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PENENTUAN FAKTOR PEMBETULAN BAGI PENGESETAN 

GEGANTI PEMBEZA PADA SISTEM  PERLINDUNGAN 

PENGUBAH  AGIHAN DI BAWAH KEADAAN BERHARMONIK 

 

 ABSTRAK  

Dalam tesis ini satu kaedah baru dilaksanakan untuk mengatasi masalah terlepas-

operasi geganti pembeza bagi pengubah kuasa agihan yang beroperasi di bawah 

keadaan berharmonik. Faktor pembetulan sebagai satu kaedah baru untuk mengatasi 

masalah ini telah diperkenalkan dan dilaksanakan bagi pengesetan geganti supaya 

geganti berfungsi dengan baik walaupun beroperasi dalam keadaan berharmonik. 

Dalam usaha untuk menentukan faktor pembetulan tersebut, kesan harmonik ke atas 

semua ralat komponen telah diperolehi melalui ujian makmal. Ujian tersebut telah 

dilaksanakan untuk menentukan ralat-ralat yang berlaku pada pengubah kuasa dan 

CT apabila beroperasi di bawah keadaan berharmonik. Dari ralat yang diperolehi 

maka ralat perbezaan arus yang mengalir melalui geganti telah ditakrifkan dan 

penetapan geganti pembeza juga telah ditentukan. Keputusan ujian untuk julat THDi 

dari 4.6% hingga 40.88% menunjukkan bahawa ralat maksima yang berlaku pada CT 

di sisi sekunder pengubah kuasa didapati 27.21% dan CT pada sisi primer pengubah 

kuasa ialah 10.12%. Ralat maksima pada pengubah kuasa pula ialah 8.5%. Bagi 

THDi yang sama, faktor pembetulan yang telah dilaksanakan ialah 30.14. Hubungan 

antara THDi dan penetapan geganti pembeza telah dirumuskan melalui ralat arus 

perbezaan yang berlaku disebabkan oleh arus harmonik. Kaedah faktor pembetulan 

telah berjaya mengatasi masalah terlepas operasi geganti pembeza bagi pengubah 

kuasa agihan sehingga THDi 40%. 
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DETERMINATION OF CORRECTION FACTOR FOR 

DIFFERENTIAL RELAY SETTING ON DISTRIBUTION 

TRANSFORMER PROTECTION SYSTEM UNDER HARMONIC 

CONDITION 

 

ABSTRACT 

In this thesis a new method is implemented to overcome the miss-operation problem 

of differential relay for distribution power transformer operates under harmonic 

condition. Correction factor as a new method to overcome this problem is introduced 

and implemented for the relay setting, so that the relay works properly even though 

operates under harmonic conditions. In order to determine the correction factor, the 

effects of harmonics to all components error has been obtained through laboratory 

test. The tests have been conducted to determine the errors that occur in power 

transformers and CT when operating under harmonic condition. From the error 

obtained, the differential current error flow through the relays was defined and 

differential relay setting was also determined.  Experimental results for THDi ranging 

from 4.6% to 40.88% show that the maximum errors occurred on CT at secondary 

power transformers is found to be 27.21% and CT at primary power transformers is 

10.12%. The maximum error occurred at power transformer found to be 8.57%. For 

the same THDi the correction factor which was implemented is 30.14. A relationship 

between THDi and differential relay setting has been established through the 

differential current error occurred caused by harmonic currents. Correction factor 

method has able to overcome the miss-operation problem of differential relay for 

distribution power transformer up to 40% THDi. 
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CHAPTER 1 

INTRODUCTION 

 

1.1  Background  

The advancement of technologies in power electronics over the past decade, 

the application of power electronics in industrial, commercial, office premises, 

educational institutions and residential areas have increased. Power electronic 

equipments are usually producing harmonics due to its switching devices known as 

nonlinear load.  Nonlinear loads are broadly classified as loads, which draw non-

sinusoidal current even when the supply voltage is perfectly sinusoidal. These load 

use power semiconductor like diodes, silicon controlled rectifiers (SCR), power 

transistors, power mosfet, insulated gate bipolar transistor, etc. Because of their 

extraordinary gains in efficiency and control, power electronics loads are expected to 

be significant in the future. Currently, power electronic loads can be found at all 

level of power system, ranging from low voltage appliances up to a high voltage 

converter. Non-linear devices now typically comprise more than 50%, and in some 

cases as much as 90% of total load in the premises [Aeillo et al., 2005]. Therefore, 

most likely some important distribution transformers will operate in high harmonics. 

Heavy use of power electronic equipment in the industrial, commercial and office 

premises can lead to considerable distortions in the distribution feeder. The higher 

harmonic distortion level in the distribution system has caused a serious problem in 

power system quality and stability [Medina and Martinez, 2005]. The distortion of 

sinusoidal voltage and current waveforms caused by nonlinear load is one of the 

major power quality concerns in distribution system.  
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Increased levels of harmonic currents in distribution systems, creates concern 

for electricity distribution network service providers that will face malfunction in 

protection system components. During fault and normal conditions, the harmonic in 

distribution system might cause miss-operation of protection relay as well as relay 

calibrations become inaccurate. Other effects of harmonic currents in distribution 

systems are to customers who have equipment sensitive to voltage and current 

distortion. 

 

1.2  Problem Statement 

Harmonics distortion can have both short-term and long-term effects on 

distribution system equipments and connected customer loads. Short-term effects are 

mainly concerned with immediate damage, equipments malfunction, and the 

associated power losses due to harmonic current and voltage. Long-term effects are 

thermal losses and reduced life span of equipments.  

 

Harmonics current and voltage can distort or degrade the operating 

characteristic of protective relays which is depending on the design features and 

principles operation of the relay [Schweitzer and Daqing, 1993]. The differential 

protection systems may be subjected to a miss-operation due to the presence of 

voltage and current harmonics [Arrillaga et al., 1997], [Kennedy and Barry, 2000], 

[Sankaran, 2002]. Differential relay will become less sensitive for internal fault if 

working frequencies are not at fundamental frequency. Besides that, the harmonic 

current can increase differential current during normal condition so that the 

differential protection might miss operates for external fault or normal conditions.     
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High content of harmonic currents in power distribution systems will lead to 

the phenomenon of saturation of current transformers that can cause some errors in 

the operation of differential relays. The current transformer (CT) errors are strongly 

influenced by the waveform of the primary current. Harmonic current distortions are 

strongly affects the value of percentage secondary current error. The error signal 

produced by CT will be sent to the differential relay and make relay to mis-

operations. Besides that, harmonic distortion may change the tripping current of 

differential relay as total harmonic distortion (THD) varies for the frequencies and 

when the frequencies continues increase will cause the relay trip for any current 

values. The most important thing is that the tripping time would be delayed if the 

harmonics enter into the equipments.  

 

Typically, delta-star transformer connection is used in distribution system. 

Star connection is connected to the loads, this is due to requirement of neutral point 

for single phase load and delta connection is connected to the supply. In each node of 

the delta connection, the zero sequence harmonic currents compensate for one 

another, and the current in the line therefore contains no zero sequence harmonics 

current. Zero sequence harmonics current do not normally propagate into the higher 

voltage levels of the distribution system. Instead, these currents trapped in the delta 

primary windings and therefore cause an additional temperature rise, increasing 

transformer losses and change the power transformer current ratio that may effect to 

operation of differential protection. 

 

In addition, due to the zero sequence harmonics trapped in the delta winding 

will result in different levels of percentage harmonic distortion on both sides of the 
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power transformer. This will cause the difference level of CT saturation that are 

installed on both sides of the power transformer that could lead the differential 

currents to flow under normal conditions. 

 

1.3  Significant of this Research  

The important of protection system is to keep the power system stable by 

isolating only the components under fault or normal conditions, whilst leaving as 

much of the network as possible still in operation. Transformer as an essentials 

component in power system needs to be properly protected to avoid power system 

failure. One of the protection systems that were used in a power transformer is 

differential protection. Differential protection is a main protection for large power 

transformers or some important power distribution transformers with capacity less 

than 10 MVA [Ho and Liu, 2001]. The importance of distribution transformers is 

distribution transformers are used for special loads that require continuity of supply 

such as hospital, important government buildings and industry with very sensitive to 

power disconnections. For the purposed of this protection the differential relay 

provides the fastest and most secure type of protection [Arrillaga et al., 1997], 

[Kennedy and Barry, 2000].  

 

One of the requirement in electrical system design is to meet the 

recommended levels set out in IEEE- Std 519-1992, IEEE recommended practices 

and requirements for harmonic control in electrical power system [Sachdev, 1997]. 

This standard sets out the limits for voltage and current harmonic levels at different 

points in the electrical system [McLaren et al., 2001]. However, the advanced 

technologies in power electronics development over the past decade, the application 
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of power electronics in distribution systems has lead to the harmonic distortion for 

the load voltage and load current exceeding the standards set above [Hayward, 

1941].  

 

The sources of harmonic emissions in the distribution system not only  

commercial, office and residential loads, but also come from distributed generation 

installations and the component of power system itself. Saturated magnetic circuits 

such as those in power transformers and rotating machines are also harmonic sources 

in the distribution system. 

 

Differential relay for power transformers must maintain basic operations 

under harmonic condition to provide excellent protection and reliability required by 

the power transformer. The current harmonics and voltage harmonic can distort or 

degrade the operating characteristic of current transformer and protective relays 

[Hayward, 1941]. Therefore, the response of the current transformer and differential 

protection relays to distorted current or voltage must be studied clearly. 

 

Current transformer as one component in protection system plays a very 

important role in transformer differential protection. The proper operation of a 

current transformer as a part of protection component is very important because 

protection relay will receive signal from current transformer. However, current 

transformer does not perform well when operating under harmonic condition. Thus, 

the percentage of CT errors for different harmonic levels must be known clearly. If 

the current transformer is excited by nonlinear current will result to current 

transformer error. If protection relay receive the improper signal from current 
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transformer will cause malfunction operation of protection relay. These relays are 

calibrated based on sinusoidal currents and their response to harmonic distortion is 

not well known. In order to adequately prepare for harmonic increment in the future, 

the reliability of transformer differential protection operates under harmonic 

condition must be studied clearly. Besides that, it is very important to evaluate the 

existing relay setting to accommodate the differential current error due to harmonic 

distortion in the distribution system.  

 

Generally, protective relays has been designed for sine wave operation and 

their performance is not specified for other waveforms. The performance of 

differential relay for a transformer protection when operated under non-sinusoidal 

condition cannot be predicted without a detailed knowledge on current transformer 

and relay. For this reason the evaluation of the behavior of current transformer and 

differential relay when operates under harmonic condition become significant and 

necessary task in this research. 

 

1.4  Objectives of the Research 

The aim of this research is to ensure the differential relay used for distribution 

transformers protection does not operate if there is no internal fault, even though 

operating under harmonics condition. 

 

1. To obtain the percentage magnitude current errors that occurs in power 

transformers and current transformers when operated under harmonics condition. 

This is necessary because the ratio current error on current transformer and power 
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transformer will result in the current imbalance on both sides of power 

transformers, although under normal condition. 

 

2. To determine the correction factor for differential relay settings to make the relay 

works properly if there are imbalances current exist caused by harmonic 

distortion.   

 

3.  To implement the correction factor on differential relay setting operates under 

harmonic conditions, so that the differential relay operates correctly.  

 

1.5  Scope of Research 

This research introduced a new method known as the correction factor  to 

increase the reliability of the differential relay used as a distribution transformer 

protection operating under harmonic condition. The performance differential relays 

will not be assessed for harmonic voltage because the harmonic voltage in the 

distribution system is very low or some time can be equal to zero. In this thesis, the 

performance differential relays will be assessed when the relay is operating under 

harmonic current conditions and considered the three phase system is balanced. To 

assess the performance of the differential relay for transformer protection, a power 

transformer with a capacity of 5.75kVA was used in this research. In addition, this 

study also has used the CT ratio 15/1A with 5VA rated load. To determine the errors 

that occur when the CT operates under harmonic current condition, a frequency 

response and actual tests was performed for 15/1 class1 CT with connected to relay. 

As for determining the error ratio of the distribution transformer due to harmonics, 

the distribution transformer will be tested with varying levels of THDi. Due to errors 
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accommodation that have occurred either at the distribution transformer or current 

transformer, there will be errors of the differential relay operation. To overcome this 

problem it is necessary to determine the correction factor for differential relay 

setting. Correction factor will be determined based on the error that occurred in the 

differential currents for a certain level of THDi. 

 

1.6  Thesis Structure 

This thesis is divided into five chapters. The first chapter is concerned with 

the introduction of research as well as the problems faced by the differential 

protection system when operates under harmonics condition. This chapter is 

discussing about the importance and the purpose of the research to be done in the 

area of transformer differential protection. The scope of this research is also 

discussed in the final section of chapter one. 

 

The second chapters discuss the research that have been done on the current 

transformer, differential relays and harmonics that have occurred in distribution 

systems. In the initial portion is to learn about the basic concepts of the current 

transformer, current transformer errors, accuracy limit of protection class CTs and 

steady state behavior of a CT. The detail theory of differential protection, harmonic 

distortion, effects of harmonic on current transformer and differential protection also 

presented in chapter 2. The effects of harmonics on current transformers, nonlinear 

model of current transformer, calculation of current transformer error and current 

transformer accuracy requirements for differential relays are also discussed in 

chapter 2. 
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While Chapter 3 is dedicated to the description of the approach and steps 

required to complete the research. Considerations of designing differential relay for 

delta-wye transformer connection as well as the stability boundary for differential 

safety during CT saturation are also studied in this chapter. In the final portion of this 

chapter, the imbalance current produced by tap changing, phase shift through the 

delta-wye transformer, zero sequence harmonic and effect of harmonic distortion on 

differential protection system are discussed. The working principle of differential 

protection relay for power transformer is also discussed in the earlier portion of this 

chapter. 

Experiments on the effects of harmonics on current transformer behavior 

have been described in chapter 4. The effects of CT saturation on differential relays 

are also discussed. In this chapter the frequency response test of the current 

transformer with different burden is also discussed. In frequency response test, the 

frequency of input CTs were varied, ranging from 50Hz up to 1050Hz. In addition 

the CTs were tested with real situation, where the CTs were connected to the 

nonlinear load with different current THDi. 

 

Laboratory tests for a transformer differential protection system have been 

implemented and discussed in chapter 5. In this test the delta-wye connection power 

transformers was used. Differential relay which is connected perfectly to the power 

transformer has been tested with various levels of THDi ranging from 0% to 70%. 

For the purposed of this research, the differential relay has been set with regular 

setting and was also set with correction factor. The performance of differential 

protection with two type of setting is also presented in this chapter.  
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Eventually the whole contents of this thesis is summarized and concluded in 

Chapter 6. The advantage of using a correction factor for the differential relay which 

operates in harmonics circumstance also highlighted in these conclusions. 

 

1.7 Thesis Constributions 

The following are the contributions of this thesis to the field of protection of 

distribution transformers.  

 

The use of a correction factor for the differential relay settings can be apply 

for distribution transformers protection that are used in the industry. Because most of 

industrial loads is nonlinear load and probability of the differential protection system 

failure  is very high. By using this correction factor the differential protection system 

failure can be overcome. 

 

In addition, the use of this correction factor can be a new method for 

differential relay settings that are used in the power system, so that the relay   may 

work properly when operating under harmonic conditions. 
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CHAPTER 2 

LITERATURE REVIEW 
 

2.1 Power Distribution System  

Power authority as Tenaga Nasional Berhad (TNB) in Malaysia is to provide 

quality electrical services to consumers, such as provided a good quality power 

supply to the customer's houses, offices, and industrials. However, the task to 

maintain a good quality of power for the time being  is not easy because there are 

several factors need to be consider, such as during peak demand, generating aspects 

and load characteristics of the consumers. 

 

Voltage level of Malaysia‟s distribution system starts at 33 kV and to be 

stepped down by distribution transformer to 11 kV and eventually to 415/ 240 volts. 

At several places, 22 kV and 6.6 kV levels are still employed, according to load of 

consumers. Transformer on-load tap changers is used at main intake substations to 

hold the primary distribution voltage constant, as well as system‟s frequency at 50 

Hz with maximum and minimum tolerance of 0.5 Hz. There are two types of systems 

currently for distribution of electricity; the first is secondary low voltage (LV) 

system (415/240V) which uses a 3 phase, 4 wire, with the neutral solidly grounded at 

the source substations. Both overhead and underground lines are used for LV 

distribution[TNB, 2007]. Primary distribution system (33 kV to 6.6 kV) uses 3-

phase, 3 wire network configuration, and it is either solidly grounded or grounded 

through the impedance. The declared voltage at consumers‟ meters is stated as 415/ 

240 Volt with allowable variation of 5% maximum and minimum of 10%. The 

margin is set due to fluctuation nature of power supplied by the authority due to 
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various reasons [Sulaiman, 2004]. Single line diagram of distribution system is 

shown in Figure 2.1. 

 

 

33kV 

Distribution

33/11kV

11kV/

415V

11kV/

415V

Predominantly 

Residential 

Feeder

Predominantly 

Commercial 

Feeder

Predominantly 

Industrial 

Feeder

11 kV Distribussion

11kV/

415V

275 kV 

Transmission

275/33 kV

CBCB

CB CB

CBCB

CBCB

CBCBCBCBCB

 

 

Figure 2.1: Single line diagram of power distribution system. 
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2.2 Harmonic in Power Distribution System 

Harmonics are defined as sinusoidal waveforms of current or voltage, with 

frequencies that are integer multiples of fundamental power system frequency. For 

instance, in a system with fundamental frequency of 50Hz, sinusoidal current that 

contain frequency of 150Hz is called the 3
rd

 harmonic current. Harmonic has 

detrimental effects on power distribution system and among the effects is will lead to 

the phenomenon of saturation of CTs that can cause some errors in the operation of 

differential relays. Modern industrial power systems, commercial buildings, 

industrial buildings, educational institution buildings and residential areas usually 

contain various types of nonlinear loads that will inject harmonics in to the 

distribution system. Increased penetration of non-linear loads in power distribution 

systems, utilities and manufacturing equipment resulted in an increased fear of 

harmonic distortion. Harmonic distortion is known to have many adverse effects on 

power systems and consumers, especially in areas where electricity is being 

liberalized trade. Therefore there is the worry that the harmonic distortion will 

increase in the near future.  

 

For THDi under 10% and in normal situation, then there is no risk of 

malfunctions of power system component. But, if THDi ranging in between 10% to 

50% it is significant harmonic pollution with a risk of temperature rise and the 

resulting need to oversize cables and sources. While if THDi higher than 50% it is 

considered as major harmonic pollution and malfunctions of power system 

component are probable. In-depth analysis and the installation of attenuation devices 

are required [Schneider Electric, 2009].  
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2.2.1 Harmonic Components 

Non sinusoidal periodic function f(t) in an interval of time (T) could be 

represented by the sum of fundamental component and a series of higher orders 

harmonic component at frequency (f) which are integral multiples of the fundamental 

component.  Using Fourier series representation, a distorted waveform can be 

analyzed by equation below:  







1

0 )]sin()cos([)(
h

hh thBthAAtf                                          (2.1) 

 ])cos([)(
1

0 





h

hh thCAtf                                                           (2.2) 

Ah and Bh is Fourier series coefficient. 
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Generally for power system, fundamental frequency is 50 Hz or 60 Hz. 

Malaysian power systems are typically operated at 50 Hz and thus harmonic 

frequencies will appear as multiplies of 50 Hz such as 150 Hz, 250 Hz, 350 etc. The 

Fourier series coefficient C1, C2, …, Ch make up the harmonic spectrum of the 

waveform and are found using equations: 
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Conversely, if the harmonic spectrum of a given current or voltage waveform )(tf  is 

known the original waveform can be constructed using the Fourier series summation: 


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Where hU  is the h
th

 harmonic peak current or voltage, h  is the h
th

 harmonic phase.  

Based on Fourier analysis, non-sinusoidal current will consist of fundamental current 

and current component containing harmonic, which is expressed as [Mohan et al., 

2003]: 
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Where: 

is is line current 

Is1 is RMS value of fundamental component  

Ish is RMS value harmonic component order h 

h is harmonic order 

 

Theoretically, h order harmonic current magnitudes is inversely proportional to the 

harmonic order, are: 
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h

I
Ih

1                (2.11) 

Thus, the current from a single phase electronic load will consist of the fundamental 

current I1 and harmonic components of a number of Ish. Since the line current Is 

alternating wave-shaped symmetrical, only the odd-order harmonic current 

components are generates. Fourier series expression of a periodic non sinusoidal 

current can be simplified as the following: 

...)1sin((

)sin(...)5sin()3sin()sin()(

1

531





 tnI

tnItItItIti

n

n





     (2.12)
 

Equation (2.13) shows how to find the root-mean square (RMS) value of a current 

waveform where the RMS value of each of the harmonics, Ih, is known. 

 
2/1

1

2









 



N

h

hRMS II

               

(2.13)

  

                                                

2.2.2 Total Harmonic Distortion

 
One measure of distortion in a waveform is given by (2.14) and called total 

harmonic distortion (THD). THD current (THDi) is the ratio of the RMS value of the 

total harmonic currents (non fundamental part of the waveform) and the RMS value 

of the fundamental portion, I1, of the waveform. This value is usually expressed as a 

percentage of the fundamental current. 

 
%100

1

2/1

2

2

x
I

I

THD
h

h

i

















             

(2.14) 

Two other measures of distortion are the crest factor and the form factor. The crest 

factor is the ratio of the peak of a waveform to its RMS value. For a linear sinusoidal 

waveform, the crest factor would be the square root of 2, or 1.414. 
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RMS

peak

I

I
factorCress _

             (2.15) 

 

The form factor, or distortion factor, is the ratio of the RMS value of a waveform to 

the RMS of the waveform‟s fundamental value, I1. For a linear sinusoidal waveform, 

the form factor would be 1.0 [Ho and Liu, 2001]. 

1

_
I

I
factorForm RMS

             (2.16) 

 

2.2.3 Harmonic Sequences 

 

One of parameters regarding harmonics that essential to look into is the 

sequences. All electronic loads generate positive and negative sequence harmonic 

currents. Single-phase electronic loads, connected phase to neutral in a three-phase 

four-wire distribution system, also generate zero sequence harmonic currents. The 

harmonic currents and voltages produced by balanced three phase non-linear loads 

are positive sequence harmonics (phasors displaced by 120 degrees, with the same 

rotation as the fundamental frequency), and negative sequence harmonics (phasors 

displaced by 120 degrees, with a reversed rotation). However, harmonic currents and 

voltages produced by single phase, non-linear loads, which are connected phase to 

neutral in a three phase four wire system are third order zero sequence harmonics 

(the third harmonic and its odd multiples 3
rd

, 9
th

, 15
th

, 21
st
, etc., phasors displaced by 

zero degrees). These third order, zero sequence harmonic currents, unlike positive 

and negative sequence harmonic currents, do not cancel but add up arithmetically at 

the neutral bus [Hammond Power Solution, 2013].  

 

The following relationships are true for the fundamental frequency current 

components in a three phase power system: 
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tIi aa sin11                 (2.17)
 

)120sin(11

o

bb tIi  
              (2.18)

 

)240sin(11

o

cc tIi  
              (2.19) 

The negative displacement angles indicate that the fundamental phasor ib1 and ic1 trail 

the ia1 phasor by the indicated angle. The fundamental frequency is known as 

positive sequence harmonics. The expression for the third harmonic current are: 

tIi aa 3sin33                (2.20)

        

 

tItIi b

o

bb  3sin)120(3sin 333 
            (2.21) 

 

 

tItIi c

o

cc  3sin)240(3sin 333 
           (2.22) 

 

The expression for the third harmonic show that they are in phase and have 

zero displacement angles between them. The third harmonic is known as zero 

sequence harmonics due to the zero displacement angles between the three phasor. In 

the three-phase four-wire distribution power system, the three-phase zero-sequence 

currents ( 000 ,, cba iii ) have the same amplitude and the same phase, and they can be 

represented as: )()()( 000 tititi cba  . The neutral current ( )(tin ) is the sum of three-

phase zero sequence currents, and it is represented as )(3)( 0 titi an   [Hurng et al., 

2005]. 

 

The expression for the fifth harmonic current are: 

tIi aa 5sin55                (2.23) 

 

)2405sin()120(5sin 555

o

b

o

bb tItIi  
          (2.24) 
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Table 2.1: Harmonic order vs Phase sequence.  

Harmonic Order Sequence 

1, 4, 7,10, 13, 16, 19 = (3m + 1)
th

 Positive 

2, 5, 8, 11, 14, 17, 20 = (3m - 1)
th

 Negative 

3, 6, 9, 12, 15, 18, 21 = (3m)
th

 Zero 

 

 

 

)1205sin()240(5sin 555

o

c

o

cc tItIi  
          (2.25) 

 

The phase sequence for the fifth harmonic current is clockwise and opposite to the 

fundamental. So, the fifth harmonic is known as negative sequence harmonics. Table 

below categorizes the harmonics in term of their respective sequence orders. 

 

2.2.4 Harmonic Sources in Distribution System 

Sources of harmonics in the secondary distribution system are modern 

housing loads. These loads usually contain various types of nonlinear loads that will 

inject harmonics to the distribution systems [Cotten et al., 1989]. In general, the main 

source of harmonics in distribution systems can be categorized as follows [Chang 

and Liu, 2003]: 

1. Devices that generate harmonics during their switching processes. The most 

commonly seen are power electronic devices, such as rectifiers or switch mode 

power supplies used primarily for house entertainments units and home office 

equipments like computers, television sets, home theaters, communication 

equipments and other electronic devices. 

2. Adjustable speed drives (ASD) and adjustable frequency drives (AFD) for 

residential applications such as compressors and fans in heat pumps, air 

conditioners, and refrigerators.  
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3. Devices such as rotating machines that harmonics are generated because of non- 

sinusoidal flux distribution in the stator and the harmonic interaction between the 

stator and field windings. 

 

The poor power factor of the testing fixture is caused mostly by the inductive 

impedance of the electromagnetic ballast and partly by the harmonic distortion. The 

most simple and cost effective method for solving this problem is to parallel an 

external capacitor to the fixture. However, the added capacitor and the inductance of 

the transformer circuit will form a resonant circuit. This resonance will exaggerate 

the harmonic distortion at some specified frequencies. Therefore, the harmonics near 

the resonant frequency may significantly increase [Chang et al., 1993].  

 

The most common load at secondary distribution systems are industrial, 

commercial, educational institution and residential loads. These loads that produce 

harmonic can be broadly divided into three groups. The first group contains those 

loads that utilize the single-phase capacitive-filtered diode bridge rectifier (DBR). 

These loads may be defined as an AC to DC converter such as the input stage found 

in ASD‟s, battery chargers, Personal Computers (PC‟s), color TV‟s, etc. Color 

television and personal computer or laptop is a major source of harmonics in this 

loads group.  From the television set that has been measured found that the current 

waveform has contains of high harmonics with THDi of 266.58%, while the voltage 

waveform seem only too well sinusoidal. The growth application of these loads in 

distribution system is also increased the harmonic level. The pulsed current 

waveform generated by this loads is rich in harmonic and THDi reaches more than 

100% [Mori and Suga, 1991], [Don and Carter., 1997]. Microwave ovens, battery 
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chargers and small adjustable speed drive (ASD) for heat pumps are also includes in 

this group [Arrillaga et al., 1997], [Kennedy and Barry, 2000], [Sankaran, 2002].  

 

 The second load group contains the compact fluorescent lamps (CFL) that 

employ magnetic and electronic ballast. The CFL has three categories; high 

distortion electronic ballast, low distortion electronic ballast and magnetic ballast. 

Because of the non-linearity inherent in the semiconductor devices used in the 

electronic ballast (as well as other power electronic devices), the input current 

waveform will have some harmonic distortion [Rory and Afroz, 1995]. There are 

many gas discharge lamps used for lighting at residential and commercial building. A 

study by [Emanuel et al., 1992] evaluated the impacts of high distortion CFLs on 

typical distribution system.  The results indicated that relatively low CFL penetration 

levels could cause the feeder voltage distortion to exceed 5%. The third harmonic is 

the most dominant a three-phase four-wire systems. Due to the non-linearity of the 

gas discharge, these lamps are considered as a significant harmonics contributor to 

the power system [Kennedy and Barry, 2000].  

 

The third load group contains those loads that employ the phase-angle voltage 

controllers (PAVC). This device controls the input AC voltage and power utilizing 

the phase control of thyristors. The major loads appear in this group are heaters, light 

dimmers, single-phase induction motor control and refrigerator. These controllers 

produce waveforms with substantial harmonic content. The air conditioner is widely 

used at offices, hotels or housing on the tropical area. Therefore, the use of air 

conditioner is able to increase the harmonics distortion on power distribution 

systems. The electric motor that controlled by electronically has been used to drive 
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the compressor on the air conditioner system.  Electric motors controlled by static 

converter are also source harmonic in distribution system [Cataliotti et al., 2008]. 

 

Low-power diode rectifiers with smoothing DC capacitors are increasingly 

being used in consumer electronic equipment. Harmonics generated by these diode 

rectifiers have become a major problem in recent years. Other typical harmonic 

producing loads are thyristor converters in which a large inductance is installed on 

the DC side to produce a constant DC current. Because the impedance on the DC 

side for harmonics is much larger than that on the AC side, the harmonic current 

contents and characteristics are less dependent upon the ac side [Aiello et al., 2005].  

 

Another typical harmonic source is diode rectifiers with smoothing dc 

capacitors. Generally, the impedance of capacitors becomes smaller at higher 

frequencies. Connecting a large capacity of capacitor to the DC side diode rectifier 

causes much lower impedance for harmonics. The amplitude of harmonic currents on 

the AC side is greatly affected by the impedance of the AC side. Therefore, a diode 

rectifier as shown in behaves like a voltage source rather than a current source 

[Aiello et al., 2005]. 

 

From the measurement of gas discharge lamp was found that current 

waveform 20 watt tube lamp with electronic ballast has a THDi of 199.1%, while 

voltage waveform contains no harmonics. Next is the waveform of the 11-watt lamp 

3U super light and super 18-watt spiral lamp light. Both lamps are recognized as the 

energy saving lamp. A 3U 11-watt super light lamp has a THDi of 215.9% while the 

lamp 18-watt spiral super light lamp has THDi of 219.08%. From the results of these 
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measurements can be concluded that the electrical equipment used at home has huge 

potential to contribute harmonic to the distribution system. 

 

2.2.5 Harmonic Measurement in Distribution System 

To know the harmonics phenomenon on distribution system several harmonic 

measurements that have been published in some publications are reviewed in this 

chapter. The voltage THD (THDv) at American Electric Power Distribution System 

ranged from 1% to more than 5% and was dominated by the 5
th

 harmonic. Beside 

that in this survey have reported the voltage distortion values at residential load were 

below 1% during the daytime hours, while voltage distortion factor at commercial 

load averaged between 1.92% and 2.44%. The current distortion factor averaged 

between 2.76% and 3.13%. The third harmonic was the dominant component [Shuter 

et al., 1989]. 

 

The voltage distortion factor at distribution circuit serving an industrial park 

was exceeded 1.3% in 90% of the measurements and exceeded 2.6% in 5% of the 

measurements. The average voltage distortion factor was 2.15% and 2.53% at the 

customer and station sites, respectively. The fifth harmonic dominated the voltage 

and current distortion factors [Shuter et al., 1989]. 

 

The voltage distortion factor for circuit which serves a combination of 

residential and commercial loads in 90% of the measurements, it exceeded 1.2%, and 

in 5% of the measurements, it exceeded 2.1%. The voltage distortion factor for 

circuit serving a mix of residential and commercial loads averaged between 1.68% 

and 2.79% [Shuter et al., 1989]. Maximum and average values of voltage and current 
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distortion of 1120 spot measurements on the Sierra Pacific Power Co at 120V are 

given and the results suggest a 95% THDv of 3% [Amoli and Forence, 1990]. 

 

The THDv at one week measurements on the sending end of 5 New England 

Power Service Co feeders ranging 15-25 kV with samples taken every 3 minutes was 

found to be 1.2% [Emanuel et. al., 1991]. Later phases of the project are reported in 

[Emanuel, 1993] and [Medina and Martinez, 2005] concluding that THDv is 

increasing at 0.1% per year. Hughes et al., has gives voltage measurements at the 

120V service entrance of some BC Hydro customers over a week. Residential, 

Commercial and Industrial customers were found to have 95% THDv values of 

2.9%, 1.9% and 3.9% [Hughes et al, 1991]. 

 

The harmonic voltages and currents were monitored at the sending end of 

distribution substations and each feeder supplies commercial, residential and 

industrial loads. At all the monitored locations it was found that 99% of the time the 

THDv is smaller than 2%. For the four feeder that has been monitored was found that 

the harmonics on some feeders has been exceeded the THDi limit, while the other 

feeders are still below the set limit [Emanuel et al., 1991]. 

 

Monitoring at retail store equipped with a 5 kW photovoltaic inverter and 

modern electronic ballasts for the fluorescent lights was found that 99% of the time 

the THDv was much smaller than the 5% limit recommended by IEEE Std. 519. It is 

shows that the maximum voltage distortion and harmonics recorded during this 

survey. The fifth harmonic voltage was found to always the dominant harmonic, the 

largest value monitored being 2.2% at the mains of the accounting operation building 
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