited channels of 2.4 GHz

frequency band provided, the deployment can be costly if lack of WLAN planning solution or

without a WLAN channel assignment strategy for solving overlapping co-channel interference

issue. Furthermore, proper APs placements are important, because different WLAN place-

ments can create different WLAN coverage, capacity and possible co-channel interference.
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1.4 Research Objectives

The research objectives can be summarized as the points below:

• To perform on-site measurement for obtaining actual coverage of the deployed

WLAN at the test location (NAv6 laboratory).

• To evaluate the accuracy of existing indoor propagation model, to account for vari-

ous obstructions in a multi-storey building for manual planning and heuristic plan-

ning simulation.

• To develop a new heuristic WLAN planning approach.

• To compare the coverage results of on-site measurement against heuristic planning

simulation with different algorithms.

For heuristic planning, the goal of the Artificial Intelligence (AI) is to provide a solution to

obtain the simulated APs with the coverage of -at least -70 dBm and above, and overlapping

co-channel interference of -75 dBm and below.

1.5 Research Scope and Limitations

This research is about conducting a proper study of WLAN indoor propagation in a multi-

storey building. Therefore, the research scope is specifically on picocell and the IEEE 802.11

standards, consisting of 802.11n standard, operating at 2.4 GHz and 5 GHz bands. Outdoor

environment can be experimented by using on-site measurement approaches called automated

and assisted site survey for monitoring the WLAN Mesh deployment. However, the cost of

outdoor WLAN Mesh deployment is significantly higher than the indoor WLAN deployment,

and the size of outdoor cells are normally at least in microcell size. Due to these limitations,

wireless networks at outdoor environment will not be studied.
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Certain rooms are not opened during non-working hours. Therefore, it is not possible to run

the full WLAN on-site measurement in all of the rooms and labs in the experimented building.

It is also a tedious task to identify the upper rails or metals installed on each floor, because all

rails are hidden objects above the ceilings. Therefore, the signal absorption and reflection on

the rails are omitted.

Other wireless networks such as bluetooth, Wireless Local Loop (WLL), Worldwide In-

teroperability for Microwave Access (WiMAX), Hyper-LAN and Digital Enhanced Cordless

Telecommunications (DECT) technologies are not included, as these technologies are not part

of IEEE 802.11 standards.

1.6 Organization of Thesis

This thesis is organized into six chapters. In this chapter, the research background of wire-

less networks and an overview of problem statement were covered along with the research

objectives, research scope and limitations.

In Chapter 2, the literature review and fundamental concepts of RF propagation and issues

related to this research are discussed. Some particular propagation models for indoor environ-

ment are discussed as well.

Chapter 3 highlights the research design that shows how the WLAN on-site measurement

and planning can be carried out. It provides the procedures for WLAN on-site measurement,

manual planning, and automated planning that uses AI for WLAN heuristic-based planning.

Chapter 4 details the proposed on-site measurement and simulation methodology. It gives

in-depth explanation of the research methodology, including the visualization, the suggested

propagation models for simulation, and the WLAN heuristic-based planning.
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The analysis and discussion of the results after each experiment are the primary content

of Chapter 5. The experiments are the contour visualization, the on-site measurement, manual

planning using original Multi-Wall-and-Floor (MWF) model and adjusted MWF model, and

the heuristic-based planning using AI.

Chapter 6 summarizes this thesis. The research contributions are visited. And finally,

discussion and suggestion for future work directions pertaining to this research are presented.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, literature review of the related research is presented. Section 2.2 covers the

technology of WLAN, IEEE 802.11 standards and the advantages of using WLAN. In Section

2.3, the theoretical framework is explained, and this section highlights the critical elements for

this research. Section 2.4 is about wireless propagation in brief, specifically for picocell or

indoor environment, while Section 2.5 explores the multipath propagation effects, followed by

the detailed explanations of multiplicative and additive noise in Section 2.6. Lastly, Section 2.7

covers the Artificial Intelligence (AI) for WLAN simulation.

2.2 WLAN

WLAN is a generic term to refer to different technologies providing local area networking via

RF link. It is a system of data transmission specifically for mobile computing devices, using

radio waves instead of cable infrastructure. The IEEE 802.11, HIPERLAN, and DECT are

part of the WLAN technology. A WLAN AP can be connected to wireless clients such as

laptops with Electromagnetic (EM) wave propagation as the transmission medium. A WLAN

can work independently in ad hoc mode, but it is usually connected to an existing wired Local

Area Network (LAN) such as an Ethernet. In today’s computing world, WLAN is usually used

as the last connection medium between an existing wired network and a group of clients.

WLAN is widely accepted as an industry standard, which is named by IEEE as 802.11
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standard, and commonly known as Wi-Fi. The objective of the IEEE 802.11 is to develop a

specification for wireless connectivity for fixed, portable, and moving stations within a local

area.

Generally, WLAN can be operated in two modes, namely infrastructure and ad hoc, as illus-

trated in Figure 2.1 (Chen et al., 2003). The infrastructure mode consists of some of network

equipments and devices, such as AP, wireless controller, Ethernet switch, wireless bridges,

routers, and the wireless adapters that are connected to the WLAN receiving clients. These de-

vices are connected from an infrastructure network. A Peer-to-Peer (P2P) wireless connection

without a central AP and connected independently within a short range is considered an ad hoc

network.

Figure 2.1: A Comparison between Wireless Ad Hoc and Wireless Infrastructure Network

2.2.1 The Legacy 802.11 Standards

In 1997, IEEE ratified 802.11, which is the first widely recognized wireless network. It sup-

ported three spectrums, namely Infrared (IR), Frequency Hopping Spread Spectrum (FHSS),

and Direct Sequence Spread Spectrum (DSSS). Initially, it has less than a few hundred meters

radius of coverage area with only 2 Megabits Per Second (Mbps) of data rate. As an effort to

increase throughput, IEEE established two separated task groups, namely Task Group a (TGa)
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and Task Group b (TGb). The task of TGa was to discover the usability of the 5 GHz band,

while TGb explored the 2.4 GHz band. Later, another group called Task Group g (TGg) im-

proved the speed in the 2.4 GHz band, to operation at 54 Mbps maximum speed, and released

the 802.11g standard that can be interoperable with 802.11b.

IEEE 802.11a is using the 5 GHz ISM frequency band, which is different from the fre-

quency used by 802.11b and 802.11g. 802.11a is not compatible with 802.11b and g, but they

can coexist. IEEE 802.11a works with Orthogonal Frequency Division Multiplexing (OFDM),

which is a multiple-carrier signal technique with data rate up to 54 Mbps. As the other standards

are not interoperable with 802.11a, this standard is not as widely used as 802.11g. However,

being interoperable with 802.11n, the 802.11a adapter cards can be used if dual-band 802.11n

APs are deployed. 802.11a uses channel data rate of 6, 9, 12, 18, 24, 36, 48, and 54 Mbps.

IEEE 802.11b is still used by home and small-scale wireless networks. It is also interop-

erable with the 802.11g standard, thus making it a widely-used standard at this moment. It

operates at the 2.4 GHz ISM frequency band, but the transfer rate is only up to 11 Mbps. This

made the 802.11b standard subsequently superseded by 802.11g standard. However, com-

pared with the 5 GHz 802.11a standard, its downside is in a higher possibility of overlapping

co-channel interference due to limited availability of non-overlapping channels. Additionally,

because of the lower frequency, 802.11b standard has a lower capacity compared with 802.11a

standard.

The IEEE 802.11g is the most widely used standard at this time, as there are many en-

hancements compared with 802.11b and 802.11a, and the cost of 802.11g APs deployment

is lower. Instead of DSSS used for 802.11b standard, it works with the same modulation as

IEEE 802.11a, which is OFDM. With this method, it allows data rate of up to 54 Mbps to

be achieved. Another advantage is that it has better range than 802.11a as it is operating with
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2.4 GHz, instead of 5 GHz. It is also backward compatible with 802.11b standard. Unfortu-

nately, like the 802.11b standard, there are limited non-overlapping channels can be operated

for 802.11g standard.

Figure 2.2 summarizes the supported data rate and modulation techniques of the legacy

802.11 standards.

Figure 2.2: The Data Rate for 802.11abg Standards (Xirrus, 2008)

2.2.2 802.11n

In 2003, Task Group n (TGn) was formed and the 802.11n standard was rectified in Septem-

ber 2009. Pollin and Bahai (2009) explained that there are two different kinds of 802.11n

transceivers, one only operates on one frequency band, which is 2.4 GHz, while the other op-

erates on two frequency bands simultaneously, which are 2.4 GHz and 5 GHz. Users with

dual-band receivers can have better capacity of WLAN, due to the availability of the 5 GHz

band.

Together with Multiple-In, Multiple-Out (MIMO) support, 802.11n allows channel bond-
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ing or channel bundling that can double the normal data rate (Perahia and Stacey, 2008). Most

first generation 802.11n systems support two spatial streams. By combining all of the enhance-

ments of the first generation 802.11n, it is expected that 130 Mbps is the highest data rate in a

20 MHz channel and 300 Mbps with channel bonding, 40 MHz channel with short guard in-

terval. The second generation 802.11n systems that incorporate additional spatial streams can

deliver up to 600 Mbps with channel bonding and short guard interval. Table 2.1 explains the

supported channels for 802.11n channel bonding (Perahia and Stacey, 2008). Figure 2.3 shows

the calculation formula for the highest data rate of the 802.11n standard (Perahia and Stacey,

2008).

Table 2.1: Channels that can be Bonded for 40 MHz Channel Allocation

Channel 1 (20 MHz) Channel 2 (20 MHz)) New 40 MHz Channel Frequency
36 40 5190
44 48 5230
52 56 5270
60 64 5310

100 104 5510
108 112 5550
116 120 5590
124 128 5630
132 136 5670
149 153 5755
157 161 5795

Figure 2.3: The Formula to Obtain Highest Data Rate of 802.11n
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However, Shrivastava et al. (2008) showed a disadvantage of the rectified 802.11n, which is

the throughput of 802.11n can be degraded with the presence of 802.11g link and the increased

amount of interference due to wider channel bandwidths.

2.2.3 Advantages of WLAN

In certain areas, it is difficult for wired cables to be laid. Thus WLAN is a good solution when

dealing with cable installation difficulty. Additionally, it will be much easier for users to move

their laptops if it is connected to the WLAN and users still can enjoy connectivity while on the

go. WLAN Internet connectivity is great for any company where its site is not beneficial to

LAN wiring because of the budget limitations or building structure like old buildings, leased

space, or temporary sites.

When dealing with a new environment, cost of purchasing and time of installing the net-

work cables for a wired system are definitely more than for a WLAN system. While the ini-

tial investment required for WLAN hardware can be higher than the cost of traditional wired

LAN hardware, overall installation expenses and life-cycle costs can be significantly lower.

Long-term cost benefits are greatest in dynamic environments that require frequent moves and

changes. The WLAN concept ensures that not only the regular desktop and laptop users can be

benefitted from wireless access via Internet, other devices such as mobile computers, printers,

Personal Digital Assistants (PDAs), mobile phones and other Wi-Fi enabled mobile devices

can be fully utilized with WLAN connections.

2.3 Theoretical Framework

The first issue every network administrator has to face is to accurately describe the quality

of a network, based on realistic propagation predictions. The second issue is to implement
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an optimization plan that provides efficient deployment strategies. The essence of measuring

or monitoring a wireless network is to have a clearer view of the current status of wireless

network. On the other hand, by doing wireless network planning, a network administrator can

proactively deal with potential problems without the cost of actual deployment. According to

Pahlavan and Krishnamurthy (2002), the wireless network on-site measurement and planning

can be defined as a set of measurements and practices on wireless networks that are employed

to be observed and analyzed by people for better performance, coverage, capacity, and other

aspects of the wireless networks.

WLAN planning is much more convenient and cost-effective way to deploy a wireless net-

work, compared with the WLAN on-site measurement with lots of measurements and empirical

decisions. It is not convenient to measure the signal strength in each and every measurement

points for all space in the design region. Some efficient propagation models are required to ana-

lyze and optimize a wireless network. With simulation, different configurations of the wireless

network can be tested at almost no expense to find an optimal solution.

Figure 2.4 shows the critical elements for this research. The critical elements are the

database used by the simulator, the simulation process, the on-site measurement process, the

propagation model used, and assumptions and analysis to be made from the obtained results.

The WLAN on-site measurement is also referred as WLAN monitoring throughout this re-

search.

Variables can be identified from the WLAN devices. The Variables are signal strength, data

rate, and co-channel interference. Signal strength is the value of each measurement point or

calculated point, and the signal strengths collected within an area are called coverage. Simi-

larly, the data rate is the value of each point, and the accumulated values within the same area

are called capacity. These three variables are critical for determining the WLAN performance.
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Figure 2.4: Critical Elements of Wireless Network Monitoring and Planning(Pahlavan and
Krishnamurthy, 2002)

Table 2.2 shows the relationship between the variables and the factors involved.

Table 2.2: The Factors and Variables of WLAN Monitoring and Planning

Variables Factors
Signal Strength

1. Distance between the transmitter and receiver.
2. Physical obstructions in the path of the WLAN transceivers.
3. Power supported by WLAN transceivers.

Data Rate
1. Distance between the transmitter and receiver.
2. Physical obstructions in the path of the WLAN transceivers, which

can also interfere with signal quality.
3. Power supported by WLAN transceivers.
4. Radio interference in the path of the WLAN device.

Co-Channel In-
terference 1. Distance between the transmitter and receiver.

2. Physical obstructions in the path of the WLAN transceivers.
3. Power supported by WLAN transceivers.
4. Selected channel on each AP.

According to Alexander (2004), there are three types of WLAN measurement approaches,

namely manual site survey, automated site survey and assisted site survey, as shown in Figure

2.5. Manual site survey is a site survey on a physical site with an administrator walking around
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the site, whereas automated site survey is a controlled survey, fully accomplished by a wireless

controller on connected Lightweight Access Point Protocol (LWAPP) enabled APs, and it is

best to be applied to a wireless mesh network. Lastly, the assisted site survey is the combina-

tion of manual and automated, which means it extracts and uses the best features from both

approaches. The best approach to be used in this research is manual site survey, because there

is no wireless controller and LWAPP enabled APs in the experimental building for automated

and assisted site survey approaches to be used.

Figure 2.5: The Concept of WLAN Monitoring and Planning (Alexander, 2004)

2.3.1 Signal Strength

Signal strength and coverage are the same terms and they are used interchangeably in this re-

search. The signal strength calculated based on path-loss predictions is usually called the link

budget. The signal strength measured during a WLAN site survey is referred to as Received

Signal Strength Indication (RSSI). The WLAN signal strength is an important value in WLAN

on-site measurement and simulation works. The link budget result can be obtained from Equa-

tion 2.1 with inclusion of gain from Equation 2.2, with assumption that the environment is

interference-free (Tanghe et al., 2009).
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PR = PT +GT −PL+GR (2.1)

Gain,G =
Pdirectional

Pisotropic
(2.2)

In Equation 2.1, PL is the path-loss in Decibel (dB), PR represents power at the receiver,

PT is the power at the transmitter, and GT and GR are the antenna gain of the transmitter and

receiver respectively which can be obtained using Equation 2.2. In Equation 2.2, Pdirectional is

the power density of the directional antenna and Pisotropic is the power density of an isotropic

antenna.

2.3.2 Data Rate

Data rate or capacity of WLAN can be determined by the WLAN receiver with the Network

Driver Interface Specification (NDIS) programmed to support WLAN modulation identifica-

tion and RSSI of the transmitted packets in Decibel Referenced to Milliwatts (dBm) logged by

a monitoring tool. Through the use of the signal strength parameter, it is possible to determine

up to what distance from the AP a certain 802.11 data rate can be achieved. However, to cal-

culate the new data rate of 802.11n AP with two spatial streams, formula in Figure 2.3 has to

be used. The expected data rate from 802.11n AP is shown in Table 2.3.

2.3.3 Co-Channel Interference

Interference has been the main issue for WLAN deployment. Problems with signal interference

are common. Gummadi et al. (2007) discussed the weaknesses of the 2.4 GHz over the less-

used 5 GHz band, and their research also showed that sources in the ISM band, which are not
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Table 2.3: Expected Data Rate for 802.11n Access Point with Two Spatial Streams

802.11a/802.11g
Data Rate

One
Spatial
Stream

With Chan-
nel Bonding
(40 MHz)

With
Short
Guard
Interval

Two
Spatial
Streams

With Chan-
nel Bonding
(40 MHz)

With
Short
Guard
Interval

6 6.5 13.5 15 13 27 30
9 13 27 30 26 54 60
12 19.5 40.5 45 39 81 90
18 26 54 60 52 108 120
24 39 81 90 78 162 180
36 52 108 120 104 216 240
48 58.5 121.5 135 117 243 270
54 65 135 150 130 270 300

802.11 compliant, can degrade the performance of 802.11 Network Interface Card (NIC).

To avoid the co-channel interference and to maximize the channel reusability in wireless

cell planning, Briggs and Tijmes (2009) suggested a few channel assignment strategies for 2.4

GHz band, such as combination of channel 1 6 11, channel 1 7 13, and channel 1 5 9 13. These

strategies are suitable for a good WLAN channel planning.

According to Pahlavan and Krishnamurthy (2002), wireless network cells are of arbitrary

shape or close to a circle, and some regular polygons are needed to represent the wireless

network cell shape. Therefore, there can be three types of regular polygons, and they are

equilateral triangle, square, or regular hexagon as shown in Figure 2.6.

Although the hexagonal cell shape is often chosen as the default cell shape for all wireless

networks, the square and triangle shapes can be applied as well. In order to investigate the

effects of co-channel interference, which changes with distances, there is a need to come up

with an elegant way of determining distances and identifying cells.

According to (MacDonald, 1979), to maximize the capacity, co-channel cells must be

placed as far apart as possible for a given cluster size. The relationship among the distance
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Figure 2.6: Triangular, Rectangular and Hexagon Cells

between co-channel cell centers, D, the cluster size, N, and the cell radius, R, can be repre-

sented in a co-channel reuse ratio formula, as shown in Equation 2.3.

D
R
=
√

3N (2.3)

Considering there are Js interfering APs surrounding a given AP, the co-channel interfer-

ence value can be calculated in the form of a ratio called signal-to-interference ratio, as shown

in Equation 2.4.

SR =
1

R4

∑
Js
k=1

1
D4

(2.4)

2.4 Indoor WLAN Radio Propagation

In general, indoor RF propagation can be divided into three topographies (Blaunstein and

Christodoulou, 2007). The first is for transmission between a transmitter and a receiver that
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both are located near each other without any intervening obstruction. This topography is named

Line-of-Sight (LOS). The second topography is where the transmitter and receiver are located

in a same room, but with obstructions between them. This is known as Obstructed Line-of-

Sight (OLOS). The last topography, Non Line-of-Sight (NLOS), involves walls and floors

located between transmitter and receiver.

The Fresnel zone on LOS relies on visualizing an ellipsoid that surrounds the direct line

joining the transmitter to the receiver on a radio link. The ellipsoid is constructed so that the

sum of the lengths of the straight lines joining the point on the ellipse to each end of the link is a

constant distance greater than the length of the straight line between the ends. In free-space and

without any obstructions, only the first ellipsoid exists and determines the first Fresnel radius.

This ellipsoid covers an area between two terminal points, the transmitter and the receiver as

represented in Figure 2.7.

Figure 2.7: The First Fresnel Zone Covering Both Transmitter and Receiver under LOS

Understanding the indoor WLAN RF propagation can be as challenging as the outdoor

WLAN RF propagation. Hashemi (1993) discussed the major challenges for understanding the
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indoor RF propagation environment. A thorough understanding of the propagation models to

be examined and their unification to a better model can lead to better prediction and measure-

ment of indoor WLANs. Path-loss calculation is difficult for an indoor environment as there

are many kinds of physical obstructions within the indoor structure. The surrounding walls,

ceilings, cubicles and other EM wave-propagation obstacles usually block the path between

the transceivers.

2.5 Multipath Propagation Effects

Bidgoli (2003) explained that in a multipath propagation environment, all radio wave can un-

dergo five obstacles, namely reflection, diffraction, scattering, refraction and absorption. Those

five basic mechanisms cause radio signal distortion that makes a signal become stronger or lead

to propagation losses. In real life, they create additional RF propagation paths beyond the di-

rect optical LOS path between the radio transmitter and receiver. Among these five propagation

effects, reflection, diffraction and scattering have a greater influence on the indoor WLAN per-

formance, depending on local conditions and as a mobile unit moves through the area.

2.5.1 Reflection

When radio waves reflect off an object with dimensions very large compared to its wavelength,

reflection occurs. This obstruction near the LOS can reflect the main wave causing duplication

with a time delay at the receiver. As shown in Figure 2.8, this phenomenon can interfere

constructively or destructively at the receiver, depending on whether it is in or out of phase

with the signal travelling along the direct path.
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Figure 2.8: Reflected Signal on Reflective Surface

2.5.2 Diffraction

Diffraction of radio waves occurs when radio waves encounter the edge of an object that is

large compared to the wavelength. In Figure 2.9, a portion of the wave’s energy is bent around

the object, causing a change in direction relative to the LOS path.

Figure 2.9: Diffraction of the Transmitted Signal

2.5.3 Scattering

As shown in Figure 2.10, scattering occurs when it encounters an irregular object which has

rough surface and it is of a similar size relative to the wavelength. The energy distribution of

the wave undergoes random changes in direction, phase, and polarization.
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Figure 2.10: Scattering

2.5.4 Refraction

In Figure 2.11, refraction happens when there is a change in direction of an EM wave resulting

from changes of the velocity of propagation in the medium through which it passes. This can

result in only create a fraction or none of the LOS wave reaching the receiving antenna.

Figure 2.11: Refraction

2.5.5 Absorption

When radio waves meet an obstacle, some of the energy is absorbed and can be converted into

heat. The wave energy that is not absorbed will reach the receiver, but the total beam will be

attenuated. The amount of energy absorption and the attenuation very much depends on the
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material of the obstruction. Table 2.4 shows the attenuation losses for a selection of typical

materials and structures (Anderson, 2003).

Table 2.4: Signal Losses/Attenuation Caused by Varying Material

Materials Typical Attenuation (Loss) (dB)
Book Shelf 2
Brick Wall 10

Concrete Wall 12
Cubicle Wall 1

Dry Wall 3
Metal Partition 30
Glass Partition 3
Door (Wood) 2

Window 1

2.6 Multiplicative Noise and Additive Noise

All kinds of wireless networks, regardless of the operated frequency domains, can experience

signal strength degradation that is caused by noise. A kind of noise, called multiplicative noise

consists of path-loss, shadowing, and fast fading. Among these effects, path-loss is considered

as the main contributor of signal strength degradation when the distance between the transmitter

and receiver is increased and the height of the transmitter is changed (Alexander, 2004). The

main problem is that there are many kinds of physical obstructions, which can give network

designers hard time to evaluate EM wave propagation. Physical obstructions are the main

contributors of multiplicative noise in between the transmitter and the receiver (Saunders and

Aragon-Zavala, 2007). This problem leads to the WLAN AP placement problem for optimum

WLAN coverage or capacity.

Shadowing, also known as slow fading happens due to varying nature of the certain ob-

structions between the base station and the mobile receiver, such as a tall building which has

some obstructed and less obstructed paths. Fast fading or multipath fading happens when a
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transmitter and receiver are surrounded by objects that reflect and scatter the transmitted en-

ergy, causing several waves to arrive at the receiver via different routes.

Another noise contributor called additive noise, is caused by can be contributed by over-

lapping co-channel interference from surrounding APs. Overlapping co-channel interference

happens when there are improper channels assigned to the APs, and this causes degradation of

performance. Figure 2.12 illustrates the contribution of multiplicative noise and additive noise.

Figure 2.12: Contribution of Noise in Wireless Channel (Saunders and Aragon-Zavala, 2007)

As shown in Figure 2.4, the path-loss propagation model is critical for determining the cov-

erage of the wireless network. Three main path-loss models are used for all wireless network

research works, and they are empirical, physical and theoretical path-loss models. Among

these three models, two models are related to this research, namely empirical and theoretical

path-loss models. These two models are related because these models can be used to obtain

the indoor coverage of the WLAN. For example, Tanghe et al. (2009) demonstrated a WLAN

measurement and simulation work in an indoor factory, which it is about the utilization of a em-

pirical and theoretical model to measure and predict the range of 802.11b and g, with path-loss,

and temporal fading.

2.6.1 Empirical Path-Loss Models

Empirical models, also known as statistical models, fundamentally use experimental measure-

ment data to produce a relationship between the propagation circumstances and expected signal
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