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PEMBINAAN SEMULA BUKAN LINEAR SASARAN DIELEKTRIK DALAM 
MEDIA SERAKAN MENAMPILKAN PENDERIAN JALUR LEBAR-ULTRA DAN 

PENGURANGAN KECERUNAN. 

 

ABSTRAK 

 

Dalam dekad yang lalu, kecenderungan minat dalam menggunakan isyarat UWB untuk 

tomografi gelombang mikro semakin meningkat. Kepelbagaian frekuensi dalam isyarat 

iluminasi UWB menawarkan  kombinasi unik yang membolehkan penyebaran panjang 

gelombang  yang panjang dan pendek, dan seterusnya, pengumpulan lebih banyak 

maklumat mengenai sasaran. Walaupun secara umumnya gelombang mikro memiliki 

keutamaan dalam banyak aplikasi pengimejan, algoritma penyongsangan membawa 

kepada pemulihan profil dielektrik adalah kompleks dan terdedah kepada keadaan bising 

eksperimen dan alam sekitar. Dalam kajian ini, ujian kebolehlaksanaan UWB 

gelombang mikro tomografi disiasat bagi pembinaan semula imej kuantitatif. Teknik 

penbinaan semula berdasarkan imej ulangan yang mudah dan teguh dibangunkan untuk 

menyesuaikan dengan keadaan bising eksperimen.  Teknik ini adalah berdasarkan 

kaedah kecerunan konjugat dengan pendekatan Polak-Ribière bukan kuadratik, 

manakala kecerunan diperolehi menggunakan teknik perbezaan pusat dan 

pengemaskinian strategi Broyden. Kebolehlaksanaan dan ketepatan algoritma 

penyebaran songsang baru ini dibandingkan dengan kaedah dampingan serta algoritma 

ke depan dan belakang masa-loncatan. Pembinaan semula imej dilakukan pada data 

berangka yang disintesis, dan data ujian ukuran diperolehi melalui sistem perolehan data 

khusus. Keputusan menunjukkan keupayaan super resolusi di mana pengesanan sasaran 

berskala milimeter bersamaan dengan satu per sepuluh gelombang dari data simulasi, 
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dan satu perempat daripada panjang gelombang melalui data ujikaji diperolehi dalam 

struktur yang agak kompleks. Prestasi algoritma yang dicadangkan adalah setanding 

dengan data simulasi kaedah dampingan bebas hingar, di mana mencapai kurang sedikit 

kesilapan pembangunan semula imej (2,93% berbanding dengan 3.21% dalam ruang 

bebas, dan 7.69% berbanding dengan 9.05% di fantom MRI-terterbit payudara). Walau 

bagaimanapun, apabila data eksperimen digunakan, bukti yang menunjukkan bahawa 

kaedah kemaskini CDF-Broyden adalah lebih kukuh, di mana artifak yang terdapat di 

tengah-tengah domain pengimejan dan ketidakaturan geometri sasaran lebih jelas 

terutamanya apabila  saiz sasaran menjadi lebih kecil berbanding dengan panjang 

gelombang. Sebaliknya, peningkatan prestasi kaedah kemaskini CDF-Broyden datang 

dengan kos pengiraan intensiti, di mana ia memerlukan 20 minit setiap lelaran 

berbanding setengah minit untuk  kaedah dampingan apabila profil dielektrik struktur 

payudara manusia dibina semula. 
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NON-LINEAR RECONSTRUCTION OF DIELECTRIC TARGET IN 

DISPERSIVE MEDIA FEATURING ULTRA-WIDE BAND SENSING AND 

GRADIENT MINIMIZATION 

 

ABSTRACT 

 

In the last decade, there has been a growing interest in using UWB signals for 

microwave tomography. The diversity of frequencies in the illuminating UWB signal 

offers a unique combination enabling scattering of very long to very short wavelengths, 

and thus, collecting more information about the target. While microwave in general 

posses properties of preference for many imaging applications, inversion algorithms 

leading to recovery of the dielectric profile are complex in their nature, and vulnerable to 

noisy experimental conditions and environment. In this study, the experimental 

feasibility of UWB microwave tomography is investigated for quantitative image 

reconstruction. A simplified yet robust gradient based iterative image reconstruction 

technique is developed to adapt to the noisy experimental conditions. The technique is 

based on the conjugate gradient method with Polak-Ribière’s non-quadratic approach, 

while the gradient is obtained using the central difference technique and Broyden’s 

updating strategy. The feasibility and accuracy of this new inverse scattering algorithm 

is compared with the adjoint method with forward and reverse time-stepping algorithm. 

Image reconstruction is performed on synthesized numerical data, and experimental 

measured data, obtained via a specifically designed data acquisition system. Results 

indicate the super-resolution capability where the detection of millimeter scaled targets 

corresponding to one tenth of a wavelength from simulated data, and one quarter of a 



xxxiii 
 

wavelength via experimental data were obtained in a relatively complicated structure. 

The performance of the proposed algorithm was comparable with that of the adjoint 

method in noise-free simulated data, achieving a slightly less image reconstruction error 

(2.93% compared to 3.21% in free space, and 7.69% compared to 9.05% in MRI- 

derived breast phantom). However, when experimental data is used, evidence suggests 

that the CDF-Broyden update method is more robust, where artefacts appearing at the 

middle of the imaging domain and distorted target geometry were more obvious as the 

target size became smaller relative to the wavelength. On the other hand, the enhanced 

performance of the CDF-Broyden update approach comes at the cost of computational 

intensity, where it requires 20 minutes per iteration compared to half a minute for the 

adjoint when the dielectric profiles of human breast structures were reconstructed.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

To the present day understanding of modern physics, electromagnetism is one of the 

four fundamental forces, which together with the strong nuclear, weak nuclear, and 

gravitational forces govern our universe (Gubser, 2010, Halpern, 2004). Aside from 

gravity, ultimately all of the forces that we are familiar with are due to electromagnetic 

interaction (Newman, 2008). Initially, electricity and magnetism were thought to be two 

separate forces until James Clerk Maxwell (Maxwell, 1873) combined them into what is 

known today as Maxwell’s equations (Zwiebach, 2009). These equations predict the 

propagation of electromagnetic waves. In 1886, Heinrich Hertz proved Maxwell’s 

theory by transmitting and receiving electromagnetic signals in the form of electrical 

sparks. Later in 1901, Gugliemo Marconi performed the famous transatlantic 

transmission of electrical sparks over a large distance (Nikookar et al., 2009). In fact, 

both Hertz and Marconi’s experiments were based on the transmission of an ultra-

wideband signal (UWB) simply because the electrical spark (spark gaps used) naturally 

generated impulse signals with very wide bandwidth (Molisch et al., 2006). 

  

Electromagnetic waves are classified according to their frequency (or wavelength) 

forming the electromagnetic wave spectrum. This spectrum includes radio waves, 

microwaves, infrared, visible light, ultraviolet radiation, X-rays, and gamma rays. 

Microwaves occupy the spectrum with frequencies between 300 MHz and 300 GHz, and 
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wavelengths between 1 m and 1 mm respectively. The first major application of 

microwaves was radar, developed and used during World War II, while modern 

applications of microwaves relate to radio, television, and communication systems 

(Hinrikus and Riipulk, 2006). Microwaves have also found their application in medical 

diagnostic and clinical medicine (Lantis et al., 1998, Semenov, 2009). 

 

Analytical solutions of Maxwell’s equations are generally applicable to only a few 

simple geometrical configurations. Such solutions are difficult or impossible to obtain 

for practical problems that involve complex geometries (Smith, 1997, Knott et al., 

2004). Numerical solutions have gained momentum with the availability of computers 

after they were considered only of theoretical interest, opening the field of 

computational electromagnetics and electrodynamics. Numerical solutions are based on 

the approximation of the continuous space of the analytical problem into a discretized 

sequence or grid in a numerical model. Several numerical methods can be applied to 

solve the equations involved in scattering problems. Among the most widely used are 

the Method of Moment (MoM), Finite element Method (FEM), and Finite Difference 

Time Domain method (FDTD).  The choice of which method to implement mainly 

depends on the problem. 

 

The explosion of computing power in the last two decades has driven the quest for 

solving more challenging problems that bypass the solution of the direct or forward 

problems into inverse problems (Abenius, 2004). From a physical perspective, it is 
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generally recognized that the differences between forward and inverse problems are 

related to the concepts of cause and effect (Pastorino, 2010b). The forward solution 

computes the response of a known incident source when all the physical parameters are 

known, whereas the inverse solution seeks to identify the physical parameters that lead 

to a known response from a known source. For example, if the problem is related to a 

scattering, then the forward solver aims to compute the scattered field, while the inverse 

solver aims to identify the scatterers from the scattered field. Microwave tomography 

imaging techniques requires both solvers to identify unknown characteristics of the 

media under investigation.  

 

In the last decades, intensive  research has been carried in microwave tomography 

techniques towards non-invasive imaging targeting several civil and military 

applications (Pastorino, 2010b, Bolomey and Pichot, 1990). Recently, there has been a 

growing interest in microwaves for medical imaging applications due to major safety 

advantages of non-ionizing radiation exposure (Zastrow et al., 2008a, Fear et al., 2002). 

The non-ionizing microwave radiation does not cause changes on an atomic and 

molecular level, and therefore, is much less harmful for biological tissues (Hinrikus and 

Riipulk, 2006). Instead, microwave tomography exploits the differences in the dielectric 

properties of various types of biological tissue 
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1.2 Ultra-wideband for microwave tomography 

In the late 1970’s, Jacobi demonstrated the practical feasibility of using microwaves 

for biomedical imaging by using water immersed microwave antennas to interrogate 

biological targets (Jacobi et al., 1979). Soon later, (Larsen and Jacobi, 1979), presented 

images showing the internal structure of water immersed canine kidney, from 

measurements of transmission coefficients. The use of water in these experiments 

reduced the dielectric mismatch between the water and the biological tissues allowing 

sufficient penetration, while maintaining the spatial resolution of the higher frequency. 

In general, the spatial resolution improves with shorter wavelengths, but consequently, 

increases the attenuation of the transmitted energy. The choice of the operating 

frequency will have to be a compromise between the spatial resolution and loss of signal 

(Jacobi et al., 1979). 

 

Microwave imaging techniques suffer from lack of sufficient collectable information 

on the scenario under test (Franceschini et al., 2006). This information can be increased 

by using multi-view and multi-illumination data acquisition systems. An additional 

improvement to the image reconstruction capabilities can be achieved by performing 

measurements at multiple frequencies, rather than a single monochromatic frequency. 

The natural non-linearity of the inverse scattering image reconstruction process 

increases with higher contrast of the inhomogeneous media (Chew and Lin, 1995). 

However, the non-linear effects are less pronounced at lower frequencies as opposed to 

higher frequencies, and subsequently, the use of  high mono-frequency data only drives 
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the inverse problem into being trapped in a local minima in the optimization process 

(Chew and Lin, 1995). To improve the reconstruction capabilities while maintaining the 

spatial resolution offered by higher frequencies, the image reconstructed from low 

frequency data is used as the initial guess to the higher frequency problem. This strategy 

of slowly hopping from low to higher frequencies, reduces the non-linear effects, and 

effectively improves the reconstruction capabilities compared to using high frequency 

directly (Chew and Lin, 1995, Haddadin and Ebbini, 1998, Franceschini et al., 2006, 

Pichot et al., 1997).   A logical extension to frequency hopping would be achieved by 

increasing the number of scanning frequencies, resulting in a wide band frequency 

sweep over the desired range. The problem is alternatively solved in the time domain, 

since the wideband frequency sweep translates to a time domain impulse, utilizing a 

single set of measurements, and a single solution for whole frequency range. 

 

The advantage of using ultra-wideband as an illuminating source for microwave 

imaging arises from the transmission of a very wide bandwidth instead of a single 

monochromatic signal at single or multiple frequencies. This ensures that the target 

scatters energy at very long as well as very short wavelengths, which in turn, provides 

more information about the shape and material structure of the objects (Abdullah et al., 

2007b). The low frequency spectrum aids in the linearization of the problem (Chew and 

Lin, 1995), while the high frequency spectrum maintains the spatial resolution. UWB 

electromagnetic impulses are attenuated and delayed by the penetrated media according 

to their dielectric properties, and have proven ability to travel through most dielectric 

obstacles maintaining a separation between object and background clutter (Abdullah et 
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al., 2007a). The super resolution capability of UWB means that this technique is able to 

provide reliable information at resolution smaller than Rayleigh resolution of half-

wavelength (Kuroda et al., 2007), reaching 1
30

th of a wavelength as a recent study 

suggests (Gilmore et al., 2010). 

 

1.3 Difficulties and Challenges 

 The interest in using microwave frequencies for medical imaging, namely early 

cancer detection,  is driven by major safety advantage, super resolution capability, 

significant dielectric contrast between normal and malignant tissues, patient 

convenience, and low operating costs. However, microwave medical imaging is still 

considered an emerging technique although its preliminary basics were laid out more 

than 3 decades ago, given the difficulty in obtaining accurate and effective dielectric 

reconstructions (Pastorino, 2010b, Bolomey and Jofre, 2010).  The realization of this 

imaging technique faces several challenges, mainly related to sophisticated 

mathematical inversion techniques and experimental data acquisition systems.  

 

The UWB image reconstruction technique requires an iterative solution of the 

forward problem, in which the electromagnetic wave propagation is calculated as a 

function of the media’s dielectric properties, and the inverse problem in which scattered 

signals are used to reconstruct the spatial distribution of the imaging domain. The core 

of the reconstruction techniques is to minimize the cost function error by matching the 

calculated fields with those obtained from measurements. This implies that the forward 
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solver must be accurate in predicting the actual measurements, while the data acquisition 

system is accurate enough to satisfy the assumption made in the numerical model in 

order to achieve the best match. 

 

Many frequency domain methods, such the Finite Element Method (FEM) and the 

Method of Moment (MoM) have been used to solve forward problem (Rekanos et al., 

1999, Kundu et al., 2008). However, the high frequency wide band excitation pulse of 

the UWB is more suitable solving in time domain, rather than frequency. The Finite 

Difference Time Domain Method (FDTD) introduced in 1966 (Kane, 1966) is a very 

popular approach for its simplicity conceptually, and in terms of implementation. The 

FDTD method divides the computational domain into Cartesian cubic cells in 3-

Dimentions (3-D), or rectangular cells 2-Dimentions (2-D). This imposes a problem for 

modeling of curved geometries as they have to be approximated using a staircase of 

rectangular cells. This approximation can be improved by reducing the cell size, 

eventually increasing the computational demand. A very fine grid is certainly affordable 

if the problem in hand was simply a single simulation run. However this becomes highly 

impractical when the forward problem is part of an intensive iterative process. The use 

of approximating techniques, such as the conformal technique, provides a simple yet 

accurate approximations of curved boundaries without sacrificing the grid size (Wenhua 

and Mittra, 2001). This method utilizes the individual electric field component along the 

edge of the cell containing mixed material properties.  
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To terminate the computational domain, proper boundary conditions must be set to 

absorb the departing waves and prevent them from being reflected back to the domain. 

The Perfectly Matched Layers (PML) is among the most effective methods to terminate 

the FDTD computational domain (Berenger, 1994). 

 

The dependence of the dielectric properties on frequencies should be carefully 

considered in the numerical model when using wide band frequency excitation, 

especially with highly dispersive materials such as biological tissues. The dielectric 

properties of human tissue at microwave frequencies have been studied in the past where 

various tissues have been observed to posses varying properties according to their water 

content and structure (Lazebnik et al., 2007b, Campbell and Land, 1992). The single 

pole first order Debye model can be accurately used to represent the dispersive 

properties of biological human tissues (Gabriel et al., 1996c, Winters et al., 2009). This 

model can also be integrated into the FDTD equations (Sullivan, 2000) to model the 

presence of human tissues. 

 

In comparison to the forward problem, solving the inverse problem to recover the 

unknown dielectric distribution of the imaging domain is much more complicated. The 

difficulty in solving the inverse problem arises from two critical aspects: ill-posedness 

and non-linearity (Abenius, 2004, Joachimowicz et al., 1991). By definition, a problem 

is well posed if its solution exists, is unique, and depends continuously on the data 

(Kirsch, 2011). If one of the previous conditions is not satisfied, the problem becomes 
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ill-posed. The fulfillment of the first two conditions cannot be guaranteed since the 

inverse scattering problem has inherently non-unique solution due to the inexact 

observed field data. The measurements obtained are subject to background noise 

contamination, inaccuracies due to data acquisition, and incompleteness due to the 

spatial or frequency limitation (Abenius, 2004). The inexact numerical method 

approximations can lead to instability, and consequently, failing to satisfy the third 

condition where small perturbation of the data may result in a large error in the solution. 

As a result, conditions of solution existence, uniqueness and stability are not ensured at 

once (Henriksson, 2009). The use of regularization procedures and priori information 

can replace the ill-posed with a well-posed problem to obtain an approximate solution of 

the original problem. Priori information is related to known physical characteristics of 

the media under investigation (Pastorino, 2010b). 

 

The second challenge, which imposes a significant practical difficulty, is the non-

linearity of inverse scattering problem. The relationship between the scatterer and 

corresponding field is highly non-linear due to the multiple scattering effects (Colton 

and Kress, 1998). This non-linearity increases with stronger scatterers (higher dielectric 

contrast). Based on this property, image reconstruction approaches can be divided into 

two classes. The first class ignores the non-linearity by using linear approximations, 

such as Born and Rytov approximations. Despite its fast reconstruction and 

computational efficiency, ignoring the non-linear relationship limits the successful 

solution to qualitative images of low contrast targets, consequently limiting their 

application. The second class of methods formulates the reconstruction algorithm as an 
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optimization problem that requires an iterative solution. These methods are 

mathematically complicated and computationally demanding, but yield a robust and 

accurate qualitative solution (Kidera, 2007). Quantitative methods are able to inspect 

strong scatterers since they take into account the non-linear nature of the inverse 

scattering problem, without the approximations used by qualitative methods, making 

them more suitable for practical applications such as medical imaging. 

 

According to the optimization technique used, inversion algorithms either seek a 

local or global minimizer of the error cost function. Local inversion or gradient based 

methods are computationally less demanding compared to global inversion methods, but 

their performance mainly depends on the initial guess. Global methods on the other hand 

are more accurate, robust, and less susceptible to the choice of the initial guess. 

However, they are very demanding computationally. As a result, local optimization 

techniques offer a trade-off between the required accuracy, and the computational cost. 

 

Deterministic gradient based algorithms require the calculation of the gradient at 

every iterative step, updating the optimized solution. The adjoint formulation (Abenius, 

2004) computes the gradient by the forward propagation of the wave-field, and 

backward propagation of the residual waves. This approach has been investigated in 

linear and non-linear inversion approaches where Lagrange multipliers were used to 

impose constrains. Both single step and iterative solutions were obtained (Binajjaj, 2010, 

Abdullah et al., 2010, Binajjaj et al., 2009). Although this method is capable of 
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producing very good results in ideal noise free environment, it remains very sensitive to 

noise even with the use of a regularization strategy. It was observed that the slight 

decrease in signal-to-noise ratio could result in the adjoint fields propagating along the 

paths which do not intercept the transmitter positions, thus, causing the algorithm to 

diverge.  

 

The central difference evaluation of the gradients, on the other hand, is a 

computationally intensive process, especially with greater number of pixels reaching 

higher resolution. However, good and fast estimate of the gradient is possible by using 

secant methods for multi-variables from which the Jacobian of the next iterative step can 

be obtained using the present gradient and solution.  The best performing of these 

methods in practice is the one resulting from Broyden formula (Broyden, 1965, Press, 

2007). The use of fast gradient estimation reduces the overall computational cost, thus 

accelerating the reconstruction. 

 

Gradient based optimization solution for multivariable problems range between 

steepest descent to Newton methods. The former converges in orthogonal steps as the 

reduction step is chosen to achieve maximum amount of decrease in the cost function. 

Newton methods, on the other hand, converge faster by calculating the Hessian matrix. 

The solution, however, requires inverting the Hessian, and therefore, should be positive 

definite. Although converging in fewer steps, the computational cost of each step is very 

high, especially if encountering a singular matrix where regularization and approximate 
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inversion solution might be needed. An intermediate method in the convergence 

performance is the conjugate directional method which does not use pre-specified 

directions, but computes the direction as the algorithm progresses. This method can be 

applied for non-quadratic problems by using the Polak-Ribière modification formula 

(Chong and Zak, 2001). 

 

1.4 Scope and research objectives 

This research is part of an UWB microwave imaging research project at the school 

of Electrical and Electronic Engineering, Universiti Sains Malaysia, lead by Prof. Mohd 

Zaid Abdullah. Earlier successful studies include the development of an iterative and 

single-step solutions of inverse scattering problem featuring ultra-wideband sensor 

(Binajjaj, 2010), where linear and non-linear solutions have been developed and 

validated for solving the inverse scattering problem. The linear solution was obtained via 

a Born based single step algorithm, while the non-linear solution achieved by utilizing 

the adjoint state method with the conjugate gradient minimization. The study utilized the 

FDTD method to model the propagation of UWB pulses in simple media, featuring 

numerical validation with data captured in both limited and full view geometries. In both 

cases, experimental trials were also conducted using the single step algorithm. 

Nevertheless, the need for a precise data acquisition and a robust reconstruction 

algorithm were clearly observed, limiting the validation of the non-linear solution to 

numerically synthesized data.  
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The presented study aims to achieve additional milestones in this research direction, 

with the general scope focusing on the experimental feasibility of this imaging 

technique. To meet this objective, the research is pursued in three main areas: a more 

precise forward solver that takes into account dispersive media behavior and curved 

geometrical boundaries, a robust iterative inverse reconstruction technique that is 

capable of handling experimental data conditions leading to quantitative images, and an 

improved acquisition system to obtain precision measurements. 

 

Additionally, one of the very promising scenarios in which this imaging technique 

can be applied is the detection of cancerous lesion within the human breast, given the 

natural tissue composition, and dielectric variance of tumor properties compared to their 

surrounding living tissue. Thus, the development of this work pays particular attention to 

this application, although this imaging modality can be applied for a generality of 

applications. 

 

Concurrently with this study, ongoing research areas are being conducted and 

explored within the after mentioned research group, which includes enhanced UWB 

sensor design, investigation of qualitative methods and new reconstruction algorithms, 

and exploring new medical imaging potentials in effort of realizing a practical prototype 

in the near future. 
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Therefore, this study aims to achieve three specific primary objectives listed as follows:  

i- To model the time domain propagation of UWB pulses in dispersive Debye-

media using the finite difference time domain method (FDTD), with 

conformal modeling of curved geometries, and PML absorbing boundary. 

ii- To construct the UWB experimental data acquisition hardware.  

iii- To derive a quantitative reconstruction algorithm based on Polak-Ribière’s 

conjugate gradient method with Broyden’s update scheme. 

 

In realizing the primary objectives, this study aims to achieve the following 

secondary objectives:  

i- To conduct experimental measurements to verify the simulated results using 

an UWB phantom. 

ii- To validate the methods and procedures using experimental biologically 

derived breast phantoms and experimental cancerous tumors. 

iii- To experimentally demonstrate the super-resolution phenomenon of UWB in 

detecting millimeter sized targets.  

 

1.5 Thesis outline 

This thesis is divided into seven chapters. In addition to Chapter One, Chapter Two 

includes an overview of literature on microwave tomography and some major 

applications, reconstruction methods, and studies in the field leading to the state of the 



15 
 

art trends. In Chapter Three, the forward and inverse problems are presented, illustrating 

the theoretical approach and mathematical formulations. Chapter Four demonstrates the 

methods, materials, and experimental setup utilized in this study, while image 

reconstruction featuring numerical and experimental data are presented in Chapter Five.  

Experimental results on the application of this imaging technique for early stage breast 

cancer detection are presented in Chapter Six. Finally, Chapter Seven concludes the 

findings of this study, and highlights suggested future work. 
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CHAPTER 2 

REVIEW OF LITERATURE 

 

2.1 Introduction 

Tomography originates from a two Greek words combination “tomo” meaning 

“slice”, and “graphein” meaning “draw” (Buzug, 2008). The term refers to the general 

class of devices and procedures for producing two dimensional cross-sectional images of 

a three dimensional object (Leahy et al., 2009). The internal structures are revealed 

through the use of ionizing or non-ionizing penetrating waves (Xu and Eckerman, 2010) 

in a non-invasive and non-destructive manner. Ionizing sources include X-ray, while 

microwaves belong to the class of non-ionizing radiation. With the safety advantage of 

non-ionizing radiation, the use of microwave frequencies for biomedical imaging has 

been the scope of interest for several decades, realizing the potential and challenges, and 

exploring several techniques (Jacobi et al., 1979, Priou and Deficis, 1981, Fear et al., 

2002, Zastrow et al., 2008a, Chun et al., 2008).  

 

Over the last few decades, significant progress has been achieved in new and 

emerging topographic techniques, which in addition to microwave tomography include 

electrical capacitance tomography (ECT), electrical impedance tomography (EIT), 

optical tomography, ultrasound tomography, and several others. In the case of ECT, and 

EIT, the imaging technique relies on capacitance and impedance measurement at low 

frequencies which enable permittivity and conductivity profile reconstruction 

respectively. While ECT has been explored for industrial process monitoring, such as 
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imaging liquid/gas mixture in oil pipelines (Abdul Rahim et al., 2010), EIT has been 

targeted for medical and industrial applications, exploiting the difference in conductivity 

and permittivity distribution (York, 2001). Ultrasound tomography relies on using sound 

waves with a frequency above the audible range of human hearing, typically in the MHz 

range, and has been extended from medical to industrial applications (Rahiman et al., 

2006), while optical tomography rely on light measurements through translucent 

materials, and is currently being researched towards realizing biomedical applications 

(Dhawan et al., 2010). A detailed and comprehensive review of these techniques is 

found in (Williams and Beck, 1995, York, 2001).    

 

The higher frequency range offered by microwave indicates that this technique 

would produce higher resolution images than those of the lower frequency range 

measurements mentioned earlier (Voutilainen and et al., 2011), and restriction of semi 

transparent media. In principle, microwave imaging techniques can be classified to 

passive, hybrid and active techniques (Hinrikus and Riipulk, 2006, Fear et al., 2002). 

Passive techniques, known as thermal sensing radiometry, do not use a radiation source, 

but rather exploits the difference in thermal radiation emitted by targets. Hybrid or 

microwave-induced acoustic imaging methods use microwaves as an illumination 

sources, and ultrasound transducers as receivers combining the advantages of microwave 

stimulation and ultrasound imaging (Lin, 2005, Wang et al., 1999, Kruger et al., 1999).  

Active microwave technique, for which the work presented here belongs to, uses 

multiple microwave transmission to interrogate potential targets by measuring their 

scattered response at several receiving locations. The objective is to recover the 
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dielectric property profile (or target identification in the case of qualitative methods) 

from the measured fields on the basis of the difference in dielectric properties of the 

medium under investigation at microwave frequencies. (Hua et al., 2006, Fear et al., 

2003). 

 

2.2 Ionizing and non-ionizing radiation 

Radiation sources can be classified either as ionizing or non-ionizing. The 

distinct properties of both types underline the fundamental difference in the assumptions 

made for image reconstruction. Ionizing radiation, such as X-rays (Figure 2.1), has high 

energy to ionize the particles of the substance which they pass through. Additionally, 

they propagate in straight lines, without suffering from reflection and refraction (Salman 

et al., 2005). On the other hand, non-ionizing radiation, such as microwaves, does not 

have enough energy to ionize the penetrated material, thus, raising advantages from the 

medical perspective as they do not affect the DNA structure (Su et al., 2010, Ptasinska et 

al., 2008). Nevertheless, there are difficulties associated with using microwave radiation 

for imaging applications, as they do not follow simple linear paths (Salman et al., 2005, 

Pan and Kak, 1983). The longer wavelengths of microwaves compared to x-rays makes 

them susceptible to multiple scattering, refraction, and diffraction effects. As a 

consequence, the relation between the scatterer and the response of the incident fields 

becomes inherently non-linear (Marsh et al., 2000, Colton and Kress, 1992, Binajjaj, 

2010), requiring solutions that are capable of overcoming the non-linearity, and ill-

posedness problems  (Abenius, 2004, Joachimowicz et al., 1991).  
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Figure 2.1: Ionizing and non-ionizing radiation in the electromagnetic spectrum (U.S. 
Environmental Protection Agency, 2011). 

 

2.3 Microwave tomography: Linear and non-linear approaches  

Pioneering work on the practical feasibility of using microwaves for biomedical 

imaging came in the late 1970’s, when Jacobi and Larsen (Jacobi et al., 1979) used 

water immersed microwave antennas to interrogate biological targets. Images showing 

the internal structure of water immersed canine kidney were obtained from 

measurements of transmission coefficient between two parallel scanning antennas at a 

monochromatic frequency of 3.9 GHz (Larsen and Jacobi, 1979). In these experiments, 

the background water medium served as a matching medium between the water and the 

biological tissues, thus allowing sufficient penetration, while maintaining the spatial 

resolution of the higher frequency.  In later studies, principles of linear path transmission 

related to X-rays were applied for microwave reconstruction (Ermert et al., 1981, Rao et 

al., 1980, Maini et al., 1981). Nevertheless, the simplifying assumption fails for strongly 

inhomogeneous media (Peronnet et al., 1984). In principle, a fundamental difference 

exists between tomographic imaging with x-rays, and diffracting sources such as 

microwaves and ultrasounds. The Fourier slice theorem (Mersereau and Oppenheim, 
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1974), which states that the Fourier transform of a projection is equal to a slice of the 

two-dimensional Fourier transform of the object, is valid when the projection data 

measure the line integral of some object parameter along straight lines. This assumption 

holds for hard-field sources like X-rays (Pan and Kak, 1983). Nevertheless, when the 

object inhomogeneities are large compared to the wavelength, the propagation is 

characterized by multipath effects. Reconstruction based on diffraction theorem was 

presented by Bolomey (Bolomey et al., 1982a), where diffraction effects were taken into 

account. Peronnet and Bolomey (Bolomey et al., 1982b, Peronnet et al., 1984), also used 

diffraction tomography to obtain quasi real time images of animal organ using a 3 GHz 

experimental setup.  With the assumption of a weak scatterer, simplified inversions 

algorithms based on the Born and Raytov approximations were carried out, leading to 

the application of Fourier Diffraction theorem (Pan and Kak, 1983).  

 

2.3.1 Linear inversion algorithms 

Early attempts for solving the inverse scattering problems involved making 

linear approximations of the non-linear problem (Wolf, 1969). Such solutions are valid 

under certain assumptions that would reduce the non-linearity of the problem, such as 

the weak scattering assumption. The linearized solution can be obtained by solving the 

Helmholtz wave equation and utilizing either Born or Raytov approximations to perform 

the inversion algorithm (Devaney, 1984, Slaney, 1985). Assuming an incident plane 

wave, the Helmholtz wave equation can be expressed as (Pan and Kak, 1983): 

 

(훻 +  푘 ) 푢 (푟⃑) = −표(푟⃑)푢(푟⃑)                                          (2.1) 
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where 푢(푟⃑) is the total field, 푢 (푟⃑) is the scattered fields at point  푟 = (푥,푦, 푧), 표(푟⃑) is 

the object function, and 푘 = 2휋
휆, is the wave number, where 휆 is the wavelength. 

 

The Helmholtz equation cannot be solved directly, but solution can be written in 

terms of the Green’s function  푔 푟⃗|푟⃗`  (Slaney, 1985, Morse and Feshbach, 1953) such 

that: 

푢 (푟⃑) = ∫푔 푟⃗ − 푟⃗` 표 푟⃗` 푢 푟⃗` 푑푟⃗`                                 (2.2) 

where 푟` is the point source. For the two dimensional case, the greens function 

can be expressed as (Kak and Slaney, 2001): 

푔 푟⃗ − 푟⃗` = ± 퐻( )(푘 푅)                                       (2.3) 

where 푅 = 푟⃗ − 푟⃗`, and 퐻( ) is the Hankel function of the first kind. The inverse solution 

is obtained by solving the object function 표(푟⃑) when both the incident field 푢 (푟⃑), and 

the scattered field 푢 (푟⃑) are known. Nevertheless, solving Equation 2.2 is not straight 

forward due to the non-linear relationship between 푢 (푟⃑) and 표(푟⃑). The solution may be 

approximated by using either Born or Raytov approximations. Recalling the total field 

푢(푟⃑), the total field at any position can be modeled as the superposition of the incident 

field and the scattered field (Pan and Kak, 1983): 

푢(푟⃑) = 푢 (푟⃑) + 푢 (푟⃑)                                          (2.4) 

and Equation 2.2 can be written as: 

푢 (푟⃑) = ∫푔 푟⃗ − 푟⃗` 표 푟⃗` 푢 푟⃗` 푑푟⃗` +  ∫푔 푟⃗ − 푟⃗` 표 푟⃗` 푢 푟⃗` 푑푟⃗`          (2.5) 
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Under the assumption of weak scattering, that is 푢 (푟⃗) ≫ 푢 (푟⃗),  the effect of the second 

integral can be neglected, leading to the Born approximation (Pan and Kak, 1983). 

Under this assumption, Equation 2.2 becomes: 

푢 (푟⃑) = ∫푔 푟⃗ − 푟⃗` 표 푟⃗` 푢 푟⃗` 푑푟⃗`                               (2.6) 

where the linearized approximation is only valid when the assumption is satisfied. 

 

The Rytov approximation, on the other hand, is based on a slightly different 

assumption. This approximation is derived by expressing the total complex phase 

휙(푟⃑) as the sum of the incident phase 휙 (푟⃑), and the scattered phase 휙 (푟⃑) functions: 

휙(푟⃑) = 휙 (푟⃑) + 휙 (푟⃑)                                        (2.7) 

where 푢(푟⃑) = 푒 ( ⃑). Using this formulation in the wave equation, and following the 

derivation in (Kak and Slaney, 2001), it can be shown that: 

(훻 +  푘 ) 푢  휙 = −푢 [(훻휙 ) + 표(푟⃑)]                            (2.8) 

where the function arguments were dropped for simplicity. The solution of this 

differential equation can be expressed as (Kak and Slaney, 2001): 

푢  휙 =  ∫ 푔 푟⃗ − 푟⃗`  푢 (훻휙 ) + 표 푟⃗`
, 푑푟⃗`                          (2.9) 

 

Under the Rytov approximation, 훻휙  is assumed to be much smaller than 표(푟⃗), 

that is: 

(훻휙 ) + 표(푟⃗) ≈  표(푟⃗)                                       (2.10)  

Using this approximation,  the complex phase of the scattered field is given by 

(Kak and Slaney, 2001): 

 휙 (푟⃑) =  
( ⃑)∫ 푔 푟⃗ − 푟⃗`  푢 푟⃗` 표 푟⃗`

, 푑푟⃗`                            (2.11) 
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Several studies were dedicated to compare the merit of Born and Rytov 

approximations under different weak scattering conditions. Nevertheless, as the 

scattering effects become stronger, the assumptions and approximation of both 

approaches become violated, limiting the reconstruction capability and applicability. For 

the detailed derivation and comparative results of both approximations, the reader is 

referred to  (Iwata and Nagata, 1975, Pan and Kak, 1983, Slaney et al., 1984, Salman et 

al., 2005, Pastorino, 2010b, Rajan and Frisk, 1989, Kak and Slaney, 2001).  

 

The appealing features of the linear approaches lie in the computational 

efficiency. The consequences of the linearized solutions is that these approaches can 

only produce qualitative images rather than quantitative, while it is limited to cases of 

weak scatterers (Binajjaj, 2010, Abdullah et al., 2010). However, in certain applications, 

retrieving the shape and location of the scatterer is sufficient information, as the values 

of the objects or background dielectric parameters are unnecessary or obvious 

(Pastorino, 2010b). An example of this situation is seen in non-destructive testing and 

quality control, where the shape and location of the defects (such as cracks) are of 

primary concern.  

 

 

2.3.2 Non-linear inversion algorithms 

As evident from the previous discussion, the natural non-linearity of the inverse 

scattering problem increases with higher contrast  of the inhomogeneous media (Chew 

and Lin, 1995). The non-linear effects are more pronounced at higher frequencies, 

subsequently limiting the potential resolution. As a result, non-linear solutions are more 
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suitable for solving this kind of problem, where the non-linearity of the inverse 

scattering is retained. The complications, however, lie with the mathematical complexity 

associated with the solution, and corresponding computational cost due to the iterative 

procedures. Nevertheless, these types of solutions became feasible in with the advent of 

the computational power and personal computing in the late 1980’s. In comparison with 

linear approaches, non-linear algorithms are more accurate and robust, making them 

more appropriate for practical applications, but at a higher computational cost. 

 

In general, non-linear inverse scattering problems are reformulated as an 

optimization problem that is solved iteratively. Early attempts for solving the non-

linearity dates back to the early 1980’s (Roger, 1981) where the Newton-Kantorovich 

algorithm, and regularized Newton methods were investigated. Early studies also 

explored other optimization techniques such as the conjugate gradient method 

(Nayanthara et al., 1987). In the early 1990’s, Chew and Wang (Wang and Chew, 1989, 

Chew and Wang, 1990) demonstrated iterative solutions using the iterative Born, and 

distorted Born iterative methods, obtaining solution in cases when the Born and the 

Rytov approximations usually break down. An iterative solution based on the Newton-

Kantorovich algorithm was also proposed by Joachimowicz et al (Joachimowicz et al., 

1991). In his proposed solution, the forward scattering problem was solved using the 

method of moment, while the initial non-linear relation characterizing the inverse 

scattering problem was transformed to a sequence of linear ones which minimize the 

difference between the computed scattered field and the measured scattered field.  

 


