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ANALISIS KUASA BAHARU BAGI PROSEDUR 
PSEUDO-MEDIAN UNTUK LEBIH DARIPADA DUA KUMPULAN 

 

ABSTRAK 
 

Perbandingan kumpulan rawatan adalah kerap digunakan dalam penyelidikan 

praktikal dalam pelbagai bidang. Ujian berparameter ANOVA F adalah yang paling 

meluas digunakan untuk membandingkan kumpulan rawatan, khususnya  min bagi tiga 

atau lebih kumpulan rawatan. Walau bagaimanapun, ujian berparameter biasanya 

memerlukan andaian kenormalan dan kehomogenan varians. Jadi, kegagalan dalam 

andaian-andaian tersebut membawa kepada herotan ralat Jenis I dan pengurangan yang 

ketara dalam kuasa ujian. Oleh itu, prosedur pseudo-median yang  menggunakan 

pseudo-median sebagai parameter lokasi telah dibangunkan untuk perbandingan 

kumpulan rawatan. Prosedur ini adalah pengubahsuaian prosedur tak berparameter 

Wilcoxon satu sampel yang dibangunkan untuk lebih daripada dua kumpulan. Prosedur 

pseudo-median adalah penjumlahan perbandingan berpasangan berganda antara 

kumpulan kawalan dan setiap kumpulan rawatan. Dalam kajian ini, prestasi prosedur 

pseudo-median diukur apabila andaian kenormalan dan keheterogenan tidak dipatuhi. 

Ralat Jenis I diperiksa dan satu analisis baru bagi kuasa prosedur ini dicadangkan dan 

dijalankan untuk lebih daripada dua kumpulan. Kedua-dua ralat Jenis I dan analisis 

kuasa dilakukan di bawah pelbagai darjah kehomogenan dan bentuk taburan yang 

berbeza. Kaedah butstrap digunakan untuk menjana taburan pensampelan pseudo bagi 

statistik ujian pseudo-median. Prestasi prosedur ini juga dibandingkan dengan ujian-

ujian klasik iaitu ujian F ANOVA dan ujian pangkat hasiltambah Kruskal-Wallis. 
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Prosedur pseudo-median menunjukkan beberapa kekuatan dalam prestasinya terutama 

dalam mengawal ralat Jenis I. Ia mendemonstrasikan keteguhan untuk mengawal ralat 

Jenis I dengan situasi yang berbeza daripada ketidaknormalan, keheterogenan dan juga 

apabila saiz sampel adalah tidak sama dan berpasangan secara negatif dengan varians 

kumpulan. Kuasa prosedur ini tidak dipengaruhi oleh jenis taburan. Walau 

bagaimanapun, ia dipengaruhi oleh varians yang berbeza. Prosedur ini boleh memberi 

kuasa yang tinggi selagi varians adalah sama. Kuasa yang lemah dicerap apabila 

bilangan perbandingan berpasangan antara setiap kumpulan rawatan dan kawalan 

dengan saiz kesan bukan sifar adalah kecil. Kuasa bagi ujian-ujian tradisional 

dipengaruhi oleh jenis taburan. Kuasa adalah lemah apabila taburan adalah terpencong 

dengan ekor panjang, namun pseudo-median memberikan kuasa yang lebih tinggi untuk 

taburan jenis ini. 
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NEW POWER ANALYSIS FOR THE PSEUDO-MEDIAN 
PROCEDURE FOR MORE THAN TWO GROUPS 

 

ABSTRACT 
 

Comparison of treatment groups is frequently used in practical research in a variety 

of fields. The parametric ANOVA F test is most widely used to compare groups of 

treatment, specifically the means of three or more treatment groups. However, the 

parametric test usually requires normality of the distribution and homogeneity of 

variances. So, failure in meeting these assumptions leads to distortion of Type I error 

and substantial reduction in the power of the test. Therefore, the pseudo-median 

procedure which adopts the pseudo-median as a location parameter was developed for 

treatment groups comparison. This procedure is a modification of the one-sample 

nonparametric Wilcoxon procedure developed for more than two groups. The pseudo-

median procedure is a summation of multiple paired comparisons between the control 

group and each of the treatment groups. In this study, the performance of the pseudo-

median procedure is examined when the assumptions of normality and heterogeneity are 

violated. The Type I error is examined and a new power analysis of this procedure is 

proposed and carried out for more than two groups. Both Type I error and power 

analysis are performed under various degrees of homogeneity and different shapes of 

distributions. The bootstrap method is employed to generate a pseudo sampling 

distribution for the pseudo-median test statistic. The performance of this procedure is 

also compared against those of the classical tests, i.e., ANOVA F test and Kruskal-

Wallis sum rank test. The pseudo-median procedure shows a number of strengths in its 
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performance especially in controlling the Type I error.  It demonstrates its robustness to 

control the Type I error under different situations from non-normality, heterogeneity as 

well as when sample sizes are unequal and are negatively paired with group variances. 

The power of this procedure is not affected by the shape of the distribution. However, it 

is affected somewhat by the heterogeneity of variances. This procedure can provide high 

power so long as the variances are equal. Poor power was observed when the number of 

pairwise comparisons between each treatment group and control with non-zero effect 

size is small. The power of traditional tests is affected by the type of the distribution. 

The power is poor when the distribution is skewed with long tail, yet the pseudo-median 

provides much higher power for this type of the distribution. 
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CHAPTER 1 

INTRODUCTION 
 

1.1 Background of the study 

The comparison of quantitative characteristics of two or more groups is commonly 

found in most statistical applications. The quantitative characteristic usually used in this 

comparison is the central tendency measure, specifically the mean. The mean is the 

location parameter compared in the parametric tests such as Student t-test and the 

ANOVA F-test. These parametric tests usually have high power. However, achieving 

this requires verification of certain data assumptions imposed by the tests. 

Unfortunately, these assumptions usually fail with real data.  

The normality of data and homogeneity of variances are the usual assumptions for 

these parametric tests. The violation of these assumptions harms the performance of the 

parametric tests. Departure from the assumptions substantially inflates the Type I error 

and reduces the power. 

Robust statistics came into being to deal with the problem of deviations from the 

assumptions. Robust statistics provide alternative procedures insensitive against the 

violation of the assumptions. The theory of robust statistics started more than 40 years 

ago (Ronchetti, 2006).  Huber (1964) and Hampel (1968) provided the fundamental 

concept of robust statistics and gave the foundation of modern robust statistics. Huber 

developed the first robust estimator for the location parameter and Hampel followed that 

by deriving the influence function of an estimator. This was considered as an important 
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characteristic for a robust estimator.  Robust statistics is still an active area of research. 

Ronchetti (2006)  found 1617 papers on robust statistics in statistical journals. Many 

more can be found in journals of other fields where robust statistics was applied. 

The statistical tests based on robust estimators are alternatives to the parametric tests, 

developed to provide better control of Type I error and high power when the 

assumptions are invalid. The researchers need to examine the performance of the 

proposed and developed tests in terms of Type I error and power. This adds to the 

knowledge on the validity of using these developed tests under different conditions of 

heterogeneity and non-normality.   

With regards to the evaluation of the power, researchers usually estimate power at a 

few points which do not reflect the actual performance of a test (Babu & Padmanabhan, 

2002; Babu et al., 1999). In addition, the manner of the test statistic for comparing 

groups of treatment is different from test to test. Some tests compare groups as a 

collection of multiple pairwise comparisons between two groups while other tests 

compare each group with the combined groups. Therefore, the power analysis should be 

different depending on the manner of the test statistic for comparing treatment groups in 

order to give proper evaluation for the performance of the test. However, researchers 

still use the same power analysis for all treatment groups comparison (Keselman et al., 

2004b; Othman et al., 2004a).  

In traditional tests, power was examined by imposing the differences between each 

group and combined groups. In ANOVA F test, the comparisons were done by imposing 

the differences between the mean of each group and the mean of combined groups. Also, 
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in Kruskal-Wallis test, the comparisons were done by imposing the differences between 

the rank of each group and the rank of combined groups. Yet such differences were also 

imposed in the power analysis of tests that are made up of a collection of paired 

comparisons between all possible pairs of groups such as T1 and S1 tests proposed by 

Babu et al. (1999). In other words, one single effect size index was usually used in 

power analysis to reflect the differences between treatment groups even in the tests that 

are based on a collection of paired comparisons between treatment groups. The latter 

type of tests should require more than one effect sizes to reflect the differences of the 

paired comparisons. 

 

1.2 Pseudo-median procedure 

The pseudo-median procedure is an alternative method for treatment groups 

comparison (Steland et al., 2011), developed to deal with the problem of violation of the 

assumptions. It is a modification of the one-sample nonparametric Wilcoxon procedure 

in a two groups setting and extended to more than two groups. This procedure is made 

up of multiple pairwise comparisons between the control group and each of the other 

groups. The pseudo-median parameter is adopted as a location parameter to compare the 

treatment groups in the pseudo-median procedure. The pseudo-median parameter is the 

median of the distribution of the averages (𝑋1 + 𝑋2)/2 where 𝑋1 and 𝑋2 are 

independently and identically distributed. This parameter is estimated by Hodges and 

Lehmann estimator. 

 



4 
 

1.3 Rationale of the study 

The pseudo-median estimator has some characteristics which are better than the 

common robust estimators such as trimmed mean, M-estimator and median. The pseudo-

median does not need to discard the data during the computation. However, the trimmed 

mean and M-estimator involve discarding some of the data that leads to loss of 

information. Moreover, the proportion of discards increases according to the number of 

extreme values. Consequently, more information will be lost when more data are 

discarded. At the same time, these extreme values represent part of the population with 

particular characteristics. Thus, the conclusion from previous procedures does not 

involve the analysis of this part of the population.  

One other advantage of the pseudo-median is it exhibits good performance with the 

bootstrap method (Ahad et al., 2011). Yet, the performance of the bootstrap on the 

sampling distribution of the sample median is very poor (Brown et al., 2001).  

Steland et al. (2011) proposed the pseudo-median procedure for comparing two 

groups and extended it to more than two groups. They estimated the power only at one 

point using two effect size values to reflect the differences between three groups, and 

concluded that the test is very reliable. This technique of obtaining power is deficient. 

This is because the performance of the method through only one point could not be 

determined.  

Even though the pseudo-median has good characteristics, the power analysis results 

provided by Steland et al. (2011) was inconclusive. Estimating power at one point does 

not give correct and complete perception of the power performance. Moreover, the 
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manner of the pseudo-median procedure for comparing treatment groups depends on a 

group of multiple comparisons between the control and each of the treatment groups. 

This type of comparisons involves many different cases which should be considered 

when performing the power analysis. 

Furthermore, developed tests which replaced the usual mean with other robust 

estimators did not yield high power under all conditions of heterogeneity and non-

normality (Babu & Padmanabhan, 2002; Babu et al., 1999; Keselman et al., 2004b; 

Othman et al., 2004a). Therefore, when using an improper method for power analysis, 

high and poor power situations could not be distinguish. Determining the poor power 

situations is important to treat performance problems in a test. The estimator used in a 

test could be a robust estimator but the methodology or the manner of the test for 

comparing groups leads to poor power. 

 

1.4 Objective of the study 

This research aims to develop a new power analysis technique for the pseudo-median 

procedure in order to measure the performance of the procedure in terms of Type I error 

and power when the assumptions of normality and homogeneity are violated.  

The sub-objectives are as follows: 

1. To establish Type I error of the pseudo-median procedure under various 

conditions. 

2. To find suitable effect size estimator for the pseudo-median procedure. 
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3. To establish a new power analysis of the pseudo-median procedure and 

estimate a complete power curve under various conditions. 

4. To compare the performances of the pseudo-median procedure against the 

classical parametric test (ANOVA F-test) and nonparametric test (Kruskal-

Wallis test).  

 

 

1.5 Significance of the study 

This study contributes to an alternative power analysis of treatment group 

comparisons tests. The manner for comparing treatment groups is different from test to 

test which implies using different power analyses. The power of tests which depends on 

a collection of pairwise comparisons between the treatment groups could not be 

estimated at only a few points and with a single effect size. This study gives a new 

power analysis technique suitable for the tests which depend on multiple comparisons 

between the treatment groups.  

 

1.6 Organization of the thesis 

This thesis has five main chapters. Chapter 2 gives the gradual development in the 

area of comparing group of treatments and explains the main concepts related to the 

study such as Type I error, power, effect size, measures of robustness, pseudo-median 

parameter and its estimator and bootstrap. Chapter 3 describes the pseudo-median 

procedure, estimation of effect size and the technique of power analysis, study 

conditions for the simulations and the algorithms to calculate and evaluate performance 
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measures in the form of Type I error and power. The algorithms for computing the Type 

I error and power for the pseudo-median using bootstrap and the competing tests are also 

discussed in this chapter. Chapter 4 presents and illustrates the behavior of the pseudo-

median procedure in terms of Type I error and power. Performances of the pseudo-

median with the classical tests are also compared. Chapter 5 provides conclusions and 

suggestions for further studies.  
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CHAPTER 2 

LITERATURE REVIEW 
 

2.1 Introduction 

The comparisons of measurable quantities of characteristics of two or more groups 

are usually done in many scientific studies.  The most used summary for measurable 

quantities is the mean. Comparing groups using means is the most  common technique in 

education and psychology (Wilcox, 1995, p. 51). The analysis of variance is most widely 

used to compare means, specifically means of three or more groups. This classical test 

requires several assumptions to produce accurate results. The normality and 

homogeneity of data are the usual assumptions required for parametric tests. However, 

failures in the assumptions lead to distortion of Type I error and substantial reduction in 

the power of the test. Moreover, the assumptions are rarely met in real data. This chapter 

discusses the problem of violation of assumptions and reviews some of the solutions 

from previous studies. Also, it provides the definitions of terminologies related to this 

study.  

 

2.2 Development of comparison of treatment groups 

Numerous research have shown how the violations of the assumptions distort the 

Type I error and the power of a test. For example, Wilcox and Keselman (2003a) 

showed that the sampling distribution of a parametric test statistic departed from the true 

distribution when the observations were sampled from skewed distributions. This 

departure in the sampling distribution of the test statistic produced inaccurate Type I 
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error and confidence interval of the hypothesized parameter. The problem of mis-control 

over the probability of Type I error could be reduced when the sample size increases. 

Nevertheless, it persists even when the sample size is as large as n =300 with the 

presence of outliers (Wilcox & Keselman, 2003a).  According to Wilcox (1994), the 

conventional  F test failed to control the Type I error when the distributions were 

heterogeneous and/or non-normal.   At  𝛼 = 0.05, the Type I error was greater than 0.09 

with unequal variances and it exceeded 0.3 when the distributions were not normal as 

well.  

Even when the data distributions are symmetric but not normal or slightly departing 

from normality, the power to detect the differences between group means was 

substantially reduced (Wilcox & Keselman, 2003a). For instance, in the two samples 

case, at  𝛼 = 0.05 and the variances were equal, the power of the Student's t-test was 

observed to be 0.28 falling from 0.975 with small departure from normality (Wilcox, 

1995; Wilcox & Keselman, 2003a). This is even more when there is a large departure. 

The presence of outliers and heavy-tailed distributions result in the inflation of group 

sample variances which leads to lower power (Wilcox, 1995; Wilcox & Keselman, 

2003a). For example, the power of the classical F test was reduced from 0.94 to 0.502 

with symmetric heavy-tailed distributions and further reduced to 0.216 with skewed 

heavy-tailed distributions (Wilcox, 1994). 

With inaccurate Type I error and poor power due to violation of normality and 

homogeneity assumptions, the decision of a test of hypothesis using parametric methods 

will be misleading.   Hence, there is a danger in using parametric tests in the real world. 

This is because data in the real world is not normal and not homogeneous. According to 
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Reed (1998, p. 651) "Nearly all real data are discrete in nature, so theory suggests that 

cannot be normal". In addition, the variable reaction time, which is widely used in 

psychology and related fields is usually skewed (Miller, 1988). Micceri (1989) 

conducted surveys of 440 large samples to determine the properties of distributions that 

commonly occur in the real world. The study included a wide variety of measurements 

used in psychology and education (e.g., psychometric measures, ability and aptitude 

measures). None of these data had normal distributions and few of them were 

approximately normal in shape. Furthermore, most of the data classified were skewed, 

extremely skewed, heavy-tailed and multimodal.  

With regards to heterogeneity, this phenomenon in real data is not something strange. 

Given the nature of research, as well as the populations from which samples were drawn 

heterogeneity is common. O'Brien (1992, p. 819) noted that when comparing patients 

who have a certain disease with non-infected patients, there were variability in the 

laboratory measures in both groups. Irregular behavior resulting from the impact of 

certain treatments can also cause more variability (Steel & Torrie, 1981 pp. 169-170). In 

addition, in studies of psychology there are variables that naturally showed 

heterogeneity within groups that share a common trait. One such variable is reaction 

time, e.g., heterogeneity of reaction times among age groups (Hultsch et al., 2002), 

gender and education level.  

Both assumptions (normality and heterogeneity) can be tested statistically. However, 

the methods used to detect them also require assumptions. The methods for detecting the 

equality of variances require normality and normality tests require homogeneity (Erceg-

Hurn & Mirosevich, 2008; Montgomery, 2001). Therefore, neglecting the normality 
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condition in a test of equality of variances or absence of homogeneity in a test of 

normality gives incorrect decision. Furthermore, most methods which test homogeneity 

cannot control Type I error and have low power (Wilcox, 1995). Moreover, the common 

normality tests, such as the chi-squared test in goodness-of-fit setting and the 

Kolmogorov-Smirnov test give poor power and should not be used for testing normality 

(D' Agostino et al., 1990).  

Data transformation is one of the solutions to obtain normal and/or homogeneous 

data. Yet, the researchers find difficulty in interpreting the results because the data unit 

after transformation is different from the original data. Also, determining the appropriate 

transformation to deal with both heterogeneity and non-normality is not easy. 

Furthermore, the outliers are not necessarily treated or removed using the 

transformations (Erceg-Hurn & Mirosevich, 2008, p. 594; Keselman et al., 2007, p. 269; 

Wilcox, 1995, pp. 69-70). 

Nonparametric methods are also used when there are violations in the assumptions. 

Usually, nonparametric methods can detect the difference between group treatments 

under non-normal symmetric distributions. However, these methods are still affected by 

the heterogeneity condition, e.g. the Kruskal-Wallis procedure is affected by 

heterogeneity whether the design is balanced or unbalanced. Furthermore, nonparametric 

methods usually have less power than parametric methods and need larger sample sizes 

to reject false hypotheses (Keselman et al., 2007, pp. 268-269; Syed Yahaya et al., 2006, 

p. 50).  
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Certain research turned to replacing the usual least squares estimators (the usual mean 

and variance) with other estimators which are less sensitive to non-normality and 

heterogeneity. The frequent location estimators that were adopted and examined instead 

of the usual mean are the sample median, trimmed mean and the M-estimator. These 

estimators achieved good Type I error in some studies. Yet, they have weaknesses 

especially in extremely skewed distributions (Babu et al., 1999; Lix & Keselman, 1998; 

Wilcox & Keselman, 2003b; Wilcox et al., 1998). 

Lix and Kesleman (1998) examined the ANOVA F-test and other alternative 

procedures such as Welch (1951), Alexander and Govern (1994) and Box (1954) were 

compared when the underlying distributions were non-normal and also the group 

variances and sample sizes were jointly unequal. They employed the trimmed means and 

Winsorized variances instead of least square estimators (the usual means and variances) 

in all test statistics that were adopted. They recommended that using trimmed means and 

Winsorized variances achieve good control of the Type I error and high rate of power in 

some of the alternatives. At the same time, Wilcox et al. (1998) examined the methods 

due to Welch (1951), Alexander and Govern (1994) and Box (1954). They also used the 

trimmed means and Winsorized variances as well as applied bootstrap under the same 

assumptions in Lix and Keselman (1998). They showed that better control of Type I 

error can be obtained if the bootstrap method is used in conjunction with test statistics 

based on trimmed mean. Keselman et al. (2000) examined two procedures for equality 

of means proposed by Weerahandi (1995) and Chen and Chen (1998). They also 

compared these two procedures with robust Welch test with 20% trimmed means and 

Winsorized variances examined by Lix and Keselman (1998). They showed that under 
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normality, these procedures were robust when the group variances were heteroscedastic 

and the sample sizes were unequal.  However, they provided large Type I error when the 

data were not normal. In contrast, the robust Welch test provided better control of Type I 

error in similar situations. 

Subsequently, Wilcox and Keselman (2003b) illustrated the concerns of the trimmed 

mean. These concerns are: 1) the amount of trimming has to be fixed before analysis of 

data and 2) the nature of trimming, whether symmetric or asymmetric. Usually trimming 

is carried out symmetrically regardless of whether the distribution is symmetric or 

skewed. Therefore, they modified the M-estimator into a one-step M-estimator (MOM). 

MOM is also a robust estimator which simultaneously controls the trend and the 

magnitude of the necessary trimming. They demonstrated that the MOM estimator was 

able to control the Type I error better than the trimmed mean.  

A further evolution to address the concerns of the amount of trimming, Tukey and 

McLaughlin (1963), Jaeckel (1972) and Hogg et al. (1975) proposed a method to 

determine the magnitude of trimming. They suggested choosing the strategy which 

results in the smallest standard deviation of the sample trimmed mean. In other words, 

they computed many different trimmed means and then adopted the one which has the 

smallest standard deviation. Subsequently, Reed and Stark (1996) developed adaptive 

location estimators based on measure of tail length  and measure of skewness for a group 

of n observations. For this adaptive estimator, the amount and the trend of trimming 

either symmetrically or asymmetrically is determined by the characteristics of the 

sample data such as the tail length and the degree of skewness. Following that, 

Keselman et al. (2007) applied the adaptive trimmed means with the Welch (1951) 
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statistic using Tukey-McLaughlin-Jaeckel-Hogg methods and Reed and Stark 

estimators. They found that a number of Welch tests based on Reed and Stark estimators 

provided good values of Type I error under less extreme cases of non-normality and 

variance heterogeneity. 

As stated earlier about the adaptation, Babu et al. (1999) proposed adaptive method 

for treatment groups comparison using a different manner of adaptation. They 

introduced two tests statistics, T1 and S1. The T1 is based on 15%-trimmed means while 

S1 is based on sample medians. The strategy of this adaptive method is to start first with 

checking the data by using preliminary test for symmetry in each simulation. If the data 

is symmetric, the T1 statistics is used; otherwise, the S1 statistics is used. 

Consequently, Keselman et al. (2002) and Othman et al. (2004b) employed another 

adaptive method. They used Babu et al. (1999) test for symmetry to trim symmetrically 

or asymmetrically only on one side. Once the data have been symmetrically or 

asymmetrically trimmed, a number of Welch-James heteroscedastic statistics were 

calculated. The Welch-James heteroscedastic statistics are the Welch (1951) test after 

replacing the usual mean and variance by trimmed means and Winsorized variances with 

different α% trimming. The Welch-James heteroscedastic statistics are transformed 

using both Johnson’s (1978) or Hall’s (1992) transformation with or without employing 

bootstrap to calculate the empirical values of the Type I error. Their results showed good 

control of the Type I error when the Welch-James heteroscedastic statistic is preceded 

by the Babu et al. (1999) test for symmetry. Then, followed by 10% symmetrically  

trimmed or 20% asymmetrically trimmed means with either Johnson’s (1978) or Hall’s 

(1992) transformation in conjunction with the bootstrap method. 
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Concerning other developments in treatment groups comparison, Md. Yusof et al. 

(2008) modified the T1 statistic proposed by Babu et al. (1999) by using variable 

trimmed mean and Winsorized variances based upon several robust scale estimators in 

the trimming criterion. They showed, in general, the original T1 procedure from Babu et 

al. (1999) is still the best. Nevertheless, the methods using the scale estimators improved 

the Type I error rate when the sample size was large.  

Regarding comparison of group medians, the S1 statistic which was proposed by 

Babu et al. (1999) for comparing group medians was modified by replacing the default 

standard error of the sample median, 𝜔�, in the S1 statistics with alternative robust scale 

estimators proposed by Rousseeuw and Croux (1993) (Othman et al., 2006; Syed 

Yahaya et al., 2004a, 2004b; Yaacob et al., 2006). Some of these alternative robust scale 

estimators when combined with S1 statistic achieved good control of the Type I error 

and high power. The two robust scale estimators, MADn and Tn, achieved the best 

control of the Type I error with S1 statistic compared to the other robust scale estimators 

(Othman et al., 2006; Syed Yahaya et al., 2004a, 2004b) 

A further development in comparing location parameters, Keselman et al. (2002) 

created a new procedure by applying the MOM estimator on H statistic which was due to 

Schrader and Hettmansperger (1980). They called this the MOM-H. The bootstrap 

procedure was used to determine the critical value of MOM-H. Subsequently, frequent 

investigations were done on MOM-H (Othman et al., 2006; Syed Yahaya et al., 2006; 

Yaacob et al., 2006).    All investigations involved modifying the trimming criterion by 

replacing the default scale estimator (MADn) with other robust scale estimators 

suggested by Rousseeuw and Croux (1993). They showed that the Tn and Sn robust scale 
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estimators achieved the best performance with MOM-H when the data was non-normal 

and heteroscedastic (Othman et al., 2004a; Othman et al., 2006; Syed Yahaya et al., 

2006). More scale estimators, specifically  E1 and E2 were used by Yaacob et al. (2006). 

They did not show better control of Type I error than the default estimator MADn. 

In addition to the robust procedures mentioned earlier, there were developments in 

using the Mann-Whitney statistic to compare more than two groups. Prior to application 

of more than two groups, this statistic has to be fixed to become applicable to non-

symmetric distributions. Babu and Padmanabhan (2002) tried to improve the Mann-

Whitney procedure to make it applicable for skewed distributions. The Mann-Whitney 

criterion, 𝑃(𝑋 ≤ 𝑌) = 0.5, cannot be used when the distributions are asymmetric and 

the variances are unequal. Therefore, they modified the Mann-Whitney procedure by 

estimating the probability 𝑃(𝑋 ≤ 𝑌). This probability was estimated by employing the 

bootstrap method. Their procedure resulted in poor performance of the Type I error and 

power. At the same time, Othman et al. (2003) extended the Mann-Whitney to J-

samples, where J > 2 using the same procedure. They obtained liberal rates of the Type I 

error similar to the results in Babu and Padmanabhan (2002) especially when the 

variances of the groups were extremely different. 

 

2.3 Type I error 

The Type I error is one of the fundamental concepts of tests of hypothesis. The 

statisticians defined it as the probability of rejecting the null hypothesis when it is true. 

The significance level and the error of the first kind are various names for the Type I 
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error. The size of Type I error is denoted by α (Cohen, 1988). Usually the value of α is 

specified in the test of hypothesis. Practitioners commonly choose α to be 0.01, 0.05 and 

0.1, and 0.05 is the most frequently used (Cohen, 1994; Cowles & Davis, 1982).  

When the assumptions of normality and heterogeneity are verified, the probability of 

the Type I error for parametric tests are usually close to the set level α. However, the 

probability departs from the nominal significance level α when the assumptions are 

violated. A robust statistic is a procedure which is able to maintain the Type I error close 

to the nominal level and maintain the power when the assumptions are violated (Stevens, 

2007).   

Bradley (1978) considered that a test to be robust if the departure of the probability of 

the Type I error, p, from the nominal level α was within the interval  0.5𝛼 ≤ 𝑝 ≤ 1.5𝛼. 

This criterion of robustness is called the liberal criterion and is widely used in numerous 

researches (Keselman et al., 2007; Keselman et al., 2000; Othman et al., 2004a; Wilcox, 

1994; Wilcox & Keselman, 2003b; Wilcox et al., 1998). If the nominal level is set at 

𝛼 = 0.05, the liberal criterion will be [0.025, 0.075]. Type I error above 0.075 is 

considered liberal and if below 0.025, it is considered conservative.  

Some researchers used different criterion of robustness. They used the confidence 

interval of the proportion, p, (�̂� ± 𝑧𝛼 2⁄ ��̂�(1 − �̂�) 𝑛⁄ ) (Babu et al., 1999; Syed Yahaya 

et al., 2004b). The bounds of the interval were computed by setting �̂� equal to α and n is 

the number of simulations while 𝑧𝛼 2⁄  is the critical value from the standard normal 

table. The dependence of this criterion on the number of simulations made the criterion 

more accurate since the larger the n is, the smaller the interval becomes. When 𝛼 = 0.05 
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and 𝑛 = 5000, the accurate criterion will be  [0.044, 0.056] (Babu et al., 1999; Syed 

Yahaya et al., 2004b) 

 

2.4 Power 

Besides Type I error, the power of a statistical test is one of the performance metrics 

that distinguishes a test from another. When there exists more than one statistical test for 

testing a specific problem, the power of these procedures leads to the determination of 

which test is best to use. Practitioners prefer the statistical test which has high power 

(Mahoney & Magel, 1996).  

Power is defined as the probability of rejecting the null hypothesis given that the 

alternative hypothesis is true, or in other words, the probability that leads to significant 

results. Computing this probability needs complete knowledge of the population 

distribution (Mahoney & Magel, 1996). This requirement makes the power computation 

process difficult especially for nonparametric methods that are applied when the 

population distributions are unknown.  Therefore, researchers sometimes pretend that 

the power cannot be assessed without empirical data. On the other hand, Cohen (1988) 

illustrated that the power analysis depends upon three components: the size of the test or 

"significance level", the sample size and the effect size. Power is obtained at a specific 

value of the effect size, when the sample size and the significance level are fixed.  
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2.5 Effect size 

The effect size is a measure to quantify the degree of departure of the decision from 

the null hypothesis. For example, in a study to determine whether the average scores of 

students in class A, 𝜇𝐴, is different from the average scores in class B, 𝜇𝐵, the null 

hypothesis is 𝜇𝐴 − 𝜇𝐵 = 0. This implies no difference between the two means. If the 

difference is a specific nonzero value, the effect size is this specific value. 

The procedure to obtain the effect size differs from one statistical test to another. 

Each statistical test has its own effect size index (Cohen, 1988). Hence, parametric 

statistical tests have parametric effect sizes. One such effect size is the d index, an effect 

size for the difference between two population means in independent samples t test 

(Cohen, 1992). Another effect size is the f  index, the effect size for equality of a set of k 

population means in the analysis of variance procedure (Cohen, 1988). Both of these 

indices are constructed from specific values of the alternative hypothesis, sample size 

and the size of Type I error. However, these are effect sizes from parametric statistics. 

They are affected by departures from normality and homogeneity (Algina et al., 2005; 

Erceg-Hurn & Mirosevich, 2008; Hogarty & Kromrey, 2001; Onwuegbuzie & Daniel, 

2002). Therefore, researchers need to find nonparametric effect sizes that are applicable 

for nonparametric statistics.   

A number of researches have been done to develop nonparametric effect size. Cliff 

(1993) proposed the delta statistic denoted by δ as a non-parametric index to quantify 

the differences between two groups on ordinal level measurements. The delta statistics is 

the difference between the probability of a score from the first group being larger than 
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the second group minus the probability of the second group being larger than the first 

group.  

McGraw and Wong (1992) developed a Common Language (CL) effect size index for 

continuous distributions. The CL presents the effect size in probability which is "the 

probability that a score sampled at random from one distribution will be greater than a 

score sampled at random from some other distribution" (McGraw & Wong, 1992, p. 

361).  Also, the CL was generalized to independent and correlated n-groups.  

Vargha and Delaney (2000) modified the CL index to be applicable for any discrete 

or continuous variable. It is called the measure of stochastic superiority and is denoted 

by A. This effect size does not require conditions about the type of distribution. It only 

requires that the distribution to be at least ordinally scaled. The A index converts the 

effect size into a probability. Vargha and Delaney gave guidelines for interpreting the 

value of A. The value A = 0.5 indicates equality of two populations while A > 0.5 means 

that the first population is superior to the second population. Vargha and Delaney gave 

three levels of the effect size A. The value A = 0.56 is considered as a small effect size, A 

= 0.64 as a medium while A = 0.71 as a large effect size.  

Vargha and Delaney found a relationship between A and δ which is 𝐴 = (𝛿 + 1)/2. 

Both effect sizes were demonstrated among other effect sizes to be robust in violation of 

the assumptions of normality and homogeneity (Hogarty & Kromrey, 2001; Leech & 

Onwuegbuzie, 2002).  
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The effect size plays an important role in the calculation of power. The f effect size 

index is usually employed in power analysis of treatment group comparisons to reflect 

the differences between groups (Keselman et al., 2004b; Othman et al., 2004a).  

Cohen (1988) gave three degrees for the f effect size index. The value f = 0.10 is 

considered as a small effect size, f = 0.25 as a medium while f = 0.40 as a large effect 

size. Three patterns of variability, minimum, intermediate and maximum variability 

were also defined to reflect how means of groups deviate from each other.  The patterns 

are functions in f, and each pattern indicates one degree of f effect size.  

Keselman et al. (2004b) and Othman et al. (2004a) used these patterns in the power 

analysis for MOM-H and MOM-T procedures by Keselman et al.  (2002), and the 

adaptive procedure by Babu et al. (1999). The MOM-H procedure is made up of 

comparisons between each treatment group and the combined groups while the other 

two procedures are made up of multiple comparisons between all possible pairs of 

groups. The formula of the f effect size is based on differences between the mean of each 

treatment group and the mean of the combined groups. Also, the f effect size or the 

patterns do not express how many paired comparisons are different or what the degree of 

effect size is in each paired comparison.  These matters need more than one effect size to 

obtain a complete picture for power performance of the procedure.  

Steland et al. (2011) and Babu et al. (1999) proposed two procedures made up of 

multiple comparisons between groups. Three groups were considered for power analysis 

for these two procedures. Two non-zero effect size values were used to present the 

location shift in the second and third groups, respectively. This implies that all groups 
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are different. However, this is not the only case of differences between the groups which 

could occur. 

 

2.6 Measures of robustness 

Researchers have been trying to find robust estimators which are less sensitive to 

small deviations from the usual assumptions. The influence function and the breakdown 

points are tools to describe and measure the stability or robustness of the statistics. The 

influence function describes the limiting effect of an additional observation, x, to a very 

large sample on a statistic T (Hampel et al., 1986; Wilcox, 2005). In other words, the 

influence function reflects the approximate rate of change of the estimate when the 

outlier occurs (Hettmansperger & McKean, 1998). Limited change on a statistic by an 

additional value leads to a resistant or stable estimator. Therefore, a bounded influence 

function leads to a robust estimator. 

The other measure of robustness is the breakdown point which reflects the amount of 

contaminated data that an estimator can cope with (Hettmansperger, 1984; Huber, 1981). 

The estimator with high breakdown point is considered resistant and robust. A high 

breakdown point is one of the characteristics of a robust estimator. The sample mean has 

0 breakdown point while the α-trimmed mean has α breakdown point. The sample 

median has a high breakdown point equal to 0.5.  
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2.7 Pseudo-median parameter and its estimator 

The pseudo-median is a measure of location which is used in the pseudo-median 

statistical procedure to compare a group of treatments. Høyland (1965, p. 178) defined 

the pseudo-median "of a distribution F as the median of  the distribution of (𝑋1 + 𝑋2)/2 

where 𝑋1 and 𝑋2 are independently and identically distributed according to F". The 

median and the pseudo-median are identical when F is symmetric (Høyland, 1965).   

The consistent estimator for the pseudo-median parameter is the Hodges–Lehmann 

estimator denoted by HL. There are different types of Hodges–Lehmann estimators for 

one and two samples problem (Hodges & Lehmann, 1963). These estimators measure 

the location difference of two samples (Everitt, 2006). For one sample, HL estimator is 

considered a corresponding estimator of the pseudo-median parameter, θ, and it is given 

by  

 𝐻𝐻 = median �𝑥𝑖+𝑥𝑗
2

, 𝑖 ≤ 𝑗 = 1,2, … ,𝑛�                                 (2.1) 

where n is the sample size and  𝑥𝑖  and  𝑥𝑖 refer to the observations. For two samples, 

𝑥𝑖  and  𝑥𝑖 are replaced by 𝑑𝑖  and  𝑑𝑖 where 𝑑𝑖  and  𝑑𝑖 are the differences between the 

observations of the two samples.  

HL statistics has a number of advantages. One of the advantages is this statistic can 

be used in regression and generalized to multivariate statistics (Hettmansperger & 

McKean, 1998; Oja, 2010) and other areas of statistics depending on the rank or sign 

rank, such as Wilcoxon sign rank test and Wilcoxon rank sum test (Hollander  & Wolfe, 

1999, p. 54 and p. 126). In addition, the HL estimator has some properties of a robust 
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estimator. It is  insensitive to outliers (Hollander  & Wolfe, 1999; Lehmann, 2006). 

Furthermore, it has bounded influence function. Also, its breakdown point is 0.29. 

However, the breakdown point of the trimmed mean is α which is the percentage of 

trimming. Usually this percentage does not exceed 20%; otherwise, more information 

will be lost. 

 

2.8  The Bootstrap 

Efron (1979) introduced the bootstrap for estimating the standard error of an 

estimator. The bootstrap is a resampling technique from the original data set used to 

obtain a pseudo sampling distribution of a statistic. It replaces the theoretical distribution 

of a statistic by an empirical one when the theoretical distribution of a statistic is 

complicated or unknown. This technique is a practical and simple way to estimate the 

properties of an estimator and in constructing a test involving the same estimator. The 

bootstrap technique is also used to provide an approximate sampling distribution when 

the usual assumptions are not satisfied or when the standard error of a statistics has a 

complex formula. In robust statistics, many studies demonstrated that good results of the 

Type I error were obtained when combining the bootstrap method with statistical 

procedures based on robust estimator (Keselman et al., 2002; Othman et al., 2004b; 

Wilcox, 1995; Wilcox et al., 1998).  
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