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REKABENTUK OSILATOR KAWALAN VOLTAN (VCO) FREKUENSI 

SANGAT TINGGI (VHF) ALUR RENDAH YANG BERFASA HINGAR 

RENDAH UNTUK APLIKASI ALAT HUBUNG 

ABSTRAK 

Penyelidikan teknologi alat hubung bagi Frekuensi Sangat Tinggi (VHF) alur rendah 

kini adalah kurang kerana sistem komunikasi hari ini banyak menggunakan alur 

frekuensi yang lebih tinggi. Sesungguhnya, alur rendah masih diperlukan dalam 

bidang tertentu, seperti keselamatan awam disebabkan lingkungannya yang luas dan 

tepat. Tesis ini menyelidiki peningkatan fasa hingar bagi Osilator Kawalan Voltan 

(VCO) alur rendah. Varaktor saling balik, induktor linearasi, dan jaringan bias hingar 

rendah telah dikemukakan. Penempatan tepat bagi kapasitor bypass, chok, dan manik 

ferit, juga pemilihan betul bagi bahagian lain dalam rekabentuk ini telah dipelajari 

dan dimasukkan. Rekabentuk penghantar VCO termasuk sebuah osilator diikuti 

dengan sebuah penyangga dan sebuah bantalan penurun. Rekabentuk penerima VCO 

adalah serupa tetapi ditambahkan dengan sebuah penapis pada pengeluarnya demi 

merendahkan harmonik sebelum dituju ke pencampur. Ko-simulasi Momentum telah 

diperkenalkan dan didapati lebih tepat dibandingkan dengan kaedah simulasi biasa. 

Fasa hingar penerima VCO yang dinilaikan adalah lebih kurang -126 dBc/Hz pada 

jarak 12.5 kHz dan lebih kurang -136 dBc/Hz pada jarak 25 kHz. Fasa hingar 

penghantar VCO yang dinilaikan adalah lebih kurang -134 dBc/Hz pada jarak 12.5 

kHz dan lebih kurang -141 dBc/Hz pada jarak 25 kHz. Kedua-dua VCO telah 

menepati perincian, iaitu kurang daripada -118 dBc/Hz pada jarak 12.5 kHz dan 

kurang daripada -133 dBc/Hz pada jarak 25 kHz. VCO ini bersesuaian dalam 

aplikasi rumahtangga dan keselamatan awam. 
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DESIGN OF LOW PHASE NOISE VERY HIGH FREQUENCY (VHF) LOW 

BAND VOLTAGE CONTROLLED OSCILLATOR (VCO) FOR 

TRANSCEIVER APPLICATION 

ABSTRACT 

There is little research in transceiver technology for Very High Frequency (VHF) 

low band nowadays because many communication systems today use higher 

frequency bands. However, low band is still required in specific fields, such as public 

safety due to its extensive and precise coverage. This thesis researches improvement 

in the phase noise of the low band Voltage Controlled Oscillator (VCO). As such, the 

back-to-back varactor, the linearizing inductor, and the low noise biasing network are 

introduced. Sensible placement of the bypass capacitor, choke, and ferrite bead as 

well as proper selection of parts have been studied and implemented. The transmitter 

VCO design comprises of an oscillator cascaded with a buffer and a pad attenuator to 

improve the output matching. The receiver VCO has a similar design but added with 

a filter at the output to suppress its harmonics before injected into the mixer. 

Momentum co-simulation is introduced and proven as a closer correlated simulation 

method compared to conventional simulations. The receiver VCO measured phase 

noise is around -126 dBc/Hz at 12.5 kHz offset and around -136 dBc/Hz at 25 kHz 

offset. The transmitter VCO measured phase noise is around -134 dBc/Hz at 12.5 

kHz offset and around -141 dBc/Hz at 25 kHz offset. Both VCOs phase noise 

comply with the specifications of < -118 dBc/Hz at 12.5 kHz offset and < -133 

dBc/Hz at 25 kHz offset. Such VCO is suitable in both domestic and public safety 

applications. 
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CHAPTER 1 

INTRODUCTION

1.1 Background

The Voltage Controlled Oscillator (VCO) is often referred as the center 

operating engine of all transceiver systems as it is shared by both the receiver (Rx), 

as Local Oscillator (LO), and by the transmitter (Tx), as Radio Frequency (RF) 

source, as shown in Fig. 1.1. Therefore, very stringent requirements are placed on the 

spectral purity of VCOs, making its design a critical sub-circuit to the overall 

transceiver system performance. Being the block model within the Phase Locked 

Loop (PLL) which generates oscillation frequency, as depicted in Fig. 1.2, the design 

of VCO is a major challenge and has thus extensively been researched over the past 

decades, as evidenced by the large number of publications (Craninckx and Steyaert, 

1995a Craninckx and Steyaert, 1995b; Craninckx and Steyaert, 1997 Samori et 

al., 1998a Samori and Laicaita, 1998b Zannoth et al., 1998 Margarit et al.,

1999 Hegazi, Sjoland and Abidi, 2001 Zanchi et al., 2001 Tiebout, 2001

Fong et al., 2003 Perticaroli, Palma and Carbone, 2011). 

Figure 1.1: VCO used as LO in Rx and RF source in Tx (Zhu, 2005) 
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The electromagnetic (EM) spectrum is the total range of frequencies of EM 

radiation. It extends from the audio waves (15 Hz) to the light waves (900000 GHz). 

The range of spectrum frequencies used for broadcast communications is called the 

“broadcast frequency spectrum”. This spectrum is split into bands, in which the Very 

High Frequency (VHF) low band, or also known as ‘low band’, ranges from 25 MHz 

to 50 MHz. 

Figure 1.2: Block diagram of PLL (Zhu, 2005) 

1.2 Applications of VHF Low  Band 

In the United States (US), the Federal Communications Commission (FCC) 

controls RF assignments for non-governmental use. The FCC has divided up the 

available frequencies into different groups and assigned each group to a specific use. 

The VHF low band is among the 5 primary bands which the FCC has reserved for 

exclusive use by the public safety agencies. For instance, many fire agencies in New 

York, New Hampshire, Pennsylvania, and Maine rely on low band operations due to 

the excellent coverage and range achievable in this band (Low Band, 2005). 

Under the FCC rules, any organization and individual that provides some 

type of public safety mission can be assigned frequencies from this Public Safety 

Radio Pool. Such qualifying organization and individual include: police, fire, 

emergency medical services, veterinarians, animal hospitals, disaster relief 
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organizations, blood banks, heart and lung centers, school bus services, botanical 

gardens, departments of agricultures and environmental resources, beach patrols, 

retirement facilities and home for the aged, mental health institutions, rehabilitation 

centers, electric power cooperatives, state reservations and tribal councils, 

Universities, water control boards, as well as emergency repair services for public 

communications facilities (Veeneman, 2002). 

1.3 Advantages of VHF Low Band 

While today’s communication trend seems to be migrating towards the higher 

spectrum from 800/900 MHz to a few GHz, it remains a fact that the VHF low band 

is still popularly used in the community, even still, the popularity continues to grow 

rapidly. Such popularity in usage relies much on the many advantages available in 

low band, which is yet irreplaceable by any of the higher band (Low Band, 2005). 

1.3.1 Precise Transmission 

The atmosphere that surrounds the earth acts to attenuate and refract radio 

signals. The magnitude of attenuation and refraction depends on the frequency of the 

signal. The lower is the frequency, the less the attenuation, or loss of signal. VHF 

low band has such a precise area of broadcast because the ionosphere does not 

usually reflect the signal far beyond its immediate surroundings. Communication is 

thus optimal for reaching a target in close vicinity without interfering with broadcasts. 

Unlike the higher frequencies, low band signal is not obscured by buildings or 

tarnished by naturalistic sounds in the atmosphere, or by conflicting signals from 

nearby equipments (Mateo, 1999). 
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1.3.2 Extensive Coverage 

One major advantage is the extensive effect it has on range. Each agency has 

a particular geographic area, in which they need solid radio coverage. VHF low band 

signals travel farther than higher frequencies because low band frequencies tend to 

follow the curvature of the earth. Rural businesses, farming operations, towing 

companies, and other uses that need service over a wide area will find that low band 

is an excellent choice for dependable radio communications. This is because rural 

areas usually have small buildings and a large geographic area to cover (Frequency 

and Spectrum, 2008). 

1.3.3 Ample Spectrum Availability 

 Channel loading is a term used to describe the number of users assigned to 

the same frequency. Channel loading is so heavy in some areas that additional users 

are no longer allowed on particular channels. As many applications today have 

migrated to 800/900 MHz operations, there is ample spectrum available at VHF low 

band, greatly simplifying the frequency coordination effort and shortening the overall 

licensing procedure. Furthermore, the FCC declared that all television programming 

have to be switched to digital technology in 2009, this enables system operators to 

consolidate the information that was being broadcast for television and free up low 

band frequency (Frequency and Spectrum, 2008). 

1.3.4 Exemption from Narrow Band Requirements 

In an effort to improve spectral efficiency, the FCC has mandated that all new 

licenses granted after Jan 1, 2011 must be narrowband, for public safety agencies and 

business users. All of these systems must be converted or relicensed to narrowband 

4



operation by Jan 1, 2013. However, this rule only applies for operation from 150 

MHz to 512 MHz. VHF low band systems are exempted from such requirement, 

meaning that low band equipment put into service today will not become obsolete in 

2013. So, low band makes sense for those agencies and businesses that need new 

systems or expansions of operations (Veeneman, 2002). 

1.4 Problem Statement 

As stated in Section 1.3, current communication is advancing towards the 

higher frequency bands, as a result, most research effort today is conducted on 

developing a low noise VCO in the GHz range (Lee et al., 2011 Huang and Mao, 

2011 Ham and Hajimiri, 2000 Yu, Meng and Lu, 2002 Li, 2003 Badillo and 

Kiaei, 2003 Eo, Kim and Oh, 2003 Hamano, Kawakam and Takagi, 2003). 

Research conducted on VHF low band remains little due to its limited application 

which is required only in specific field, such as public safety. Nonetheless, phase 

noise research in this band is critical because noise tends to occur in low frequencies. 

This is especially true for radiant energy, which can interfere with, and even 

blockade low band signals. According to the FCC, the most common sources of low 

band noise are industrial equipments, power lines, and home appliances, such as 

microwaves, vacuum cleaners, and dimmers (Frequency and Spectrum, 2008). 

Phase noise is one of the major limiting factors affecting the VCO 

performance. Any system that requires a VCO for reference frequency generation 

can suffer from it. Phase noise directly affects short-term frequency stability, Bit-

Error-Rate (BER), Signal to Noise and Distortion (SINAD), Adjacent Channel 

Rejection (ACR) for Rx, and Adjacent Channel Power (ACP) for Tx. Phase and 

fluctuation has therefore long been the subject of theoretical and experimental 
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investigation (Lee et al., 2011 Huang and Mao, 2011 Baghdady, Lincoln and 

Nelin, 1965 Cutler and Searle, 1966 Leeson, 1966 Rutman, 1978 Abidi and 

Meyer, 1983 Weigandt, Kim and Gray, 1994 McNeil, 1994 Craninckx and 

Steyaert, 1995a Craninckx and Steyaert, 1995b Razavi, 1996). The ultimate goal 

of designing a perfect VCO is to produce a signal whose spectrum would consist of a 

single line of infinitesimal width. In reality, no perfect VCO has yet been discovered 

and virtually impossible so it seems, for all oscillators universally exhibit line width 

broadening of varying degree in their output power spectra. Such line width 

broadening produces phase noise, and is caused by noise inherent in the oscillator. 

The accuracy in signal transmission is extremely crucial in ensuring instant 

and valid information is properly communicated. Improvement in phase noise results 

in substantial BER improvement of all communications. For all Doppler radar 

designs, improving the Sub-Clutter Visibility (SCV) is the bottom line, as this allows 

the radar to see small moving objects in the screen. Improving the phase noise 

increases the cancelled Signal-to-Noise (S/N) ratio, thereby improving the SCV. Low 

phase noise is also a key element in a missile illuminator as a signal injection with 

poor phase noise can result in the loss of the intended target in aim. 

1.5 Research Objectives 

The objectives of this research are: 

� To design and propose a VCO design with low phase noise, so that when 

incorporated into a transceiver system, the ACR, ACP, and Hum & Noise 

of the system would comply with the Telecommunications Industry 

Association / Electronic Industries Alliance (TIA/EIA-603-B) standard 

(TIA, 2002). 
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� To study a better simulation technique using the Advanced Design 

System (ADS) Momentum co-simulation, that is more precise and co-

related. 

� To implement and characterize the proposed VCO design with main 

concentration on the evaluation of the phase noise parameter. 

1.6 Requirements

The requirements for the researched VCO are 

� To design a low phase noise VCO which is able to meet the specifications 

listed in Table 1.1.

Table 1.1: Phase noise specifications of VCO 

At Room Temperature Parameter Freq Offset 
(kHz) 25 deg C 
12.5 < -118Phase Noise 

(dBc/Hz) 25 < -130

Phase noise proportionally affects the ACR, ACP, and Hum & Noise 

parameters of a transceiver system. FCC adopts the TIA/EIA-603-B 

standard, whereby Table 1.2 lists an excerpt of the TIA/EIA-603-B 

specifications for the affected parameters. ACR is defined as the ratio of 

the level of an unwanted input signal that causes the SINAD produced by 

a wanted signal 3 dB in excess of the reference sensitivity to be reduced 

to the standard SINAD, to reference sensitivity (TIA, 2002). The Rx VCO 

phase noise specification is approximated from the ACR specification, as 

Filter_IFAttnSINADACRNoise_Phase ���� ,  (1.1)
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where Phase_Noise is the phase noise specification, ACR is the ACR 

specification as listed in Table 1.2, SINAD is 15 dB, which is the sum of 

the 12 dB reference with the 3 dB excess margins, and  is the 

attenuation of the Intermediate Frequency (IF) filter, which is about 54 

dB for the 270 kHz bandwidth ceramic IF filter of a low band Rx system. 

Similarly, ACP is defined as the ratio of the total output power of a Tx 

system under defined conditions and modulation, to that part of the output 

power that falls within a specified pass band centered on the nominal 

frequency of either of the adjacent channel or channels further offset 

above or below the assigned carrier frequency. The Tx VCO phase noise 

specification is approximated from the ACP specification, as 

FilterIFAttn _

� �offsetflog10Amp_TxACPNoise_Phase ��� ,  (1.2) 

where ACP specification as listed in Table 1.2, Tx_Amp is the gain in the 

low band Tx system, which is around 16 dB, and  is the offset from 

the carrier frequency. 

offsetf

Table 1.2: ACR, ACP, Hum & Noise specifications (TIA, 2002) 

Parameter Offset (kHz) Specifications (25 degC) 
12.5 > 50 dB Rx Adjacent Channel 

Rejection (ACR) 25 > 60 dB 
12.5 < -60 dB Tx Adjacent Channel 

Power (ACP) 25 < -70 dB 
12.5 < -34 dB 

Hum & Noise 
25 < -40 dB 

� To design a Rx VCO that is able to meet the requirements in Table 1.3.  

8



Table 1.3: Design specifications of Rx VCO. 

Specifications 
LO Freq Range (MHz) 46.7 – 52.7 
Lower End Guard Band (MHz) > 3 
Higher End Guard Band (MHz) > 3 
Oscillator Output Power (dBm) > 14 
Oscillator 2nd Harmonics Output 
Attenuation (dBc) > 44 
Feedback Output Power (dBm) > 0 
Phase Noise at 12.5kHz (dBc/Hz) < -118 
Phase Noise at 25kHz (dBc/Hz) < -130 
Hum & Noise at 12.5kHz (dB) < -34 
Hum & Noise at 25kHz (dB) < -40 

The requirements are developed from the Rx system of a public safety 

transceiver, such that the Rx VCO is able to integrate into the system as a 

LO that supports a high side injection for a bandwidth of 36 MHz to 42 

MHz, and to produce a 10.7 MHz IF signal when down converted through 

a mixer. 

� To design a Tx VCO that is able to meet the requirements in Table 1.4.  

Table 1.4: Design specifications of the Tx VCO. 

Specifications 
Freq Range (MHz) 36 – 42 
Lower End Guard Band (MHz) > 3 
Higher End Guard Band (MHz) > 3 
Oscillator Output Power (dBm) > 3 
Oscillator 2nd Harmonics Output 
Attenuation (dBc) > 15 
Feedback Output Power (dBm) > 0 
Phase Noise at 12.5kHz (dBc/Hz) < -118 
Phase Noise at 25kHz (dBc/Hz) < -130 
Hum & Noise at 12.5kHz (dB) < -34 
Hum & Noise at 25kHz (dB) < -40 
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The requirements are developed from the Tx system of a public safety 

transceiver, such that the Tx VCO is able to integrate into the system as a 

modulating source in which the signal is injected into the power amplifier 

(PA).

1.7 Research Scopes and Limitations 

The research scopes and limitations are outlined as follows: 

� To design the VCO oscillator, through theoretical calculation. 

� To design the VCO oscillator, with ADS Scattering Parameter (S-

parameter) and Harmonic Balance (HB) simulation, using different 

component models: lump component model, RF component model, and 

Momentum co-simulation model. 

� To design the VCO buffer and pad attenuator, with ADS Large Signal S-

parameter (LSSP) simulation, using different component models: RF 

component model and Momentum co-simulation model. 

� To implement and evaluate the VCO buffer and pad attenuator. The co-

relativity of the simulated results to the actual measured results is 

analyzed.

� To design the Rx pre-mixer low pass filter, through theoretical calculation. 

� To design the Rx pre-mixer low pass filter, with ADS LSSP simulation, 

using different component models: lump component model, RF 

component model, and Momentum co-simulation model. 

� To implement and evaluate Rx pre-mixer low pass filter. The co-relativity 

of the simulated results to the actual measured results is analyzed. 
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� To design and implement the Rx VCO. The co-relativity of the simulated 

results to the actual measured results is analyzed. 

� To design and implement the Tx VCO. The co-relativity of the simulated 

results to the actual measured results is analyzed. 

� The research only focuses on the phase noise improvement of the VCO. 

� The bandwidth of the VCO is limited to 6 MHz according to the operating 

bandwidth in the low band range required for a public safety transceiver 

unit.

� Other limitations encountered in this research include the Printed Circuit 

Board (PCB) fabrication technology, the components placed, as well as 

the equipments applied for evaluation. 

1.8 Research Contribution 

Using the low-phase-noise design technique, which is detailed in Chapter 3, 

both the Rx and Tx VCOs designed in this research are able to generate RF signals of 

remarkably low phase noise level, in which, when incorporated into a transceiver 

system, would be able to comply with the FCC specifications. Thereby, the major 

contribution of this research is to support two-way communication systems and base 

stations, used in the public safety pool in the US, as well as other countries adopting 

such specifications. Despite this, other contributions of this research are as follows: 

� By disabling the Tx VCO, the design could operate as a single Rx VCO, 

and vice versa. Single way communications applying only either VCO 

include broadcast systems, radar systems, missile illuminators etc. 

� Unlike S-parameter simulation, co-relativity for HB simulation has long 

been an issue. Noises in VCO as well as parts parasitic are highly 
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unpredictable. This research provides an improved simulation method in 

predicting the performance of a VCO design. This, in turn, contributes to 

cycle time and cost reduction for the design. 

� The VCO buffer and attenuator designs could be used as reference for 

oscillator as well as RF amplifier designs of other frequency bands. 

1.9 Thesis Organization 

This thesis is organized into six chapters to cover the entire research work 

and the theory related to the design. In chapter 2, literature review is detailed. This 

chapter documents the theory of noise in VCO, the development of various phase 

noise models, as well as methods in phase noise reduction. 

Chapter 3 explains the methodology of the research. This includes the 

derivation of the mathematical model for the common gate Field Effect Transistor 

(FET) Colpitts oscillator, the overview of ADS simulation, and selection of 

components. The test methodology in evaluating the prototype is also detailed.

Chapter 4 describes the design and simulation of the VCO, which covers the 

oscillator circuitry, the buffer and pad attenuator circuitries, as well as the Rx pre-

mixer low pass filter circuitry.  

Chapter 5 reports the measured results of the hardware and further compares 

and discusses the data with the simulated results. The phase noise performance of the 

design is further analyzed and detailed in this chapter. 

Finally, in chapter 6, the overall performance and findings of the research is 

concluded. Future work is recommended for further improvement of the design. 
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CHAPTER 2 

LITERATURE SURVEY 

2.0 Introduction 

 Resonance signal generated by oscillators suffer from fluctuations in both 

amplitude and phase. Such fluctuations are caused by internal noise generated by the 

components as well as external interference. Fluctuation in amplitude tends to be 

suppressed by the nonlinear characteristics of the oscillator; however, phase 

fluctuation is accumulated over a period of time. Phase fluctuation, also referred to as 

phase noise, has hence, been the key interest to researchers. Several models have 

been developed to formulate a more accurate phase noise performance and shall be 

detailed in this chapter. The characteristics of phase noise as well as other noises 

affecting the oscillator, with methods in noise reduction are also well elaborated. 

2.1 Noise

The major source of noise in an oscillator is the active device, usually the 

transistor. The noise sources in any oscillator circuit ultimately combine to form 

amplitude modulation (AM) noise and phase modulation (PM) noise. The AM noise 

component is usually ignored because the gain limiting effects of the circuit control 

the output amplitude, allowing little variation due to noise. The PM noise is of great 

concern because its magnitude is typically greater than the AM noise contribution 

and directly affects the frequency stability of the oscillator (Siweris and Schiek, 1985) 

and related noise sidebands. 

The designer has limited control over the noise sources in a transistor. For 

example, the bulk resistance of a transistor, upon which thermal noise depends on, is 
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an unchangeable, intrinsic property of the device. However, using knowledge on how 

noise affects oscillator waveforms, the designer is able to substantially improve 

phase-noise performance by the selection of bias point and signal level. The main 

mechanisms for noise in a semiconductor device include both thermal fluctuations in 

minority carrier flow as well as bulk and depletion area generation-combination 

events (Buckingham, 1983). The effects of these processes are categorized as thermal 

noise, shot noise, partition noise, burst noise, and flicker noise. 

2.1.1 Thermal Noise 

At any temperature above absolute zero, thermal agitation causes electrons in 

any conductor or semiconductor to be moving at random. At any one instant of time, 

the electrons may be concentrated in some areas more than others. These 

concentrations produce thermal noise. Thermal noise is generated by the random 

thermal motion of the electrons and is unaffected by Direct Current (DC), since 

typical electron drift velocities in a conductor are much less than thermal electron 

velocities. In a resistor R, thermal noise can be represented by a series voltage with 

the spectral density of 

kTR4
f

V 2

�
�

, (2.1) 

where k is the Boltzmann’s constant, T is the absolute temperature in 0K, and f�  is 

the bandwidth (Manasse, Ekiss and Gray, 1967). Thermal noise is present in any 

linear passive device. In bipolar devices, the parasitic resistors can generate the 

thermal noise. For Metal Oxide Semiconductor Field Effect Transistors (MOSFETs), 
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the resistance of the channel also generates thermal noise with the spectral density 

given by 

m

2

g
kT4

3
2

f
V

��
�

, (2.2)

where gm is the conductance of the channel (Razavi, 2001). 

2.1.2 Shot Noise 

Shot noise is associated with a DC and is presented majorly in diodes and 

transistors. It is the fluctuation of the DC and is usually modeled as a noise current 

source with the spectral density of 

qI2
f

I 2

�
�

, (2.3) 

where q is the charge of an electron, I is the DC, and �f is the bandwidth 

(Spangenburg, 1957). 

 In transistors, each current path will have its own associated shot noise. For 

example, a Bipolar Junction Transistor (BJT) has shot noise for each of the emitter, 

base, and collector currents (Thornton, 1966). An additional source of noise resulting 

from shot noise is called partition noise. Partition noise occurs at current junctions 

and is caused by each electron in making a decision to go one way or another. A 

statistical fluctuation in the collector and base currents equating to noise occurs 

(Krauss, Bostian and Raab, 1980). In a BJT, the majority of electrons flow from the 

emitter into the collector. A fraction of the emitter current must also flow to the base. 
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The splitting of the emitter current into the base and collector current components 

provides this basic partition noise contribution. 

2.1.3 Flicker Noise 

Flicker noise is found in all active devices as well as in some discrete passive 

elements. It is not a broadband phenomenon like thermal and shot noise; in fact, it is 

mainly caused by traps associated with contamination and crystal defects. The flicker 

noise is also called as  noise because it displays a spectral density of the form f/1

b

a

1

2

f
IK

f
I

�
�

, (2.4) 

where I is the DC, , a, and b, are constants. The nonlinear performance of 

oscillators transforms this low frequency  by up-conversions into the near-

sidebands of the fundamental oscillation signal. The spectrum of  noise varies 

inversely with frequency and thus is only noticeable at low frequencies and near 

sidebands. The low frequency performance is shown in Fig. 2.1. The upper 

frequency at which the  noise sinks into the noise floor caused by thermal and 

shot noise is called  corner frequency. This corner frequency is typically 

between 100 Hz to 1 MHz and the low frequency limit of  noise has been 

followed to 10-7 Hz. 

1K

f/1

f/1

f/1

f/1

f/1

 A contributor to  in a device is called Random Telegraph Noise (RTN), 

also known as burst noise. RTN is the observed phenomenon whereby device current 

switches between several discrete values at random times. RTN is closely linked with 

 noise in that it has spectral components which contribute to low frequency 

f/1

f/1
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noise (Kogan, 1966). A plot showing the RTN noise characteristics is shown in Fig. 

2.2.

Figure 2.1: Spectral density of flicker noise versus (vs.) frequency 

Figure 2.2: General RTN characteristic 

2.2 Phase Noise 

The signal shown in Fig. 2.3 is an ideal oscillating signal produced by an 

ideal oscillator, in which the signal as a function of time is 

, (2.5) ( ) [ t�cosVtV ��out = ]

where  is the nominal amplitude and 	V 	
  is the nominal frequency at time t. In 

frequency domain, this signal is presented by a single spectral line. However, in 
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practical oscillation system, the instantaneous frequency and magnitude of oscillation 

are not constant. These will fluctuate as a function of time as 

( ) ( )[ ] [ ]���out �t�costEVtV ++= , (2.6) 

where  is the random amplitude fluctuations and � �tE 	�  is the random phase 

fluctuations. In frequency domain, the signal is no longer a discrete spectral line; 

rather, a spread of spectral lines both above and below the nominal signal frequency, 

as shown in Fig. 2.4, in the form of modulation sidebands due to the random 

fluctuations in phase and amplitude. 

Figure 2.3: An ideal oscillating signal in time domain and frequency domain 

Figure 2.4: A practical oscillating signal in time domain and frequency domain 

These modulation sidebands are generally referred to as phase noise sidebands (Xie 

et al., 1998) and are usually characterized in terms of the single sideband (SSB) 

noise spectral density. It is defined as the SSB power due to phase fluctuations 
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referenced to the carrier frequency power in 1 Hz bandwidth at a specific offset 

frequency from the carrier divided by the signal’s total power, with unit dBc/Hz: 

�  � �
�
�

�
�
�

� �
��

carrier

sideband

P
Hz1,Plog10L 
�

� 	 , (2.7) 

where � �Hz1,Psideband 
�
	 �  represents the SSB power at a frequency offset of 


�  from the carrier with a measurement bandwidth of 1 Hz as visualized in Fig. 2.5, 

and  is the power of the carrier signal. carrierP

Figure 2.5: Phase noise referenced to the carrier frequency power in 1 Hz bandwidth 

 The advantage of this parameter is its ease of measurement. Its disadvantage 

is that it shows the sum of both amplitude and phase variations. However, it is 

important to understand the amplitude and phase noise separately because they 

behave differently in the circuitry. For instance, the effect of amplitude noise is 

reduced by the intrinsic amplitude limiting mechanism in oscillators and can be 

practically eliminated by the application of a limiter to the output signal, while the 

phase noise cannot be reduced in the same manner. 

 The destructive effect of phase noise can be significantly seen in the front-

end of a super-heterodyne transceiver. Recapitulating the transceiver block diagram 

19



in Fig. 1.1, the LO that provides the carrier signal for both mixers is embedded in a 

frequency synthesizer. If the LO is noisy, both the down-converted and up-converted 

signals are corrupted. As shown in Fig. 2.6, a large interferer in an adjacent channel 

may accompany the wanted signal. When two signals are mixed with the LO output 

exhibiting phase noise, the down-converted band consists of two overlapping spectra, 

with the wanted signal suffering from significant noise due to the tail of the interferer 

signal. This effect is referred to as “reciprocal mixing” (Krafcsik and Dawson, 1986). 

Therefore the output spectrum of a LO has to be extremely sharp. Such stringent 

requirements impose a great challenge in low-noise oscillator design. 

        

Figure 2.6: Effect of phase noise onto the wanted signal 

 Over the years, several phase noise models have been studied and developed 

to predict the phase noise performance of the oscillator and, thus, in pursuance of 

further improvement. Some of the commonly used models are detailed in the 

following sub-sections. 

2.2.1 Leeson’s Model 

D. B. Leeson proposed an empirical phase noise model to describe the phase 

noise depicted in Fig. 2.7. Noise prediction using Leeson’s model (1966) is based on 
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the time-invariant properties of the oscillator such as the resonator Quality (Q),

feedback gain, output power, and noise figure. According to this model, the phase 

noise generated by an oscillator can be expressed as: 
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FkT2log10L ,   (2.8) 

where � 
�L  is SSB noise spectra density in units of dBc/Hz. The symbol k is the 

Boltzmann’s constant, T is the absolute temperature in 0K,  is the carrier power, SP

	
  is the oscillation frequency, and 
�  is the offset frequency from 	
 .  is the 

loaded Q of the oscillator resonator, F is the noise figure of the oscillator, and 

LQ

3f/1
�  is the corner frequency between  and  region.2f/1 3f/1

 As shown in Fig. 2.7, the general phase noise output spectrum of an oscillator 

consists of 3 distinct sections allocated in the sideband. Immediately surrounding the 

carrier frequency there exists a region of noise which decay as . At some 

frequency offset called the  –  corner frequency, the noise spectrum 

changes to a  dependence. The  region continues on to the phase noise 

floor of the circuit. The noise floor of the circuit is a result of thermal and shot noise 

sources. The noise floor exists across all frequencies, even in the  and 

region. The relative power associated with each section depends on each section’s 

corner frequency and the noise floor level. The  region is unavoidable as it is a 

result of the characteristics of the resonator. Any Inductor-Capacitor (LC) resonator 

will have a voltage dependence which varies as  from the center frequency. 

Since power is proportional to voltage squared, the resulting power spectrum is 

3f/1

3f/1 2f/1

2f/1 2f/1

2f/1 3f/1

2f/1

f/1
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therefore . The  region comes from up-converted  noise of the 

device. The  dependency appears when  is multiplied by the 

characteristic of the resonator. 

2f/1 3f/1 f/1

3f/1 f/1 2f/1

Figure 2.7: SSB oscillator phase noise output spectrum 

 In Leeson’s model, 3f/1
�  is equal to the  noise corner frequency of the 

device. In practice, however, 

f/1

3f/1
�  is rarely equal to the  noise corner 

frequency of the device. An existing problem is that the noise figure of an oscillator 

is extremely difficult to predict (Robins, 1982). The factor F remains a co-relation 

factor which can only be determined by measurement of the phase noise spectrum of 

the oscillator. Since F and 

f/1

3f/1
�  must almost always be measured from the 

oscillator spectrum, the predictive power of Equation 2.8 is quite limited. From 

Equation 2.8, it can be seen that the corner frequency at which the  sinks into 

the noise floor is exactly equal to the resonator half bandwidth, 

2f/1

Q2/	
 . This also is 

not completely justifiable.  

 In short, according to Leeson’s model, the only way to improve � 
�L  is to 

increase the output power or increase the loaded Q of the resonator. The oscillator 
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must be designed in such a way that the transistor does not saturate. Saturation 

lowers the Q of the entire oscillator circuit, thus increasing phase noise and 

harmonics level (Rhea, 1990). 

2.2.2 Linear Time Invariant (LTI) Model 

It is convenient to model an LC cross-coupled oscillator as a one-port 

negative resistance model as shown in Fig. 2.8. In this model, the transconductance 

of the active circuit, , must compensate for the loss caused by the parasitic 

resistance, , in the tank, which is simply modeled as a parallel resistor.

mG

pR

Figure 2.8: One-port negative resistance oscillator with noise current in the tank 

The thermal noise it generates, is modeled as a noise current, 2
ni , parallel with 

the tank. The thermal noise introduces the phase noise at the output of the oscillator. 

The transfer function from the noise current to the output voltage in closed-loop 

operations is derived as 

� � � �
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where � �sT 2
R,noise p

 is the transfer function of the phase noise of the oscillator and 2
nV

is the output voltage. With pm R/1G � , it can be shown that the transfer function at 

small offset frequency, 
� , is approximated as (Craninckx and Steyaert, 1995). 
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where  is the equivalent impedance of the tank at the frequency 2
R,noise p

T 
�
	 " .

Accordingly, the one-side spectral density of the output noise voltage is 
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where � 
�2
g,on p

V  is the output noise voltage at offset frequency 
�  and  is the 

conductance, that is . The noise voltage described here actually includes 

both the amplitude noise (AM noise) and the phase noise (PM noise). If the oscillator 

employs an Automatic Gain Control (AGC) circuit, the AM noise will be removed 

for frequency offset less than the AGC bandwidth. In addition, the nonlinearity of the 

oscillator determines oscillation amplitude and it can be viewed as an internal AGC 

mechanism in oscillators. Therefore, even when there is AM noise, it will decay 

away with time and thus has little effect on output phase noise. Neglecting the AM 

noise results in a 0.5 factor multiplied to Equation 2.11. So, the spectral density of 

the noise voltage is 

pg

pp R/1g �
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